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Aylin Taştan , Michael Muma , Senior Member, IEEE, and Abdelhak M. Zoubir , Life Fellow, IEEE

Abstract—The block diagonal structure of an affinity matrix
is a commonly desired property in cluster analysis because it
represents clusters of feature vectors by non-zero coefficients
that are concentrated in blocks. However, recovering a block
diagonal affinity matrix is challenging in real-world applications,
in which the data may be subject to outliers and heavy-tailed
noise that obscure the hidden cluster structure. To address this
issue, we first analyze the effect of different fundamental outlier
types in graph-based cluster analysis. A key idea that simplifies
the analysis is to introduce a vector that represents a block
diagonal matrix as a piece-wise linear function of the similarity
coefficients that form the affinity matrix. We reformulate the
problem as a robust piece-wise linear fitting problem and propose
a Fast and Robust Sparsity-Aware Block Diagonal Representation
(FRS-BDR) method, which jointly estimates cluster memberships
and the number of blocks. Comprehensive experiments on a
variety of real-world applications demonstrate the effectiveness
of FRS-BDR in terms of clustering accuracy, robustness against
corrupted features, computation time and cluster enumera-
tion performance.

Index Terms—Block diagonal representation, affinity matrix,
similarity matrix, eigenvalues, subspace clustering.

I. INTRODUCTION

ABLOCK diagonally structured affinity matrix represents
clusters of feature vectors by non-zero coefficients that are

concentrated in blocks. Such a structure is an informative model
to describe hidden relationships. It has numerous applications,
e.g., denoising [1], [2], recognition [3], semi-supervised learn-
ing [4], [5], [6], subspace learning and clustering/classification
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16].
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Commonly used existing block diagonal representation
(BDR) methods impose a structure on the affinity matrix using
regularization with block diagonal (BD) priors, e.g. based on a
low-rank property [17], [18], [19], [20], sparsity [21], [22], [23]
or a known number of blocks K [6], [7], [8], [9]. For example
the method in [6], which is one of the current benchmarks BDR
methods, controls the number of connected components in the
affinity matrix by imposing a rank constraint on the Laplacian
matrix. An alternative popular approach [7], proposes a
K-block regularizer that is defined by the sum of the K
smallest eigenvalues of the Laplacian matrix to compute a
BD affinity matrix. A major challenge of these methods is the
need to determine appropriate BD priors which play a crucial
role in achieving accurate BDR results. Due to its key role in
BDR methods, the determination of sparsity/low-rank level has
been intensively investigated from different viewpoints, e.g.
similarity coefficients’ distribution [24], connectedness [25],
geometric analysis [26] and supervised learning [27], [28].
Recently, in [9], an alternative unsupervised approach based
on eigenvalues has been proposed to deduce the sparsity level
in a BD matrix. The eigenvalue analysis is, however, restricted
to the setting of independent blocks.

A further significant challenge when working with real-world
data is the presence of heavy-tailed noise and outliers [29], [30],
[31], that might obscure the eigenvalue structure in corrupted
data sets. This results in a performance degradation for BDR
approaches that rely on estimating eigenvalues to determine
connectedness. To illustrate the necessity for robustness, a
graph partitioning application is shown in Fig. 1 for a defined
level of sparsity using the well-known handwritten digit sam-
ples from the MNIST data base [32]. In the exemplary graph
model, the red edges represent connections to outliers while the
remaining edges are the informative edges, where green, blue
and yellow lines represent the within-cluster edges of digits 9,
4 and 3, respectively. The red ellipses indicate cluster assign-
ments that are computed based on the general graph partitioning
principle, in which the number of edges that cross the cut is
minimized [33]. As can be seen, unconnected outlying digit
samples (‘Type I outliers’) are assigned into a small cluster
while a different type of outliers (‘Type II outliers’) that create
false positive connections between multiple clusters cause a
merging of characters four and nine into one large cluster.

In this work, we propose a method for robustly estimating
an underlying BD structure, given an outlier-corrupted affinity
matrix. We call this method: Fast and Robust Sparsity-Aware
Block Diagonal Representation. We build upon the definition
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Fig. 1. Exemplary graph partitioning digit samples from MNIST data
base [32].

of a vector v that we recently introduced in [9] to represent the
BD affinity matrix as a piece-wise linear function. Compared
to existing popular BDR approaches, such as, [6], [7], [8], the
optimization is efficiently performed in a vector space instead of
matrix space. Additionally and in contrast to [9], the method is
robust against outliers. Our main contributions are summarized
as follows:

1) We perform comprehensive robustness analysis that
quantifies the effects of outliers. In particular, our the-
oretical analysis shows how the vector v and the eigen-
values, which carry substantial information about the BD
structure, are influenced by outliers.

2) Our analysis enables the development of a BDR algo-
rithm that is (i) robust against outliers that obscure the
target BD structure and (ii) computationally efficient by
re-formulating the problem as a piece-wise linear func-
tion optimization instead of a matrix-optimization. We
show that our proposed method provides mathematically
interpretable results in challenging settings where deriv-
ing eigenvalue information is no longer possible (i.e., in
the extreme case when all blocks are connected because
of corruption by outliers).

The paper is organized as follows. Section II contains
a summary of notations and a brief discussion on eigen-
decomposition. The detailed eigenvalue analysis and outlier ef-
fects are presented in Section III. The simplification of the graph
Laplacian matrix analysis by means of vector v and the asso-
ciated outlier effect analysis are the subject of Section IV. The
proposed FRS-BDR method is detailed in Section V and ex-
perimental evaluations demonstrating the performance of FRS-
BDR in comparison to popular BDR approaches are shown in
Section VI. Finally, conclusions are drawn in Section VII. The
codes that implement the FRS-BDR method are available at:
https://github.com/A-Tastan/FRS-BDR.

II. PRELIMINARIES

A. Summary of Notation

Lower and upper-case bold letters denote vectors and ma-
trices, respectively; |x| denotes the absolute value of x; ‖x‖
denotes the norm of vector x while med(x) denotes its median;

sign(x) = x/|x|; diag(x1, ..., xN ) denotes a diagonal matrix
of size N ×N with x1, ..., xN on its diagonal; I denotes the
identity matrix; 1 denotes the column vector of ones; x̂ denotes
the estimate of vector x; W̃ refers to a corrupted affinity matrix;
i, j and k are index operators for the blocks, e.g. W̃i denotes
ith block in W̃; m, n and r are index operators for the samples;
finally I and II denote, respectively, index operators for the
Type I and Type II outliers.

B. Eigen-Decomposition of Laplacian Matrix

Let data set X= [x1 . . .xN ] ∈ R
M×N with M denoting the

feature dimension and N being the number of feature vectors,
be represented as a graph G= {V,E,W}, where V denotes
the vertices, E represents the edges, and W ∈ R

N×N is the
symmetric affinity matrix. The affinity matrix is computed from
X by choosing an appropriate similarity measure, such as, the
cosine similarity for which wm,n = x�

mxn, m �= n s.t. ‖xm‖2 =
1, ‖xn‖2 = 1. Let L ∈ R

N×N denote the nonnegative definite
Laplacian matrix that is defined by the eigen-problem

Lym = λmym, (1)

or in a generalized eigenvalue problem form

Lym = λmDym, (2)

with associated eigenvalues 0≤ λ0 ≤ λ1 ≤ ...≤ λN−1 sorted
in ascending order. Here, L=D−W, where D ∈ R

N×N is
a diagonal weight matrix with edge weights dm,m =

∑
n wm,n

on the diagonal, λm denotes the mth eigenvalue and ym ∈ R
N

is the eigenvector associated with λm.

III. EIGENVALUE ANALYSIS AND OUTLIER EFFECTS

The eigen-decomposition of a Laplacian matrix has numer-
ous applications [33], [34], [35], [36], [37] and, in partic-
ular, it plays a crucial role in graph-based cluster analysis
[14], [38], [39], [40], [41], [42], [43], [44]. However, iso-
lated outliers and outliers that induce undesired correlations
between different clusters may negatively impact the eigen-
decomposition, leading to a breakdown of clustering algorithms
[38], [39]. Section III-A summarizes briefly our previous find-
ings in [9]. A new series of solutions based on the standard
eigen-decomposition in Eq. (1) is provided in Appendix B of
the accompanying material [45]. Then, the effect of outliers and
group similarity on eigenvalues is analyzed in Section III-B for
both eigen-decompositions, i.e. for Eqs. (1) and (2).

A. Target Eigenvalues for Graph-Based Clustering

As graph partitioning approaches seek to partition the set of
vertices in G into disjoint sets and minimizing the number of
the edges that cross the cut [26], [46], [47], an ideal, i.e., target
BD affinity matrix is defined in [9] as follows.

Definition III.1: (Target BD Affinity Matrix, [9]). Let W ∈
R

N×N be a K block zero-diagonal symmetric affinity matrix
with blocks W1,W2, ...,WK on its diagonal. Each block Wi,
i = 1, ...,K is associated with a number Ni ∈ Z+ > 1 of
feature vectors and concentrated around a similarity constant
wi ∈ R

+, i = 1, ...,K with negligibly small variations. W is
called the target affinity matrix if and only if the similarity
coefficients between different blocks are all zero-valued.

https://github.com/A-Tastan/FRS-BDR
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Fig. 2. Exemplary target Laplacian matrix and its eigenvalues (n=
[10, 8, 12]� ∈ R

K , N = 30, K = 3).

Based on this definition, the corresponding ideal graph G
includes only edges between vertices associated with the same
block. In [9], using spectral analysis, we showed that if there ex-
ists a W as in Definition III.1, the eigenvalues of the associated
Laplacian matrix L ∈ R

N×N will be of the following form

λ=sort

(

0, ..., 0
︸ ︷︷ ︸

K

,
N1

N1 − 1
, ...,

N1

N1 − 1
︸ ︷︷ ︸

N1−1

, ...,
NK

NK − 1
, ...,

NK

NK − 1
︸ ︷︷ ︸

NK−1

)

, (3)

where λ ∈ R
N denotes the vector of target eigenvalues and

sort(.) is the sorting operation in ascending order.
Fig. 2 illustrates the vector of target eigenvalues λ associated

with a Laplacian matrix of K = 3 blocks where each block is
assumed to be concentrated around a constant wi ∈ R

+, e.g.
w = [0.6, 0.3, 0.9]� ∈ R

K . Fig. 2(b) confirms the findings of
[9], i.e., that the smallest eigenvalue is zero-valued and the
remaining Ni − 1 number of eigenvalues are Ni

Ni−1 for each
block i= 1, ...,K.

For clustered data, the target block diagonal model in Defini-
tion III.1 represents the optimal level of sparsity with internally
dense and externally disjoint groups of vertices. If the observed
data would ideally follow this model, it would not contain
outliers and the sparsity level could directly be deduced from
the percentage of zero-valued entries in the affinity matrix. It
is evident that setting additional entries in the affinity matrix
in Definition III.1 to zero (resulting in an overly sparse graph)
will reduce the internally dense structure of a cluster and lead
to the occurrence of Type I outliers (see Definition III.2). In
contrast, an overly dense graph, is obtained by adding undesired
edges between blocks, which is consistent with the occurrence
of Type II outliers (see Definition III.3) and its extreme case of
group similarity (see Definition III.4). The introduced theoreti-
cal analysis in the following section describes the effect of these
fundamental outlier types on the optimal level of sparsity and
shows how optimizing the level of sparsity based on the deter-
mined target block diagonal model prevents these fundamental
outlier effects and addresses robustness and sparsity jointly.

B. Outlier Effects on Target Eigenvalues

From Eq. (3), it follows that the non-zero components of the
target eigenvalues contain the block size information. However,
in practice, such a target vector is not available. Especially

Fig. 3. Illustration of Type I outliers. The colored cells in the corrupted BD
affinity matrix W̃ represent non-zero edge weights in graph G̃.

for outlier-corrupted affinity matrices, the blocks might be ob-
scured (see also Fig. 8 for an example), which results, e.g., in
a performance degradation of an eigenvalue-based block size
estimate. To quantify this more precisely, and subsequently
derive robust BDR methods, we next define some fundamental
outlier types and analyze their effects on the target eigenvalues.

Definition III.2: (Type I Outliers, [31]). The feature vectors
corresponding to the vertices that do not share edges with any
of the samples are called Type I outliers.

Definition III.2 is illustrated in Fig. 3 in which the uncon-
nected vertices in G̃ are Type I outliers. Since the multiplicity
of the zero-valued eigenvalues of L equals the number of con-
nected components [48], this means that NI Type I outliers lead
to NI additional zero-valued eigenvalues [31].

In real-world scenarios the number of Type I outliers varies
and their occurrence, generally speaking, is affected by multiple
factors: One significant delimiter for the number of Type I out-
liers is the data structure. For example, a simple similarity mea-
sure, i.e. W =X�X will produce a sparse affinity matrix only
when the feature vectors are sparse. In practice, using images or
medical observations as feature vectors usually generates non-
sparse affinity matrices for a simple similarity measure (e.g.
W =X�X) while using, e.g. a term-document matrix as data
matrix may result in a sparse matrix and consequently to the
occurrence of Type I outliers. The second important delimiter
is the affinity matrix construction. In more details, for a sparse
affinity matrix construction method increasing sparsity pro-
duces Type I outliers. An example illustrating the link between
Type I outliers and sparse affinity matrix construction is shown
in Fig. 10 and in Appendix E.1 of the accompanying material
[45] for the MNIST data base.

Next, we study the effect of Type II outliers, defined
as follows:

Definition III.3: (Type II Outliers, [31]). The feature vectors
corresponding to the vertices that share edges with more than
one group of feature vectors are called Type II outliers.

Definition III.3 is illustrated in Fig. 4, which shows that
the connectedness of Type II outliers to multiple groups of
feature vectors obscures the target group structure and poses
a challenge to BDR methods.
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Fig. 4. Illustration of Type II outliers. The red colored cells in W̃ corre-
spond to edges of Type II outliers.

In contrast to Type I outliers studied in [31], the effect of Type
II outliers on eigenvalues is still an open problem. Therefore,
an analysis of the Type II outliers’ effect on the eigenvalues
of the Laplacian matrix is provided for the generalized eigen-
decomposition in Eq. (2) as follows.1

Theorem 1: Let W̃ ∈ R
(N+1)×(N+1) define a symmetric

affinity matrix, that is equal to W, except for an additional
Type II outlier that shares similarity coefficients with K blocks
where w̃II,K > 0 denotes the similarity coefficient between the
Type II outlier and the Kth block. Then, for the associated cor-
rupted Laplacian matrix L̃ ∈ R

(N+1)×(N+1) with eigenvalues
λ̃ ∈ R

N+1, it holds that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 − 1 elements of λ̃ are equal to
N1w1 + w̃II,1

d̃1
,

N2 − 1 elements of λ̃

…

are equal to
N2w2 + w̃II,2

d̃2
,

NK − 1 elements of λ̃ are equal to
NKwK + w̃II,K

d̃K
,

the smallest element of λ̃ is equal to zero,

and the remaining K eigenvalues are the roots of

K∏

j=1

(w̃II,j − λ̃d̃j)

(
−

K∑

j=1

Njw̃II,j d̃j

w̃II,j − λ̃d̃j
− d̃II

)
= 0,

where d̃II =
∑K

j=1 Njw̃II,j and d̃j = (Nj − 1)wj + w̃II,j .
Proof: See Appendix A.1 in [45].
We next introduce an extreme case of Type II outliers based

on the following definition.
Definition III.4: (Group Similarity). If an entire group of

vertices shares edges with another group of vertices we call this,
group similarity.

The Laplacian matrix of Definition III.4 can be considered
as a single connected component which means that the number
of zero-valued eigenvalues equals to one [48]. In contrast to
this simple interpretation, the remaining eigenvalues can be

1For an analysis based on the standard eigen-decomposition in Eq. (1), see
Appendix B in [45].

Fig. 5. Exemplary corrupted Laplacian matrix and its eigenvalues (n=
[10, 8, 12]� ∈ R

K , N = 30, K = 3).

formulated as a function of intra-blocks and inter-blocks simi-
larity coefficients where inter-blocks similarity coefficients are
generally smaller-valued than those of intra-blocks in real-
world scenarios. To provide a mathematical understanding of
this, the following theorem quantifies the effect of group simi-
larity on the target eigenvalues.

Theorem 2: Let W̃ ∈ R
N×N define an affinity matrix that

is equal to W, except that block i has similarity with the
remaining K − 1 blocks with w̃i,j = w̃j,i > 0 denoting the
value around which the similarity coefficients between blocks
i and j are concentrated for j = 1, ...,K and i �= j. Then, the
eigenvalues λ̃ ∈ R

N of L̃ ∈ R
N×N are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ni − 1 elements of λ̃ are equal to

Niwi +
K∑

j=1,
j �=i

Njw̃i,j

d̃i
,

Nj − 1 elements of λ̃
…

are equal to
Njwj +Niw̃i,j

d̃j
,

NK − 1 elements of λ̃ are equal to
NKwK +Niw̃i,K

d̃K
,

the smallest element of λ̃ is equal to zero,

and the remaining K − 1 eigenvalues in λ̃ are the roots of

K∏

j=1
j �=i

(Niw̃i,j − λ̃d̃j)

(
−

K∑

j=1
j �=i

d̃jNjw̃i,j

Niw̃i,j − λ̃d̃j
− d̃i

)
= 0,

where d̃j = (Nj − 1)wj +Niw̃i,j , d̃i = (Ni − 1)wi+∑K
j=1
j �=i

Njw̃i,j .

Proof: See Appendix A.2 in [45].
A Laplacian matrix L̃ that is corrupted with all discussed

outlier types is displayed in Fig. 5(a), while the above de-
rived outlier effects on the eigenvalues are visually summarized
in Fig. 5(b).

Remark 1: To derive the theoretical results, simplifying as-
sumptions2, such as, concentration of the similarity coefficients
within a block around a mean value are required. In practice,

2For our further analysis about loosening assumptions based on eigenvec-
tors, see Theorem 1 in [49].
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Fig. 6. Exemplary target Laplacian matrix and corresponding vector v (n=
[10, 8, 12]� ∈ R

K , N = 30, K = 3).

these assumptions may only be approximately fulfilled. How-
ever, will see later in Section VI that the numerical performance
gain obtained by suppressing outliers’ effects outweigh the
model mismatch in the considered benchmark data sets. Further,
existing theoretical works on the spectrum of BDR methods,
e.g. [50], [51], [52], [53], make even stricter assumptions, be-
cause the spectrum of an adjacency matrix can be found in
closed form for simple models [51]. According to the most
recent generic analyses [50] and [51], the spectrum of a BDR
has been computed for planted partition model (PPM) with
equal community sizes which is a special case of stochastic
block model (SBM) assuming that the probability of having
an edge within the cluster is constant and equal for all clusters
while probability of having an edge to a different cluster is also
constant and the same for all clusters. There are also some other
researches on eigenvalues to determine the limiting distribution
of the edge eigenvalues [52] and that of the outlier eigen-
values [53]. Even though these previously introduced spectral
properties of random matrices are interesting to understand the
complex graph structures, the available information about the
spectrum of a BD matrix is limited to the considered simple
models, i.e. PPM, and the available information about the eigen-
values is limited to eigenvalues of non-weighted graphs.

IV. SIMPLIFIED LAPLACIAN MATRIX ANALYSIS AND

OUTLIER EFFECTS

In the preceding sections, outlier effects have been analyzed
for N × N Laplacian matrices, which may lead to computa-
tionally heavy methods for large graphs. In this section, we
therefore re-formulate the problem in N × 1 vector space. In
particular, assuming that W is symmetric and BD3, the analysis
is simplified by defining the vector v ∈ R

N as follows [9]

vm =
N∑

n=m

lm,n, (4)

where vm and lm,n, respectively, denote the mth and (m,n)th
components of v and L.

A. Target Vector v for Graph-Based Clustering

In [9], we have shown that the target vector v is a piece-wise
linear function of the following form.

3A sparse matrix can be transformed into a BD form using the Reverse
Cuthill-McKee (RCM) algorithm [54].

Definition IV.1: (Target Vector v, [9]). The target
vector v is a piece-wise linear function of the follow-
ing form

vm = f(m) =

⎧
⎨

⎩

(m− �1)w1

…

if �1 ≤m≤ u1

(m− �K)wK if �K ≤m≤ uK ,

where �1 = 1, u1 = N1, �i =
∑i−1

k=1 Nk + 1 and

ui =
∑i

k=1 Nk for i = 2, ...,K.
An illustration is provided in Fig. 6 for a K = 3 block Lapla-

cian matrix. As can be seen, the changepoints of the piece-
wise linear function provide information about the block size.
To arrive at robust methods, we next determine the outlier
effects on v.

B. Outlier Effects on Target Vector v

For a Type I outlier-corrupted affinity matrix
W̃ ∈ R

(N+1)×(N+1) that is identical to W, except for a
single Type I outlier oI, the overall edge weight associated
with oI is zero-valued, i.e. d̃I = 0. Based on Def. IV.1, it is
straightforward to show that the component in the associated
corrupted vector ṽ ∈ R

N+1 that is associated with Type I
outliers is zero valued, i.e., ṽI = 0. The Type II outliers’ effect
on v is as follows.

Theorem 3: Let W̃ ∈ R
(N+1)×(N+1) define a Type II outlier-

corrupted BD affinity matrix that is identical to W ∈ R
N×N

except for a single Type II outlier that has non-zero sim-
ilarity coefficients with all blocks. Assuming that the sim-
ilarity coefficients associated with the outlier oII and the
blocks j ∈ {1, ...,K} are concentrated around w̃II,j , the com-
ponents, whose indexes are valued between the outlier in-
dex and the largest index of the jth block, such that mII <
m≤ uj , increase by w̃II,j in the corrupted vector ṽ ∈ R

N+1.
Further, the component associated with the Type II outlier is
given by

ṽII=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if 0<mII< �1
(mII−�1)w̃II,1

…

if �1<mII< �2

K−1∑
j=1

Njw̃II,j+(mII−�K)w̃II,K if �K<mII≤N+1

,

where �j denotes the lowest index of the jth block.

Proof: See Appendix C.1 in [45].
The effect of group similarity on v is as follows.
Theorem 4: Let W̃ ∈ R

N×N define a corrupted affinity ma-
trix that is identical to W ∈ R

N×N , except that block i has non-
zero similarity coefficients with the remaining K − 1 blocks
with w̃i,j = w̃j,i > 0 denoting the similarity coefficients around
which, blocks i and j are concentrated. These similarities result
in an increase by Niw̃i,j in the components associated with
the blocks j = i+ 1, ...,K of ṽ ∈ R

N while the components of
j < i remain the same. Further, the components associated with
block i remain the same for i= 1 and increase by

∑i−1
j=1 Njw̃i,j

for 2≤ i≤K.
Proof: See Appendix C.2 in [45].
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Fig. 7. Exemplary corrupted Laplacian matrix and corresponding ṽ (n =
[10, 8, 12]� ∈ R

K , N = 30, K = 3).

Fig. 8. Exemplary deviations from the target vector v. The affinity matrix
is defined by W =X�X.

In the sequel, we analyze the worst case of group similarity,
i.e., similarity of all blocks. Note that, in this case, eigenvalues
can not be formulated as a function of similarity coefficients due
to the impossibility of simplifying determinants of full matrices
via Gaussian elimination. However, recovering the structure of
W based on v is possible based on the following result.

Corollary 4.1: Let W̃ ∈ R
N×N define a corrupted affinity

matrix that is identical to W ∈ R
N×N , except that each block

i= 1, ...,K has non-zero similarity coefficients with the re-
maining K − 1 blocks with w̃i,j = w̃j,i > 0 denoting the simi-
larity coefficients around which, blocks i and j are concentrated
for j = 1, ...,K and i �= j. This leads to a piece-wise linear
function given by

ṽm =

⎧
⎪⎪⎨

⎪⎪⎩

(m− �1)w1 if �1 ≤m≤ u1

(u1 − �1 + 1)w̃1,2 + (m− �2)w2

…

if �2 ≤m≤ u2

K−1∑
i=1

(ui − �i + 1)w̃i,K + (m− �K)wK if �K ≤m≤ uK

where �1 = 1, u1 =N1, �i =
∑i−1

k=1 Nk + 1 and ui =
∑i

k=1 Nk

for i= 2, ...,K.
Proof: See Appendix C.2 in [45].
An exemplary corrupted Laplacian matrix L̃ and correspond-

ing ṽ illustrating our theoretical findings are shown in Fig. 7(a)
and 7(b), respectively. Consistent with Section III-B, outliers of
Type I result in zeros in ṽ. Additionally, Type II outliers and
group similarity lead to an increase in the target vector v as
quantified in Theorems 3 and 4, respectively.

To demonstrate the degree of model mismatch in the consid-
ered real-world data sets due to the simplifying assumptions

Fig. 9. Exemplary deviations from the target vector v. The BD affinity
matrix is defined by removing the undesired similarity coefficients between
different blocks of W =X�X.

that were necessary to derive our theory, exemplary vectors
associated with the corrupted affinity matrices that are subject to
group similarity as in Corollary 4.1 and the corresponding target
vector v’s are illustrated in Figs. 8(a) and 8(b), respectively,
for the Iris [55] and Person Identification [56] data sets. As
can be seen, undesired similarity coefficients between different
blocks result in shifts from the target piece-wise linear functions
starting from the second linear pieces, consistent with our the-
ory in Corollary 4.1. In particular, assumptions and findings of
Corollary 4.1 hold well in real-world data sets, especially, when
the data sets include densely connected clusters of points, e.g.
Ceramic [57] and Iris [55].4 Additionally, corrupted data sets,
e.g. Person Identification [56] whose corresponding affinity
matrix is subject to Type I outliers and group similarity results
in large deviations from the target piece-wise linear function
with group similarity shifts and small-valued ṽ components
corresponding to Type I outliers as it has been theoretically
shown in previous. A further analysis illustrating the degree
of model mismatch between the target BD model and a BD
model with varying similarity coefficients within the blocks
is shown in Fig. 9(a) and 9(b), respectively, for the Iris and
Person Identification data sets. Even though highly corrupted
data sets generate large deviations from the assumed models
in real-world scenarios, an appropriate BDR suppresses these
outlier effects by providing an optimal level of sparsity which
is a major motivation of our proposed algorithm that will be
detailed in the sequel.

V. THE PROPOSED METHOD

In Section V-B, we briefly discuss the key ideas of the pro-
posed method. Following this, a step-by-step detailed mathe-
matical explanation is provided in Section V-C. We then analyze
the computational complexity in Section V-D. Additionally, a
comprehensive visual summary is provided in Appendix F.1 of
the accompanying material [45] and a pseudo-code algorithm
of FRS-BDR is given in Algorithm 2.

A. Problem Statement: Jointly Addressing Robustness and
Sparsity

With the results of Sections III and IV in place, we are ready
to understand the relationship between the level of sparsity and

4For further real-world data examples, see Appendix E.2 in [45].
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Fig. 10. Example graphs for increasing sparsity. An initial affinity matrix
is defined by W =X�X and the example graphs are obtained by removing
the edges whose corresponding edge weight is smaller than the defined
threshold value.

the previously defined outlier types to highlight the importance
of jointly addressing robustness and sparsity. In a generic ex-
ample, Fig. 10 shows that a dense graph (top) contains high
amounts of group similarity while increasing sparsity reduces
the number of Type II outliers (middle). Finally, further increas-
ing sparsity generates Type I outliers until at some point the
underlying true cluster structure is completely lost. This means
that an inaccurate determination of the sparsity level leads to the
above discussed outlier effects for existing approaches, such as,
e.g. [21], [22], [23]. In this section, we therefore propose a new
method that addresses robustness and sparsity jointly.

More precisely, let a given data set of feature vectors X ∈
R

M×N be represented as a weighted graph G= {V,E,W},
i.e., W =X�X and ‖xm‖= 1, m= 1, ..., N . Further, let D
and L ∈ R

N×N denote, respectively, the overall edge weight
and the Laplacian matrices associated with W. Then, the goal
of this work is to robustly estimate a K block zero-diagonal
symmetric affinity matrix W ∈ R

N×N using the available in-
formation about the vector v and an eigen-decomposition. The
number of blocks K is assumed to be unknown and X may
be subject to heavy-tailed noise and outliers which results in
undesired effects, such as group similarity. The number of
outliers is assumed to be unknown. Computational efficiency
is also of fundamental interest. Thus, in brief, the overall aim
is to develop a fast and sparsity aware BDR method that is
robust against outliers and group similarity.

B. Main Ideas and Outline of Proposed Method

This section summarizes the main ideas of our proposed Fast
and Robust Sparsity-Aware Block Diagonal Representation
(FRS-BDR) method. The full details of each step are given
in Section V-C.

To provide a general understanding, a high-level flow di-
agram illustrating the key steps of FRS-BDR is provided in

Fig. 11. As shown in the figure, the method consists of two
general steps, i.e., enhancing BD structure (Step 1) and esti-
mating vector v (Step 2). The computation step starts with a
given Type I outlier-corrupted and non-sparse Laplacian matrix
L (Step 1.0: Initialization in Fig. 11). According to the explicit
Definition III.2 of Type I outliers, the method first removes the
similarity coefficients associated with Type I outliers, which
are represented in red color, from L (Step 1.1: Type I Outlier
Removal in Fig. 11). Then, the next step is to structure the
resulting matrix L̇ in a BD form L̈ with a similarity-based BD
ordering that we present in the sequel (Step 1.2: Similarity-
based Block Diagonal Ordering in Fig. 11). The last part of
Step 1 is, to obtain vector v in form of K discrete linear
segments by computing an ordered sparse Laplacian matrix

...
L

(Step 1.3: Sparsity for Excessive Group Similarity in Fig. 11).
Then, the estimation step starts with a changepoint detection
that we propose, to compute the possible block sizes (Step 2.1:
Compute Candidate Block Sizes in Fig. 11). For each possible
block size vector, i.e., nr = [8, 10, 12]� ∈ Z

K
+ in this illustrat-

ing example, the method computes a target vector v(r) and a
corresponding estimate v̂(r) as a function of the estimated target
similarity coefficients (Step 2.2.1: Estimate Target Similarity
Coefficients in Fig. 11). Further, for every undesired similar-
ity coefficient around which the blocks are concentrated, the
shifted vectors (see Corollary 4.1) are computed separately and
the undesired similarity coefficients are estimated (Step 2.2.2:
Estimate Undesired Similarity Coefficients in Fig. 11). Finally,
the estimate v̂ ∈ R

N−NI is computed for the block size vector
which provides the best fit to the computed vector ...v.

C. FRS-BDR Algorithm

1) Step 1: Enhancing BD Structure: The key requirement
for computing vector v based on Eq. (4) is recovering an ap-
proximately BD structured Laplacian matrix. Assuming that
W (and the associated L) are symmetric and sparse matri-
ces, they can be ordered in a BD form [54] based on which
vector v can be directly computed. However, in general, sim-
ilarity measures may not produce sparse affinity matrices. We
therefore discuss the most challenging scenario, i.e., that W
is subject to Type I outliers and all blocks exhibit similarity.
Considering the Type I outliers’effect on the target vector v (see
Section IV-B), the proposed vector v computation starts with
Type I outlier detection (Step 1.1). Then, a new BD ordering
based on the similarity coefficients is proposed to generate a
BD ordered Laplacian matrix (Step 1.2). Lastly, a sparse Lapla-
cian matrix design is detailed for the case of excessive group
similarity (Step 1.3).

(a) Step 1.1: Type I outlier removal: Type I outliers are
detected according to

xm ∈OI if wm,n = 0 for ∀n= 1, ..., N andm �= n, (5)

where OI ∈ R
M×NI denotes the matrix of Type I outliers,

xm ∈ R
M is the mth feature vector for m= 1, ..., N , wm,n is

the m,nth similarity coefficient corresponding to xm (due to
the symmetry of W, wm,n = wn,m).
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Fig. 11. High-level flow diagram illustrating the key steps of FRS-BDR using a generic example with K = 3 clusters.

Type I outlier removal based on Eq. (5) directly follows
Definition III.2 which means that the operation does not require
a determination of the number of outliers. It is an important
preliminary step since the presence of Type I outliers may
lead to an inaccurate sparsity increase in Step 1.3 due to their
effects on the eigenvalues or an incorrect candidate block size
estimation in Step 2.1 based on their effects on the vector v.

(b) Step 1.2: Similarity-based BD ordering (sBDO):
Let Ẋ ∈ R

M×(N−NI), Ẇ, Ḋ and L̇ ∈ R
(N−NI)×(N−NI) be the

resulting matrices after Step 1.1. The vector of the BD order,
i.e., b̂ ∈ Z

N−NI
+ is determined based on the following steps.

Step 1.2.1: Initialization: The BD order vector b̂(1) is com-
prised of the node index of maximum overall edge weight
(i.e., ḋmax).

Step 1.2.2: Adding the most similar neighbor to b̂(s): Let
b̂(s) = [b̂1, ..., b̂s−1]

� ∈ Z
s−1
+ , with s= 2, ..., N −NI, denote

the BD order vector at the sth stage. Assuming that the neigh-
bors set is non-empty5, the most similar neighbor to b̂(s) at the
sth stage is determined by

b̂s = argmax
m∈{1,2,...,N−NI}

{
s−1∑

n=1

ẇm,b̂n

}

, (6)

where m ∈ Z+ such that 1≤m≤N −NI denotes a
neighbor node.

An example of the sBDO algorithm is illustrated in Fig. 12
and technically summarized in Algorithm 1. As can be seen
from Fig. 12, starting from node five, whose overall edge weight
is largest valued, the method selects the neighbors based on
their edge weights that represent the similarity to previously
selected nodes. After selecting all neighbors, the method jumps

5If it is empty the method simply stacks the node index of maximum overall
edge weight into b̂(s).

Fig. 12. Exemplary plot of the sBDO algorithm.

Algorithm 1: sBDO

Input: Ẇ, Ḋ ∈ R
(N−NI)×(N−NI)

Initialization:
Find the node of maximum overall edge weight ḋmax

for s= 2, ..., (N −NI) do
Adding the most similar neighbor to b̂(s):
if at least one neighbor exists then

Estimate b̂s using Eq. (6) and stack into b̂(s)

else
Find the node with maximum overall edge weight
among unselected nodes and stack b̂s into b̂(m)

end
end
Output: Estimated order vector b̂(s)∈Z(N−NI)

+

to the node that has the maximum overall edge weight among
the remaining nodes and determines the ordering of the associ-
ated neighbors.

Different from the Reverse Cuthill-McKee (RCM) [54],
which is a well-known block diagonal ordering method, the
proposed sBDO algorithm incorporates useful information from
the similarity coefficients. By doing this, the sBDO ordering
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method does not require making specific assumptions6. on the
similarity coefficients or a sparse matrix structure that is neces-
sary in RCM algorithm. In challenging scenarios, for example,
starting the ordering with a Type II outlier the sBDO algorithm
continues selecting vertices from the most similar cluster there-
with quickly suppressing the effect of Type II outlier’s similarity
coefficients.7

(c) Step 1.3: Increase sparsity for excessive group sim-
ilarity: Let Ẅ, D̈ and L̈ ∈ R

(N−NI)×(N−NI) be the matrices
resulting from Step 1.2. A sparsity improved Laplacian matrix...
L ∈ R

(N−NI)×(N−NI) is designed8 by increasing sparsity as
long as, at least, the two smallest eigenvalues are close to
zero9. After computing

...
L, the vector ...v ∈ R

N−NI is obtained
using Eq. (4)10.

Increasing sparsity for excessive group similarity is an op-
tional step for the FRS-BDR algorithm. In particular, it is de-
signed to obtain a sparsity improved Laplacian matrix

...
L whose

associated vector ...v provides distinct changepoints that can be
easily computed in Step 2.1. In this way, the negative impact
of excessive group similarity, which obscures the piece-wise
linear functions (for details, see Corollary 4.1), is suppressed
and changepoints become more visible. However, this opera-
tion does not enforce a block diagonal affinity matrix since
it eliminates only a small portion of the undesired similarity
coefficients. Therefore, the following steps estimate the vector
v as a function of desired similarity coefficients and that of
undesired that will be removed to obtain a BDR.

2) Step 2: Estimating Vector v: This step models ...
v as a

K-piece linear function of similarity coefficients around which
the blocks are assumed to be concentrated (for details, see
Corollary 4.1.), i.e.,

...
vi = vi + 1

i−1∑

j=1
j �=i

Njw̃i,j , i= 1, ...,K, (7)

where

vi = [0, wi, ..., (Ni − 1)wi]
� ∈ R

Ni (8)

denotes the ith linear segment of the target vector vi, wi is the
similarity coefficient around which the block i is concentrated
and w̃i,j is the undesired similarity coefficient between blocks
i and j around which they are concentrated, 1 ∈ R

Ni is the
column vector of ones, Ni and Nj are, respectively, the size
of block i and j.

(a) Step 2.1: Computing candidate block sizes:
Let Nc ∈ Z+ denote the number of changepoints, let
τ = [τ1, τ2, ..., τNc

]� ∈ Z
Nc
+ be the vector containing the

corresponding locations in ...
v, and let τ0 = 0 and τNc+1 =N .

6For examples of similarity coefficients’ empirical distributions, see Ap-
pendix E.3 in [45].

7For the analysis of sBDO performance, see Appendix F.4.5 in [45].
8For the exemplary sparse Laplacian matrix design algorithms, see Ap-

pendix F.3 in [45].
9For the definition of close to zero, see Appendix F.2 in [45]
10The vector v can alternatively be computed using

L̈ ∈ R
(N−NI)×(N−NI) after executing Steps 1.1 and 1.2 if, at least,

the two smallest eigenvalues of L̈ are close to zero.

Fig. 13. Exemplary plot of computing candidate block sizes.

Then, to estimate the model for vector ...v based on Eq. (7), our
first step is to detect the changepoints in ...

v by minimizing the
following penalized least-squares function as in [58]

Nc+1∑

i=1

τi∑

m=τi−1+1

(
...
vm − v̂m)2 + γNc, (9)

where ...
vm and v̂m denote, respectively, the mth point in

the ith linear segment of ...
v and the corresponding least-

squares linear fit. γ is the penalty parameter that controls
the number of changepoints Nc. In particular, Eq. (9) con-
siders all possible changepoints for γ = 0 and it rejects in-
cluding additional changepoints if the residual error is smaller
than the determined penalty parameter γ. Different from
determining γ directly, this step increases the value of γ
gradually as long as the function finds a lower number of
changepoints than a predefined maximum number of change-
points Ncmax

∈ Z+ which is a reasonably small number satis-
fying K − 1≤Ncmax

. Then, for a candidate number of blocks
from a given vector, i.e., Kcand ∈ [Kmin, ...,Kmax]

� ∈ Z
NK
+ ,

the resulting number of changepoints Nc and corresponding lo-
cations τ in Eq. (9) are used to compute the candidate size vec-
tors nr = [Nr1 , Nr2 , ..., NrKcand

]� ∈ Z
Kcand
+ , r = 1, ..., ζ that

are designed by combination of all possible size vectors with
ζ =

(
Nc

Kcand−1

)
. Lastly, the block-size matrix associated with a

candidate number of blocks, i.e.,

N(Kcand) = [n1,n2, ...,nζ ]
� ∈ Z

ζ×Kcand
+ , (10)

is formed.11

The computation of candidate block sizes illustrated in
Fig. 13 for a candidate block number Kcand = 3. After esti-
mating the changepoints using Eq. (9), a possible block size
matrix, i.e. N(Kcand) ∈ Z

ζ×Kcand
+ , with ζ = 15 is computed for

all possible block size combinations.
In this step, the changepoint locations are determined based

on a piece-wise linear fit of the vector ...v using Eq. (9). This is
a fundamental step to compute the candidate block sizes. How-
ever, the obtained information from Eq. (9) does not provide the
target and undesired similarity coefficients which are needed to
structure the affinity matrix in a block diagonal form. In other

11In practice, the candidate size vectors including the block sizes that are
smaller than a predefined minimum number of nodes in the blocks Nmin can
be removed from N(Kcand).
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words, the estimated piece-wise linear fit is a combination of
these similarity coefficients as it has been illustrated in Fig. 7(b).
Therefore, Step 2.2, i.e. estimating the target and undesired
similarity coefficients individually is a necessary step to obtain
information about all similarity coefficients. A more detailed
explanation of similarity coefficients’ estimation is provided in
the following.

(b) Step 2.2: Estimating matrix of similarity coefficients:
b.1) Step 2.2.1: Estimate Target Similarity Coefficients Sup-

pose that Nri denotes the size of the ith linear segment from
a candidate size vector nr, as defined in Eq. (10). Further, let
v(r) ∈ R

(N−NI) denote the target vector v associated with nr

defined by

v(r)m =

uri∑

n=m

...
lm,n s.t.

�ri ≤m≤ uri

i = 1, ...,Kcand

, (11)

where the mth and (m,n)th components of v(r) and...
L are denoted, respectively, by v

(r)
m and

...
lm,n, �r1 = 1,

ur1 = Nr1 , �ri =
∑i−1

k=1 Nrk + 1 and uri =
∑i

k=1 Nrk for
i= 2, ...,Kcand.

After computing v(r) using Eq. (11), with Definition IV.1, we
model it as a K-piece linear function of the target similarity co-
efficients. The model parameters are estimated in the FRS-BDR
algorithm by applying the algorithm from [59] that determines
a plane-based piece-wise linear fit. In more details, for ev-
ery linear segment i= 1, ...,Kcand associated with Kcand, the
method first estimates the parameters of the linear fit. Then, it
estimates the target similarity coefficients wi, ..., wKcand

based
on the slope of piece-wise linear fit estimates. A step-by-step
detailed description of the plane-based piece-wise linear fit
algorithm to determine v(r) is given in Section IX.A of the
supplementary material.

b.2) Step 2.2.2: Estimate Undesired Similarity Coefficients
In this step, the shifted vectors of v(r) are computed as follows

...
v(r)
si,j = v

(r)
i +

...
v
(r)
i,j ,

i= 2, ...,Kcand,

j = 1, ..., i− 1
(12)

where ...
v
(r)
i,j ∈ R

Nri denotes the vector of increase, associated
with the undesired group similarity between block i and j,
and ...

v
(r)
si,j is the associated shifted target vector.12 Then, com-

bining the results from Eq. (7), Eq. (11) and Eq. (12), the
undesired similarity coefficients between different blocks can
be estimated as

ŵ
(r)
i,j =

med(
...
v
(r)
si,j − v̂

(r)
i )

Nrj

i= 2, ...,Kcand

j = 1, ..., i− 1
, (13)

where med(.) denotes the median operator, Nrj is defined in
Eq. (10), and ŵ

(r)
i,j is the undesired similarity coefficient esti-

mate between i and j.
Remark 2: Alternative to using the median operator as an

estimator in Eq. (13), one could consider using the sample mean
estimator based on the theory in Sections III and IV. However,
for the sample mean, a single outlying component has an un-
bounded effect on estimating undesired similarity coefficient,

12For details, see Section IX.B of the supplementary material.

Fig. 14. Exemplary plot of ...
v and Wsim with Kcand = K, n=

[10, 8, 12]� ∈ R
K , diag(Wsim) = [0.6, 0.3, 0.9]� ∈ R

K , w̃1,2 = 0.2,
w̃1,3 = 0.4, and w̃2,3 = 0.1.

while the median operator provide robustness with the highest
possible breakdown value of 50% (for a detailed discussion
about robustness comparisons, see Section 1.3 in [29]). This
property of the median provides robustness even in real-world
cases where our theoretical assumptions are not fully fulfilled.

To clarify Steps 2.2.1 and 2.2.2, an example with Kcand =K
illustrating the computation of vector ...v and a matrix Wsim ∈
R

K×K is shown in Fig. 14. As can be seen, the target similarity
coefficients, which are the diagonal elements of Wsim, i.e.,
diag(Wsim) = [w1, w2, ..., wK ]

� ∈ R
K , represent an estimate

of the slopes of the Kcand =K linear segments in ...
v. Further,

off-diagonal elements of Wsim represent undesired similarity
coefficients between different blocks and are calculated by com-
puting the undesired shifts that have been highlighted as shaded
areas in Fig. 14.

b.3) Step 2.3: Estimating vector
...
v and Wsim From

the computed estimates Ŵ
(r)
sim ∈ R

Kcand×Kcand and

v̂(r) ∈ R
(N−NI), the vector .̂..v

(r)

i is computed by plugging in
the associated intermediate estimates for all r = 1, ..., ζ and
Kcand = Kmin, ...,Kmax into Eq. (7) and determining the
final estimate as

.̂..
v = argmin

nr∈N(Kcand)

‖...v − .̂..
v
(r)‖2 (14)

where ∀ŵ(r)
i ∈ diag(Ŵ

(r)
sim), ŵ

(r)
i > ŵ

(r)
i,j holds for

i= 1, ...,Kcand, j = 1, ...,Kcand and i �= j.
Since the target block diagonal model with internally dense

externally disjoint clusters represents the optimum level of spar-
sity, the closeness of the estimate of ...

v to the target piece-
wise linear function directly provides information of how well
the algorithm was able to remove the undesired edges and
therewith determine the sparsity level. In particular, the estimate
of vector ...v provides fundamental information about the number
of blocks, the number of elements for every block, desired and
undesired similarity coefficients associated with each block that
have been collected in the matrix Wsim. To design a BDR
that provides a good balance with internally dense externally
sparse clusters, the desired similarity coefficients, the proposed
strategy preserves the similarity coefficients corresponding to
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the diagonal entries of Wsim while removing that of undesired
similarity coefficients corresponding to the off-diagonal entries
of Wsim.13

The proposed FRS-BDR is summarized in Algorithm 2. The
codes are provided at: https://github.com/A-Tastan/FRS-BDR.

D. Computational Analysis of FRS-BDR

A comprehensive computational analysis is computed in Sec-
tion X of the supplementary material by determining the num-
ber of fladd, flmlt, fldiv and flam. The Landau’s big O symbol is
used for the cases when the complexity is not specified as above
operations. For a detailed information, see [60], [61]. Our anal-
ysis showed that the complexity of FRS-BDR strongly depends
on the initial structure of the affinity matrix and the number of
blocks K. In addition to the numeric analysis, the complexity
is analyzed experimentally in the following sections.

VI. EXPERIMENTAL RESULTS

This section benchmarks the proposed FRS-BDR method
in a broad range of real data experiments, including cluster
enumeration and handwritten digit, object and face clustering.

Data sets: The performance is analyzed using the well-
known data sets for handwritten digit clustering [32], [62],
for object clustering [63], for face clustering [64], [65],
[66] and for cluster enumeration [67], [68], [69], [70], [71].
The detailed information about the data sets is given in the
following sections.

Baselines: For the task of subspace clustering, FRS-BDR
is benchmarked against seven state-of-the-art BDR approaches
[6], [7], [8], [9], [10], two low-rank representation methods
[17], [18], a sparse representation method (SSC) [21], a ro-
bust principal component analysis method (FRPCAG) [72], a
robust spectral clustering method (RSC) [73] and the initial
affinity matrix that is defined by W =X�X. For cluster enu-
meration14, the method is benchmarked against seven popu-
lar community detection methods, i.e. [74], [75], [76], [77],
[78], [79] and our previously proposed method that is called
SPARCODE in [24].

Parameter setting: In all experiments, the parameters are
optimally tuned for the competitor approaches, while FRS-BDR
is computed with the default parameters that are detailed in
Section XI of the supplementary material.

Evaluation metrics: The computation time (t) and average
clustering accuracy (c̄acc) are used for the subspace clustering
performance analysis. In cluster enumeration, the empirical
probability of detection (pdet), modularity (mod) and conduc-
tance (cond) are used in addition to t. The evaluation metrics
are comprehensively explained in Section XI of the supplemen-
tary material.

A. Handwritten Digit Clustering

The effectiveness of FRS-BDR in handwritten digit clustering
is shown based on the following popular real-world data sets:

13For examples that analyze the mismatch between the target and estimated
BD structure, see Appendix E.2 in [45].

14For the numerical cluster enumeration results, see Appendix F.4.4.2 of
the accompanying material [45].

Algorithm 2: FRS-BDR

Input: X∈R
M×N , Kmin, Kmax, Ncmax , Nmin(opt.)

Compute W ∈ R
N×N i.e. W =X�X for ∀xm ∈X, ‖xm‖=1

Step 1: Enhancing BD Structure
Step 1.1: Type I Outlier Removal
Compute Ẇ, Ḋ and L̇∈R(N−NI)×(N−NI) via Eq. (5)
Step 1.2: Similarity-based Block Diagonal Ordering
Perform Algorithm 1 to achieve b̂(s) ∈ Z

(N−NI)
+

Obtain Ẅ, D̈ and L̈∈R(N−NI)×(N−NI) using b̂(s)

Step 1.3 (opt.): Sparsity for Excessive Group Similarity
Design

...
L ∈ R

(N−NI)×(N−NI) for the desired method,
i.e. Algorithm 3 or 4 in [45]
Compute ...

v∈R(N−NI)×1 corresponding to
...
L using Eq. (4)

(or alternatively v̈ ∈ R
(N−NI)×1 corresponding to L̈)

Step 2: Estimating Vector v
for Kcand =Kmin, ...,Kmax do

Step 2.1: Computing Candidate Block Sizes
Compute N(Kcand) ∈ Z

ζ×Kcand
+ using Eqs. (9)-(10)

Step 2.2: Estimating Wsim

for nr = n1, ...,nζ do
Step 2.2.1: Estimating Target Similarity Coefficients
Compute v(r) ∈ R

(N−NI) using Eq. (11)
for i= 1, ...,Kcand do

Calculate Σ
(r)
i ∈R2×2 and μ

(r)
i ∈R2 for Υ(r)

i

Find ϑ̂
(r)
i ∈R2 and b̂

(r)
i ∈ R

Find v̂
(r)
i ∈RNri and compute ŵi

end
Form diag(Ŵ

(r)
sim)=[ŵ

(r)
1 , ŵ

(r)
2 , ..., ŵ(r)

Kcand
]�∈RKcand

and v̂(r)=[(v̂
(r)
1 )�, (v̂

(r)
2 )�, ..., (v̂(r)

Kcand
)�]�∈R(N−NI)

Step 2.2.2: Estimating Undesired Similarity Coefficients
for i= 2, ...,Kcand do

for j = 1, ..., i− 1 do
Compute ...

v
(r)
si,j ∈ R

(N−NI) using Eqs. (12)

Compute ŵ
(r)
i,j using Eq. (13) and stack Ŵ

(r)
sim

end
end
Estimate ...

v(r) using Eq. (7)
Update .̂..

v based on Eq. (14)
end

end
Output: .̂..

v, Ŵsim, n̂

MNIST data set: The data base includes 60,000 training
and 10,000 test images corresponding to 10 digits. For a varying
number of subjects K = {2, 3, 5, 8, 10}, the data matrix X is
generated using 100 randomly selected images from the test set
for every subject where the images are used as feature vectors
and normalized. As in [7], X of size 784× 100K is produced
for the images of size 28× 28.

USPS data set: 7291 training and 2007 test images of
size 16× 16 are contained in the data set. The data matrix X
is computed by following the same procedure, except for using
50 randomly selected images from the test set for every subject.
As a result, for the images of size 16× 16, the data matrix X
of size 256× 50K corresponding to a number of subjects K =
{2, 3, 5, 8, 10}, is obtained.

In contrast to object and face applications that we will detail
in the following sections, the data matrix X of high dimen-
sional feature vectors is directly used in initial affinity matrix
design. The initial affinity matrix, i.e. W =X�X is used as

https://github.com/A-Tastan/FRS-BDR
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Fig. 15. Numerical results for the COIL20 and MNIST data sets. The regularization parameters of the competing methods are tuned for optimal performance
in all settings while the proposed method determines the parameters using Algorithms 1 and 2. In the regularization parameter performance analysis, for all
competing methods that use two parameters, the second one is tuned optimally while varying the first parameter.

an input to BDR approaches [6], [7], [8], [9], [10], low-rank
representation methods [17], [18] and the sparse representation
method in [21] to design affinity matrices in a desired form.
Then, spectral clustering15 is applied to the resulting affinity
matrices of different methods. Different from affinity matrix
construction methods, FRPCAG [72] and RSC [73] algorithms
use the data matrix X as an input. These methods determine
the affinity matrices based on their default construction where
the number of neighbors is defined by gradually decreasing the
number of all neighbors until the methods do not fail.

An example of digit clustering results is shown in Fig. 15
for the MNIST data base. A broad set of analyses including
MNIST and USPS data bases is provided in Appendix F.4.1 of
the accompanying material [45]. Even though the performance
of SSC [21], BDSSC [6], BDLRR [6], BDR-B [7], BDR-Z
[7], IBDLR [8], LSR [10], LRR [17], RKLRR [18], FRPCAG
[72] and RSC [73] is reported for an optimal tuning of the
parameters, which is not feasible in practice, the FRS-BDR
achieves the highest clustering accuracy results in almost all
cases. Further, the regularization parameter effect analysis in
Fig. 15 shows that BDR-B and BDR-Z performances are sen-
sitive to the choice of the first regularization parameter, even
when tuning the second one optimally. Based on the computa-
tion time analysis, the main drawback of competitor approaches

15For the details about spectral clustering, see Section XI of the supple-
mentary material.

is that they are sensitive to the dimension of the feature space
whereas FRS-BDR is an efficient algorithm for the data sets
including high dimensional feature vectors.

To quantify the performance of different BDR approaches
in terms of the sparsity, an additional set of experiments ana-
lyzing modularity (mod) and conductance (cond) scores, which
are the commonly used quality metrics for this analysis, are
introduced in Appendix F.4 of the accompanying material
[45]. The numerical analysis demonstrates that the proposed
FRS-BDR algorithm provides a “good balance” in sparsity
with large-valued modularity scores and small-valued conduc-
tance scores in most of the cases.16 The analysis confirms the
results of the clustering accuracy performance analysis that
FRS-BDR algorithm shows a good performance compared to
the optimally tuned BDR approaches while providing consid-
erably better performance than optimally tuned low-rank repre-
sentation methods. Different from structuring all clusters based
on a single determined sparsity parameter (which may be diffi-
cult to tune in practice), our approach allows for treating every
block differently, depending on the occurrence of the outliers’
effect within each block and this makes the proposed FRS-BDR
method advantageous in terms of balancing the sparsity.

16The modularity and conductance performance of the proposed FRS-BDR
algorithm could be further improved by enforcing the estimated blocks to be
distinct but such a step may result in a performance degradation in clustering
accuracy which is more important in these clustering applications.
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B. Object Clustering

This section introduces a set of experiments that are per-
formed on the COIL20 [63] data base of 20 objects. In COIL20,
each object has 72 images where the images are taken by
rotating the object on a turntable in five degree intervals. In our
experiments, the processed COIL20 data set in [80] containing
images of size 32× 32 pixels is used. Then, the data set X of
size 1024× 400 is generated by selecting 20 images randomly
for every object. The feature space is reduced to 10 based on
the PCA performance, which is provided in Appendix F.4.2.1
of the accompanying material [45].

As in [7], a performance analysis of every application is con-
ducted for an increasing value of K, i.e., K = {2, 3, 5, 8, 10}
using 100 randomly selected subject combinations. To obtain
the affinity matrices for the competing methods, the regular-
ization parameters are manually tuned on a grid of 50 values.
Finally, spectral clustering [48] is applied and the results in
Fig. 15, for an increasing value of K, are obtained analogously
to [7] (see Appendix F.4.2 in [45] for further details). The
average clustering accuracy c̄acc results show that FRS-BDR
performs best while EBDR is an efficient method for small
values of K. In terms of t, the main competitors BDR-B and
BDR-Z show poor performance whereas FRS-BDR performs
relatively good even for large values of K. This computational
advantage of the proposed method can be explained with its
simple nature, i.e. finding a piece-wise linear function robustly,
which is easy to solve in comparison to analyzing the graph
structure in a matrix space as in the existing BDR methods.

The BDR-B and BDR-Z methods show poor performance
for small-valued regularization parameters even though the sec-
ond regularization parameter is optimally tuned. An important
point is that these approaches reach their best results lately in
comparison to experiments on face clustering data sets that are
explained in the following section.

C. Face Clustering

In this section, the subspace clustering performances of dif-
ferent methods are benchmarked in terms of their c̄acc and t by
using the following application details:

ORL data set: The data set includes 10 images of 40
different subjects that are taken at different times by varying
the lighting, facial expressions and details. As in [8], we resize
all images to 32× 32 to obtain a data matrix X of size 1024×
400 using normalized features. The feature space dimension
is reduced to nine using Principal Component Analysis (PCA)
in order to reduce the computation time17.

JAFFE data set: The JAFFE data set comprises 213
images of seven facial expressions from 10 Japanese female
models. As in [8], the images are resized to 64× 64 pixels and
the data set X of size 4096× 213 is computed using resized
images as normalized feature vectors before applying PCA to
reduce the dimensionality to 14 features18.

17For the PCA analysis of the ORL data set, see Appendix F.4.3.1 of the
accompanying material [45].

18For the PCA analysis of the JAFFE data set, see Appendix F.4.3.2 of the
accompanying material [45].

Yale data set: 165 grayscale images of 15 different indi-
viduals. For every subject, the data set contains 11 images that
capture different facial expressions. The data matrix X of size
1024× 165 is constructed as in the ORL Data Set19.

After determining the number of PCA features, the same
procedure as in object clustering is performed and the per-
formance is reported for a different number of subjects K =
{2, 3, 5, 8, 10} in Fig. 16. For a detailed performance analysis,
see Appendix F.4.3 of the accompanying material [45].

The average clustering accuracy c̄acc and computation time
t for the ORL and the JAFFE data sets are provided in Fig. 16.
Consistent with the previous experiments, FRS-BDR shows the
best clustering accuracy performance among all approaches in
almost all cases. In terms of t, FRS-BDR shows a reasonably
good performance until the number of subjects reaches K = 8.
A reduction for a large value of K can be obtained by adjusting
Ncmax

. Extensive further numerical experiments are reported in
Appendices E.5.3.1, E.5.3.2, and E.5.3.3. of [45].

D. Subspace Clustering on Well-Known Clustering Data Sets

This section investigates the subspace clustering performance
of different approaches in terms of their average clustering ac-
curacy using the following popular clustering data sets: Breast
Cancer Wisconsin (Breast Cancer) [67], Chemical Composition
of Ceramic (Ceramic) [57], Vertebral Column [68], Fisher’s
iris (Iris) [55], Radar-based Human Gait (Human Gait) [69],
Ovarian Cancer [70], Person Identification [56] and Parkinson
[71]. To analyze subspace clustering performances on popular
clustering data sets, subspace clustering is first performed on the
initial affinity matrix that is defined by W =X�X. Analogous
to the handwritten digit clustering application in Section VI-A,
the data matrix is used as an input to the FRPCAG [72] and
RSC [73] methods while state-of-the-art BDR methods use
the initial affinity matrix that is defined by W =X�X as an
input to design BD structured affinity matrices. Then, spectral
clustering as detailed in Section XI of the supplementary ma-
terial is performed on the BD affinity matrix estimates. For
the FRPCAG [72] and RSC [73] methods, spectral clustering
is performed based their eigenvector estimates. As in previous
experiments, the competitor approaches’ results are shown for
optimally tuned parameters while the proposed FRS-BDR is
performed with the default parameters.

The clustering accuracy performances of different block-
diagonal representation approaches are detailed in terms of their
average clustering accuracy in Table I. As can be seen from
Table I, FRS-BDR provides a similar performance as the maxi-
mum clustering accuracy of its strongest competitors (BDR-B,
BDR-Z, BD-LRR) while it outperforms all other block diagonal
representation approaches. The method is also computationally
efficient in comparison to most of the competitors based on the
additional experiments that are given in Appendix F.4.4 of the
accompanying material in [45].

19For the PCA analysis of the Yale data set, see Appendix F.4.3.3 of the
accompanying material [45].
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Fig. 16. Numerical results for the ORL and JAFFE data sets. The regularization parameters of the competing methods are tuned for optimal performance
in all settings while the proposed method determines the parameters using Algorithms 1 and 2. In the regularization parameter performance analysis, for all
competing methods that use two parameters, the second one is tuned optimally while varying the first parameter.

TABLE I
SUBSPACE CLUSTERING PERFORMANCE OF DIFFERENT BLOCK DIAGONAL REPRESENTATION APPROACHES ON WELL-KNOWN CLUSTERING DATA SETS. W

REPRESENTS THE SUBSPACE CLUSTERING RESULTS THAT ARE OBTAINED BY USING THE INITIAL AFFINITY MATRIX W =X�X AS AN INPUT TO

SPECTRAL CLUSTERING ALGORITHM. THE REMAINING COLUMNS SHOW AFFINITY MATRIX CONSTRUCTION METHODS THAT ARE USING W AS INPUT AND

PERFORMING SPECTRAL CLUSTERING ON THE SPARSE AFFINITY MATRIX ESTIMATES. THE PERFORMANCES ARE SUMMARIZED IN TERMS OF c̄acc FOR

PARAMETER-FREE APPROACHES INCLUDING W, EBDR AND FRS-BDR WHILE THE REMAINING METHODS ARE SHOWN FOR caccmin − caccmax. ‘X’
DENOTES THE FAILED RESULTS DUE TO THE COMPLEX-VALUED EIGENVECTORS

Subspace Clustering Performances for Different Block Diagonal Representation Methods

Minimum-Maximum Clustering Accuracy (caccmin − caccmax) for Different Regularization Parameters

Data Set W SSC BD-SSC LRR BD-LRR LSR BDR-B BDR-Z RKLRR IBDLR FRPCAG RSC EBDR FRS-BDR

Breast Cancer [67], 88.2 51.0-74.7 50.3-88.2 54.3-90.3 88.0-90.0 73.5-88.2 62.4-90.0 52.9-90.2 62.6-91.7 60.3-90.0 60.5-88.2 50.1-58.5 85.2 90.1
Ceramic [57], 98.9 51.1-98.9 51.1-100 95.5-98.9 95.5-98.9 54.5-98.9 51.1-100 51.1-98.9 51.1-95.5 51.1-98.9 50.0-100 50.0-69.3 98.9 98.9
Vertebral Column [68], 73.2 50.0-77.7 50.3-74.8 53.9-72.6 72.6-72.6 62.6-75.8 67.4-76.8 71.9-76.8 67.4-71.3 67.4-76.1 51.0-75.8 50.0-69.7 74.8 75.8
Iris [55], 78.0 34.7-82.7 34.0-83.3 38.7-80.7 80.0-98.0 78.0-82.7 34.0-96.7 65.3-96.7 34.0-80.0 34.7-84.0 34.0-89.3 35.3-50.0 98.0 96.7
Human Gait [69], 77.3 20.3-77.4 20.1-77.5 26.1-83.9 78.9-83.5 55.4-75.9 20.3-84.8 26.4-84.5 20.5-85.5 20.4-81.6 50.8-77.8 22.1-26.0 81.1 77.1
Ovarian Cancer [70], 61.7 51.4-73.6 50.9-71.3 52.3-76.4 54.2-76.4 51.9-66.2 53.7-75.9 51.9-74.1 55.6-88.4 55.6-75.5 77.8-89.3 50.0-69.4 77.8 77.3
Person Identification [56], x 33.7-96.8 31.6-95.7 49.7-94.7 71.1-94.7 33.2-64.2 31.6-96.3 59.4-95.7 34.2-94.1 33.7-95.7 29.4-92.5 28.9-41.2 97.3 96.8
Parkinson [71], 61.3 50.4-58.8 50.0-61.3 50.4-54.2 50.4-61.3 57.9-61.3 50.4-61.3 50.0-61.3 50.4-61.7 50.4-61.3 50.0-67.5 50.4-72.1 56.7 58.2

Average 76.9 42.8-80.1 42.3-81.5 52.6-81.4 73.8-84.4 58.4-76.6 46.4-85.2 53.6-84.8 47.0-83.5 46.7-82.9 50.4-85.1 42.1-57.0 83.7 83.9

E. Robustness Analysis

A further analysis evaluating robustness of the proposed
FRS-BDR method in noisy scenarios with corruptions in
data/feature space, is reported in this section. To analyze ro-
bustness, against outliers, digit samples from MNIST [32]
and USPS [62] data sets are corrupted with salt and pepper
noise and Poisson noise. Object and face recognition data
sets are not included to robustness analysis due to the perfor-
mance degradation of the (non-robust) PCA that is part of the
feature generation.

The robustness analysis results of different methods are
shown in Fig. 17 for the MNIST and USPS data sets that are

corrupted with salt and pepper noise for an increasing percent-
age of outlier contamination. As in previously analyzed scenar-
ios, the proposed FRS-BDR shows relatively good performance
compared to the optimally tuned approaches for both data sets.
This is because the proposed method leverages the derived
theory on how an ideal block diagonal structure is disturbed by
outliers and this allows to precisely remove the effects of Type I
and Type II outliers as well as the group similarity. Many block
diagonal affinity matrix construction methods that we compare
against are not robust against outliers and it is well-known that
performance of non-robust methods can severely be degraded
in presence of outliers [29].
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Fig. 17. Robustness analysis results for the MNIST and USPS data sets.
The regularization parameters of the competing methods are tuned for
optimal performance in all settings while the proposed method determines
the parameters using Algorithms 1 and 2. c̄acc performances are shown for
increasing density value of the salt and pepper noise.

VII. CONCLUSION

A robust method to recover a block diagonal affinity ma-
trix in challenging scenarios has been presented. The proposed
Fast and Robust Sparsity-Aware Block Diagonal Representa-
tion (FRS-BDR) method jointly estimates cluster memberships
and the number of blocks. It builds upon our presented theo-
retical results that describe the effect of different fundamental
outlier types in cluster analysis, allowing a reformulation of the
problem as a robust piece-wise linear fitting problem. Compre-
hensive experiments, including a variety of real-world appli-
cations demonstrate the effectiveness of FRS-BDR compared
to optimally tuned benchmark methods in terms of clustering
accuracy, computation time and cluster enumeration perfor-
mance. Since all codes are made available, the FRS-BDR
method can also easily be benchmarked on other larger-scale
data sets, e.g. [81], [82], [83].
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[45] A. Taştan, M. Muma, and A. M. Zoubir, “Supplementary informa-
tion II: Fast and robust sparsity-aware block diagonal representation,”
2023. Accessed: Dec. 2, 2023. [Online]. Available: https://arxiv.org/abs/
2312.01137

[46] D. Matula and F. Shahrokhi, “Sparsest cuts and bottlenecks in graphs,”
Discrete Appl. Math., vol. 27, pp. 113–123, 1990.

[47] R. Andersen and Y. Peres, “Finding sparse cuts locally using evolving
sets,” in Proc. 41st Annu. Symp. Theory Comput., 2009, pp. 235–244.

[48] U. Von Luxburg, “A tutorial on spectral clustering,” Stat. Comput.,
vol. 17, pp. 395–416, 2007.
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