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Abstract—We consider the problem of finding the smallest or
largest entry of a tensor of order IN that is specified via its
rank decomposition. Stated in a different way, we are given IV
sets of R-dimensional vectors and we wish to select one vector
from each set such that the sum of the Hadamard product
of the selected vectors is minimized or maximized. We show
that this fundamental tensor problem is NP-hard for any tensor
rank higher than one, and polynomial-time solvable in the rank-
one case. We also propose a continuous relaxation and prove
that it is tight for any rank. For low-enough ranks, the pro-
posed continuous reformulation is amenable to low-complexity
gradient-based optimization, and we propose a suite of gradient-
based optimization algorithms drawing from projected gradient
descent, Frank-Wolfe, or explicit parametrization of the relaxed
constraints. We also show that our core results remain valid no
matter what kind of polyadic tensor model is used to represent
the tensor of interest, including Tucker, HOSVD/MLSVD, tensor
train, or tensor ring. Next, we consider the class of problems
that can be posed as special instances of the problem of interest.
We show that this class includes the partition problem (and
thus all NP-complete problems via polynomial-time transforma-
tion), integer least squares, integer linear programming, integer
quadratic programming, sign retrieval (a special kind of mixed
integer programming / restricted version of phase retrieval),
and maximum likelihood decoding of parity check codes. We
demonstrate promising experimental results on a number of
hard problems, including state-of-art performance in decoding
low density parity check codes and general parity check codes.

Index Terms—Tensors, rank decomposition, inner product,
algorithms, complexity theory, NP-hard problems, error control
coding, maximum likelihood decoding, parity check codes,
belief propagation, under/over-determined linear equations,
Galois fields, sign retrieval.
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1. INTRODUCTION

INDING the smallest or largest entry of a matrix or tensor

specified via its low-rank factors is a fundamental prob-
lem with numerous applications in science and engineering.
The matrix version of the problem has received some atten-
tion [1], [2], motivated by applications in graph mining (e.g.,
most significant missing link prediction, nodes that share many
neighbors), text/speech/audio similarity search and retrieval
(e.g., using text embeddings), and recommender systems (e.g.,
finding the best item-context combination to recommend to a
given user).

The tensor version of the problem is considerably more pow-
erful, as it allows going beyond bipartite matching / prediction
which can be broadly useful in knowledge discovery. As an
example, given embeddings of patients, conditions, drugs, clin-
ical trials, therapies, we may be interested in finding the best
match, as measured by a function of the pointwise product of
the respective embeddings. Tensors can also be used to model
high-dimensional probability distributions, wherein low-rank
tensor models are used to break the curse of dimensionality
while allowing easy marginalization and computation of condi-
tional probabilities, which are crucial for prediction [3]. In this
context, finding the largest element corresponds to finding the
mode/maximum likelihood or maximum a-posteriori estimate
of missing variables, and it is not unusual to encounter very
high-order probability tensors indexed by hundreds of categori-
cal input variables. Despite the obvious importance of the tensor
version of this problem, there is scant literature about it - we
found only [4], which essentially extends the approach in [2]
to the low-order tensor case.

A. Prior Work

The matrix case was considered in [1], which proposed us-
ing a power-method type algorithm that works directly with
the low-rank factors. In [2], the authors developed a ran-
domized “diamond sampling” approach for computing the
maximum element of the product of two matrices (which
could be, e.g., two low-rank factors) in what they called
the MAD (Maximum All-pairs Dot-product) search. Their
algorithm comes with probabilistic performance guarantees
and was demonstrated to work well in practice using a
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variety of datasets. As already mentioned above, [4] extends
the randomized diamond sampling approach in [2] to “star
sampling” for the tensor case. These randomized algorithms
do not scale well to high-order tensors, owing to the curse
of dimensionality.

A very different approach for the higher-order tensor version
of the problem has been proposed in the computational physics/
numerical algebra literature [5]. The basic idea of [5] (see also
references therein) is as follows. By vectorizing the tensor and
putting the resulting (very long) vector on the diagonal of a
matrix, the tensor elements become eigenvalues corresponding
to coordinate basis eigenvectors. This suggests that the maxi-
mum element of the tensor can be computed through a power
iteration involving this very large matrix. Of course power itera-
tions implemented naively will have prohibitive complexity (as
tensor vectorization produces a very long vector and thus a huge
matrix). The idea is therefore to employ a tensor factorization
model to ease the matrix-vector multiplication of the diago-
nal matrix and the interim solution vector. This multiplication
can be computed by summing the elements of the pointwise
(Hadamard) product of the two vectors — the vectorized tensor
on the matrix diagonal and the interim solution vector. This
product can be efficiently computed for various tensor mod-
els, but the pointwise multiplication of two tensors of rank R
generally has rank up to R?, necessitating conversion back to
a rank- R tensor. The natural way to do this is via rank- R least-
squares approximation of the higher-rank product. This is a
hard and generally ill-posed computational problem, because
the best approximation may not even exist. Thus the method
cannot be used with a tensor rank decomposition model (known
as Canonical Polyadic Decomposition or CPD). The pointwise
multiplication and least-squares approximation are easier with
a so-called fensor train (TT) model. The Hadamard product
of two TT models is another TT model whose wagon (factor)
matrices are the Kronecker products of the respective factor
matrices of the two TT models. This implies that pointwise
multiplication of two TT models has complexity of order NTR*
for an IV tensor of TT rank R for each wagon. Moreover,
rank reduction for TT models is SVD-based and has complex-
ity order NIR®. Hence, reducing the rank of the pointwise
multiplication (which is R? due to the Kronecker product) in-
duces a complexity of order N1(R?)3 = NIR®, and as a result,
only small TT ranks can be supported in practice. Another
limitation of [5] is that it is hard to pin down if and when
the iteration will converge, because of the rank reduction step.
The numerical experiments in [5] are interesting but limited
in terms of exploring the accuracy-speedup trade-offs that can
be achieved.

Unlike [5], our emphasis is on the tensor rank decomposition
(CPD) model, in good part because many of the problems that
we consider herein admit closed-form tensor rank decomposi-
tion formulations, thus bypassing the need for computational
model fitting and/or rank reduction. Another issue is that, as
we show for the first time in this paper, the core problem is
NP-hard even with a TT model, so there is no intrinsic compu-
tational benefit to using one tensor decomposition model over
the other.
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B. Contributions

Our contributions relative to the prior art are as follows:

o We focus on the higher-order tensor version of the prob-
lem, and we analyze its computational complexity. We
show that the problem is easy when the tensor rank is equal
to one, but NP-hard otherwise — even if the rank is as small
as two.

o We consider optimization-based (as opposed to algebraic
or randomized) algorithms that can be used to compute
good approximate solutions in the high-order tensor case.
We provide an equivalent “fluid” (continuous-variable)
reformulation of what is inherently a multi-way selection
problem, and a suite of relatively lightweight gradient-
based approximation algorithms. The continuous refor-
mulation is derived by showing that a certain continuous
relaxation involving a probability distribution instead of
hard selection for each mode is actually tight. This is
true for any rank, i.e., even for full-rank (unstructured)
tensor models. The proposed algorithms take advantage
of various optimization frameworks, from projected gra-
dient descent to Franke-Wolfe and various ways of ex-
plicitly parametrizing the probability simplex constraints.
For low-enough ranks, the associated gradient computa-
tions are computationally lightweight, even for very high-
order tensors.

o« We show that our main results remain valid no matter
what kind of polyadic tensor model is used to represent
the tensor of interest, including Tucker, HOSVD/MLSVD,
tensor train, or tensor ring.

o We explore the “span” of the core problem considered,
i.e., the class of problems that can be posed as special in-
stances of computing the minimum or maximum element
of a tensor from its rank decomposition. We show that
this class includes the partition problem (and thus all NP-
complete problems via polynomial-time transformation),
as well as integer least squares, integer linear program-
ming, integer quadratic programming, sign retrieval (a spe-
cial kind of mixed integer programming / restricted version
of phase retrieval), maximum likelihood decoding of parity
check codes, and finding the least inconsistent solution
of an overdetermined system of linear equations over a
Galois field.

o Finally, we demonstrate promising experimental results on
a number of hard problems, including better than state-of-
art performance in decoding both low density parity check
codes and general parity check codes, and sign retrieval.

II. PRELIMINARIES

Consider a matrix M = A1A2T, where M is 17 X Iy, A;
is It x R and Ay is Is X R, with R <min(l;,l2) (R<
min(Iq, I) if M is not full-rank). Three other ways to write
the same relation are M:Zf‘zl Ai(:,r)As(s, )T, where
A(:,r) stands for the r-th column of A; M:Zil A,
(:y7) 0 Aa(:,7), where o stands for the vector outer product;
and M(i1,iz) = 3270 | Ay(ir, 7)Ag(ia, ), where M(iy,iq)
denotes an element of matrix M, with obvious notation.
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From the latter, notice that element (i1,i2) of matrix M is
the inner product of two row vectors, namely row A (iy,:) of
matrix A, and row As(iz,:) of matrix As.

We are interested in finding the smallest or largest element
of matrix M from the factors A; and As. From the latter
relation, we see that seeking the smallest (or largest) element
of M corresponds to seeking a pair of row vectors, one drawn
from A and the other from A, which have the smallest (or
largest) possible inner product. One obvious way to do this is
to generate all inner products, i.e., the elements of the product
A AT and find the smallest or largest. This entails complexity
1115 R, which can be high, even when R is small —e.g., consider
the case where I; and I, are in the order of 10® or more. Is there
a way to avoid performing order [;I» computations? When
R =min([y, I1), such complexity is unavoidable, because then
the elements of IM can be freely chosen independently of each
other (e.g., from an i.i.d. Gaussian distribution). When R is
small however, there seems to be hope.

Generalizing, consider a tensor 7 of order N and size I; X
Iy x --- x Iy, for which we are given a low-rank factoriza-
tion, namely

R

T:ZAl(:,r) oAs(s,r)o---0 An(:,T),

r=1

where A, is I,, x R, and R (when minimal for this decom-
position to hold) is the rank of 7, in which case the above is
known as the canonical polyadic decomposition (CPD) of T
[6]. When the elements of 7 are non-negative and the elements
of the factor matrices A,, are constrained to be non-negative,
then the smallest R for which such a decomposition exists is
called the non-negative rank of 7, which can be higher than
the (unconstrained) rank of 7. In the sequel, we do not assume
that R is minimal; any polyadic decomposition will do for our
purposes. In scalar form, we get that

R
T(i17i27 e 77/]\7) = ZAl(il7T)A2(i27T) o 'AN(iN,T)7

r=1

which reveals that every element of 7 is an inner product of N
row vectors, one drawn from each of the matrices Aq,--- , An.
An alternative way to write this is using the Hadamard (element-
wise) product, denoted by *, as

T (1,02, ,in)=(A1(i1,:) * Ag(ig,:) * - - x An(in,:)) 1,

where 1 is the R x 1 vector of all 1’s, used to sum up the
R components of the Hadamard product. We see that finding
the smallest or largest element of 7 is tantamount to finding
the smallest or largest inner product of N row vectors, one
drawn from each A, matrix. There is an obvious way to do
this, by generating all I; x Iy x --- X Iy elements of T, at a
complexity cost of R(N — 1) flops each, but this exhaustive
search is much worse than it is in the matrix case. It quickly
becomes intractable even for moderate N and Iy, e.g., N =20
with I,, =10, Vn € {1,--- , N}. Is there a more efficient way
to do this?

III. THEORY

When R =1 and all the A, matrices (column vectors a,,
in this case) only have non-negative entries, it is easy to see
that the smallest element of 7 is 7 (i1,--- ,in) with i, €
argmin,, a,(i,), and likewise the largest is 7 (i1,--- ,iy)
with i,, € arg max;, a(in). For R > 1 however, the answer is
no, in the worst case — even if R = 2 and the elements of all the
A,, matrices are non-negative. We have the following result.

Theorem 1: Finding the smallest element of a tensor from
its rank factorization is NP-hard, even when the tensor rank is
as small as R = 2 and the rank-one factors are all non-negative.
This means that for large N, the worst-case complexity is
exponential in V.

Proof: We show that an arbitrary instance of the partition
problem, which is known to be NP-complete [7], can be con-
verted to a specific instance of the decision version of the
problem of interest. This means that if we could efficiently solve
any instance of the problem of interest, we would be in position
to efficiently solve an arbitrary instance of the partition prob-
lem, which is not possible according to the current scientific
consensus, unless P=NP.

Recall the partition problem, which is as follows. We are
given N positive integers w1, - - - , wy (repetitions are allowed),
and we wish to know whether there is a subset of indices S,
such that

Consider binary variables {7,, € {0, 1}}2;1, with i,, designat-

ing whether n € S or not, i.e., i, =1 if n€ S, else 7, =0.
Deciding whether a suitable S exists is equivalent to decid-
ing whether

min
. N
{in€{0,1}},,

N N 2 )
D wnin = > wa(l - in)> > 0.
n=1 n=1

We will instead use a reformulation of the above which is more
conducive for our purposes, namely

min
{ine{0,13}),

Expanding the square and noting that the product term is a
constant, we obtain

(erzl Wnin _ 627]:]:1 wn(lfin)>2 ; 0.

» N 7
min (62 i wnin 4 2500 w"(l_“‘)) > 2eXn=1Wn,
{in€{0,1}}7_)
Each of the exponential terms is separable, i.e., a rank-one

tensor comprising non-negative factors. For example, the first
term is

en—1 2Wnin _ o2wiiy 2wzl |

e .e2wN’LN.

It follows that the function to be minimized is a tensor of size
2 x ---x2=2" and rank R =2, with the following 2 x 2
matrix factors

1 €2wn

An:|:62wn 1 :|a VHE{L,N}
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Hence, the decision version of our problem with R = 2 and non-
negative factors contains every instance of the partition problem
as a special case. It follows that the decision version of our
problem is NP-hard, and thus its optimization version is NP-
hard as well. U

In fact, the same NP-hardness result carries over to other
popular tensor models. These include the so-called Tucker
model [8], Multilinear SVD (MLSVD) [9], the Tensor Train
(TT) decomposition [10], and the Tensor Ring (TR) decompo-
sition [11].

Theorem 2: Finding the smallest element of a tensor from
its Tucker, MLSVD, TT, or TR factorization is NP-hard.

Proof: All these models are outer product decompositions
that are related. In particular, a rank two CPD is equiva-
lent to a Tucker model with a diagonal 2 x 2 x --- x 2 core
matrix. Thus the closed-form rank-two model of the parti-
tion problem is also a low multilinear rank (=2) Tucker
model. We may orthonormalize the loading matrices A,, if
we want to obtain an MLSVD model that features a dense
core, obtained by absorbing the inverse transformations into
the core. Thus if we could find the minimum element of ev-
ery Tucker or MLSVD model of multilinear rank (2,2, --- ,2)
efficiently, we would be in position to solve all instances of the
partition problem.

For the TT decomposition, [12] has shown that for low CPD
ranks (smaller than or equal to any of the tensor outer size
dimensions), it is possible to explicitly construct an equiva-
lent TT model whose lower-order cores exhibit the same low
rank as the original high-order CPD model. It follows that we
can express our CPD model of the partition problem as a TT
model with core ranks equal to two. Finally, the TR model
is a generalization of the TT model. In all cases, if we could
find the corresponding minimum element efficiently, we would
be in position to efficiently solve every instance of the parti-
tion problem. O

Remark 1: The decision version of the partition problem
is NP-complete, which means that every other NP-complete
problem can be transformed in polynomial time to an instance
of our problem of interest, i.e., computing the minimum element
of a tensor of non-negative rank two. Theorem 1 thus speaks not
only for the hardness, but also for the span of problems that can
be considered within our present framework.

Remark 2: Theorem 1 adds a new problem to a list of tensor
problems that are known to be NP-hard [13]. Notwithstand-
ing, it is interesting that the problem of finding the smallest
or largest entry is NP-hard even for tensors of rank as low
as R=2.

Remark 3: Multi-way partitioning [14] is a generalization
that seeks to split N numbers to M optimally balanced groups.
This can also be cast as finding the minimum element of a
tensor from its low-rank factors. Let S = 25:1 Wy, and i, €
{1,---, M} be a variable indicating to which of the M groups
wy, 18 assigned to. Consider minimizing the loss function

M N . 2
Z (eznzlwnl(zn:m) B eS/M) '

m=1
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Expanding the square we obtain two rank-one terms and a
constant that is irrelevant to optimization. The overall loss is
therefore a tensor of rank R = 2M, and it is easy to write out
the associated factor matrices, similar to what we did for the
basic partition problem.

When the low-rank factors comprise positive and negative
values, then even the R =1 case can be challenging, as the
minimum or the maximum element of each a,, can be involved
in generating the overall minimum (or maximum), due to the
presence of signs. In principle, this seemingly entails explicit
or implicit enumeration over 2V possibilities. (If a zero exists
in any a,, then zero should also be considered as a candidate
at the very end.) The good news is that there is structure to this
problem: one can invoke the principle of optimality of dynamic
programming (DP). The key observation is that

min; o; min; ﬁj
min; a; max; 3;
max; o; min; 3;
max; o; max; 3

min ;3; = min
i,J

J
and likewise

min; o; ming ,Bj
min; a; max; 3;
max; o; min; 3;
max; o; max; ,Bj

max a;3; = max
i,J

Thinking of « as the vector having as elements the minimum
and the maximum element products over the first £ modes and
3 as aj1, we can compute the minimum and maximum up to
the k + 1-th mode using the formulas above. It follows that

Proposition 1: Finding the smallest or largest element of a
rank-one tensor from {an € RInx1 }5:1 can be accomplished
via DP at complexity that is linear in V.

When R > 1, the problem of finding the minimum (or max-
imum) element of a CPD-factored tensor can be described as
follows. One has IV buckets of R-dimensional vectors, with the
n-th bucket having I,, vectors — the rows of A,,. Finding the
minimum element of the CPD-factored tensor is equivalent to
selecting a single row vector from each bucket A, such that the
inner product of the IV resulting vectors is minimized. This is
inherently a discrete optimization problem that is NP-hard per
Theorem 1. A possible solution strategy is to employ coordinate
descent: fixing all indices except i,,, we are looking to minimize
or maximize over %, the inner product

An(irm :)d7—17u for d_,, := m*;énAm(imv :)7

which only requires computing the matrix-vector product
AdT and finding its smallest or largest element. Such discrete
coordinate descent can be extended to optimizing over small
(and possibly randomly chosen) blocks of variables at a time.
This is akin to what is known as alternating (block coordinate)
optimization in the context of tensor factorization, and it can
work quite well in practice for small to moderate N. However,
such an approach does not seem to scale well with higher NV,
and it is not particularly elegant. We would like to have the
option of updating all variables at once, as we do in continuous
optimization — but the problem at hand is discrete and does
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not appear amenable to tools from continuous optimization.
Thankfully, appearances can be deceiving. We have the follow-
ing result.

Theorem 3: Finding the smallest element of a [N-way tensor
in CPD form is equivalent to the following continuous relax-

ation involving probability distributions {pn}g:1

min ((P{ A1) x-- * (PVAN)) 1r. (D

{anO, 1;;}]137;:1}1\7

n=1

Proof: Let {f)n}fj:l denote an optimal solution to (1), and
let q_, := A, (m;nA%pm). Note that the minimum of (1)
is then equal to p2'§_,,. The minimum of the inner product
plq_, is clearly attained when p,, is a Kronecker delta that
selects a minimum element of q_,, (there might be multiple
minimal elements in q_,, that happen to be exactly equal). By
virtue of optimality, p,, cannot combine non-minimal elements
of q_,, because that would clearly increase the cost, contra-
dicting optimality. Thus p,, generates a convex combination of
the possibly multiple equivalent minimal elements of §_,,. But
because the latter are exactly equal, the same cost is produced
by putting all the mass in only one of them.

Thus, given an optimal solution {f)n}f:[:l of (1), we can
always round p; so that it is integral, without loss of optimality.
This yields another optimal solution of (1) to which we can
apply the same argument to round ps this time, and so on. The
proof is therefore complete. O

Theorem 4: Finding the smallest element of a [N-way tensor
in Tucker, MLSVD, TT, or TR form is likewise equivalent to
the corresponding continuous relaxation.

Proof: All these decomposition models are fundamentally
sums of outer products, i.e., rank-one tensors. Thus they can
always be put in the form of multilinear (polyadic) decom-
position, albeit such decomposition will not necessarily be
canonical, i.e., of minimal rank, nor will it be unique. Notice
however that our proof of the previous Theorem does not as-
sume anything about uniqueness or the number of components
in the decomposition. Hence it applies to all these models. As
a special case, it applies to full-rank tensors; but then there is
no way to avoid the curse of dimensionality, i.e., exponential
complexity in gradient computations, see below. Thus it is low-
rankness that saves the day. 0

IV. METHODS

Theorem 3 opens the door to derivative-based optimization.
The gradient of the cost function,

f1,,pn) = ((PT A1) *-- x (PNAN)) 1r
= (’;kl pgAn) 1R,

with respect to p,, is given by

Vpnf =q-n = A, (m*;énp;nAm)T .

This is very easy to compute. When pl'A,, contains no ze-
ros],v we only have to compute ;‘npflAm once, at a cost of
Y neq1 InR+ (N —1)R flops, and then divide each time by
the leave-one-out factor to compute all the Hadamard products

needed. This is followed by a final matrix-vector multiplication
for each n. The total cost is thus 225:;1 I,R+ (2N —1)R
flops to compute all gradients. To understand what happens
when zeros appear, it suffices to consider each column (latent
dimension) separately, as multiplications and division happen
at the column (rank-one factor) level. If the first element of
one and only one of the pTTLAn is zero, then we should also
compute the nonzero leave-one-out product of all other first
elements and use that only for the gradient update of the p,,
which generated the said zero element. If the first element of
more than one pZ A, is zero, then all leave-one-out products are
zero, hence there is no need to even consider the first dimension
in the gradient update, because the corresponding component
of the gradient is zero. This implies that for each of the latent
dimensions, r € {1,--- , R}, we only need to detect if there is
a single zero and compute the product of the nonzero elements.
Hence, even in the presence of zeros, the worst-case complexity
is linear in IV, as stated above.

We need to enforce the probability simplex constraints, and
projected gradient descent (PGD) is a natural choice for this
purpose; but we have several other choices. Among them, the
Frank-Wolfe algorithm has certain advantages. In our particular
context, computing the minimum inner product of the gradi-
ent over the feasible set separates across modes, and for each
mode it boils down to finding the minimum element of the
corresponding part of the gradient vector. Thus Frank-Wolfe by-
passes projection onto the simplex, which requires an iterative
algorithm. Frank-Wolfe applied to nonconvex cost functions
with convex constraints enjoys nice convergence guarantees
[15] — note that our multilinear cost function is nonconvex, but
the probability simplex constraints are convex.

Another way to bypass the projection onto the simplex is
to introduce what is sometimes referred to as the Hadamard
parametrization of a probability distribution p(i) = (s(7))?,
where p is the Hadamard product of s with itself [16]; or
the amplitude parametrization p(i) = |s(i)|? of the quantum
literature, where s is complex and p is the Hadamard product of
s and the conjugate of s. With these parametrizations p always
has non-negative elements and sums up to one if and only if
[Is||2 = 1. Thus the simplex constraint is transformed to a unit
sphere constraint. One advantage of this is that projection of
any vector on the unit sphere only involves normalization, i.e.,
s= ﬁ A drawback is that the unit sphere is not a convex
set, which complicates convergence analysis. The third option
when it comes to parametrizing the simplex constraint is to

. v(i) . : .
use p(i) = =, where vector v is unconstrained. This

I ev()?
parametrizat%ﬁflemerges from mirror descent using negative
entropy, but it can also be motivated from the viewpoint of
turning simplex-constrained optimization into an unconstrained
problem on which gradient descent can be applied. Following
the latter viewpoint and applying the chain rule

of

m = pn(i)gn(i) — Pn (i)pz;gna

where g,, :==V,, f.
The aforementioned simplex parametrization approaches can
model any finite distribution. In our particular context, we know
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Algorithm 1 Min CPD via Frank-Wolfe w/ adaptive stepsize

Algorithm 3 Min CPD via Exponential parametrization

Input: {A,,}"_, curvature parameter C.

1. Initialize mlode distributions p,, randomly, Vn € {1,--- , N}.
2. repeat
3. Compute mode gradients, update directions, adaptive stepsize:
Set g =0
for n=1 to N

. T
Compute Vi, f = Ap (mznPmAm)

Find v}, = min!"_, Vp, f(in)
Set My, = {in | Vp, f(in) =05}
Set dy, (in) = 1/|May]|, Vin € My,
Accumulate g; = g; + (pn — dn)" Vp, f
end for
Set \¢ = min(%t, 1)
4. Update mode distributions:
for n=1 to N
Pn = (1 - >\t)pn + >\tdn
end for
5. until convergence criterion met
Output: i), € argmax;cr, Pn (7).

Algorithm 2 Min CPD via simplex PGD with momentum

Input: {An}ﬁle, step size, momentum parameters A, 3, resp.
1. Init. mode distributions p,, randomly, Vn € {1,--- ,N}.
2. Initialize gradients g, =071, x1, Vn € {1,--- ,N}.
3. repeat
4. Compute mode gradients, update mode distributions:
for n=1 to N
Compute Vp, f = A, (m;np%Am)
Accumulate momentum g,, = (1 — 3)gn + Vp, f
Update and project onto simplex p, = Pa (Pn — A&n)
end for
5. until convergence criterion met
Output: i}, € argmaxicr, pn(?).

T

that the sought distribution can be restricted to be unimodal —
after all, the final solution can be “rounded” to a Kronecker delta
without loss of optimality per the proof of Theorem 3. Towards
this end, we can use as potential map v(¢) a discrete analog of
the exponent of a Gaussian, namely

v(z’)z—(i;”)Q,

where © € R is a location parameter and o € R controls the
spread of the distribution. Using the chain rule again, the deriva-
tives for updating these two “root” parameters are

Of N~ Of 20i—p)

and

Of <~ Of 2(i—p)?

Frank-Wolfe, PGD, and the exponential parametrization
work well for random instances of the partition problem, subject
to suitable tuning of the step-size related parameters. Pseudo-
code listings of these four algorithms are provided as Algo-
rithms 1, 2, 3, 4 for the Frank-Wolfe, PGD, exponential, and

Input: {An}g:l, step size parameter .

1. Init. v,, randomly from i.i.d. normal distribution.

2. repeat

3. Compute mode gradients, update mode distributions:

for n=1 to N -

Compute g := Vp, f = An (minPmAm)
Compute 5755 = Pn(i)gn (i) — Pu(i)Pr gn, Vi
Update v, (2) = v, (2) — )\%,W

evn (i) .
ST evn@ , Vi

Update p, (i) =
end for
4. until convergence criterion met

Output: i), € argmax;cr,, Pn (7).

Algorithm 4 Min CPD via “discrete Gaussian” parametrization

Input: {An}f:[:l, step size parameter A.
1. Init. v,, randomly from i.i.d. normal distribution.
2. repeat
3. Compute mode gradients, update mode distributions:
for n=1 to N r
Compute g, :=Vp, f=A, (m;np%Am)
Compute 5.2 = py.(i)gn (i) — Pn(i)Pn &n, Vi

oF " 1 af  2(i—pn)
Compute B Zi:l Ovy, (1) o2

Compute % = 21'[:1 avanf(i) %
Update jin = jin — A2

Update o,, = 0, — )‘8(?;

Update vy (i) = — (% : ) Vi
Update P (i) = 7" 0h 7. Vi

end for
4. until convergence criterion met
Output: i}, € arg maxicr, pn(?).

“discrete Gaussian” parametrization, respectively. For the par-
tition problem, the Frank-Wolfe Algorithm 1 appears to offer
the best performance and the lowest complexity in our proof-
of-concept experiments. Each of these algorithms is useful in
different application contexts, as we will see. Algorithm 4 uses
the most compact parametrization of all, and is often the most
efficient in terms of iterations needed for convergence.

For the Frank-Wolfe method, for which there is proof that the
algorithm attains a stationary point at a rate of O(ﬁ), where ¢
is the number of iterations, computing the associated curvature
constant is non-trivial. In the matrix case (N = 2), the Lipschitz
constant of the gradient of the cost function for our problem,
which can be used to bound the curvature constant in Frank-
Wolfe [15] is determined by the principal singular value of
A, AT To see this, note that for N = 2 the cost function can
be written as

f(P1,p2) =Pl A1A7 Py,
the gradient of which is given by

V[ A1A§PQ] .

P?Pg]Tf - |:A2A,{p1
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It follows that

hence

_ q2
’ Vipret)™/ Viarat] le - qj

This is unfortunate, for computing Omax (A1 Ag) is more costly
than finding the smallest element of the product A; Al by
brute-force. In the N-way case, the situation is more compli-
cated. Note that for N = 2 the difference of the gradients is
linear in the difference of the mode distributions. This is not
true when NV > 2.

Vietet] ! Va

Pi P>

AAT (P2 — q2)
A2A1 P1—q1)

P2 — Q2
P1—d1

< Omax (A AT)

1935

< (Omax (AlAQT))2

A. Complexity

Assuming I,, =1, Vn for brevity, the cost of computing
all gradients with respect to the mode distributions p,, is of
order N IR, as we have seen. The Frank-Wolfe algorithm main-
tains this complexity order per iteration. When employing the
exponential parametrization of the mode distributions or the
“discrete Gaussian” parametrization, the extra gradient back-
propagation steps have complexity NI, thus again maintaining
overall per-iteration complexity of order NI R. The actual com-
plexity of the overall algorithm depends on a number of crit-
ical parameters, including the choice of gradient stepsize, the
maximum number of iterations allowed (‘“hard-stop”), and the
initialization used — intelligent / application-specific or random.
We are using these algorithms to tackle NP-hard problems, so
initialization does matter. In certain applications, such as parity
check decoding, there is a natural initialization that we can use
(the channel output bits), but in others, like the sign retrieval
application that we will consider in some detail, there is no
“natural” initialization that we can use. Through experimenta-
tion, we have found that one initialization that works well in
many cases is to use the DP-based algorithm to compute an
optimal solution for each rank-one factor separately, and then
pick among those the one that is best for the higher-rank tensor
minimization problem. This often gives a good “universal”
(application-agnostic) initialization the complexity of which is
of order NIR + NR?.

Tuning the gradient stepsize is not difficult in our experience,
but it is application-dependent. The maximum number of gra-
dient iterations is set between 300 and 3, 000 in all our experi-
ments, even for high-order problems (high V). Thus complexity
is always polynomial of order NIR, but there is no guarantee
that the optimal solution will be found. Notwithstanding, as we
show in our experiments, the optimization performance attained
is often state-of-art.

V. How EXPRESSIVE IS THE CLASS OF
PROBLEMS CONSIDERED?

We have seen that the class of problems that can be viewed
as special instances of finding the minimum element of a tensor

from its rank-one factors is broad — it contains the partition
problem, and thus any NP-complete problem can be trans-
formed in polynomial time to our problem of interest. Still, such
transformation may not be obvious, and one wonders whether
there exist broadly useful classes of NP-hard problems that
are directly amenable, or easily transformable, to instances of
the problem of interest. As we will see next, the answer is
affirmative for various important optimization models that are
frequently used in engineering.

A. Integer Linear Programming

Consider the Integer Linear Programming (ILP) problem

min ¢’'x

xesN )
s.t. Hx <b,
where H € RM*N Hh e RM ¢ e RN, and SY is a finite subset
of RV, SV will typically be a finite lattice, i.e., the Cartesian
product of finite subsets of R. In the supplementary material,
we show that it is possible to transform this ILP problem
to minimizing

M
: tc’'x t(c+ph,,)Tx
ilelé% {e + mz::l Amé } ,
where \,,, := e~ t"P(") for sufficiently large (problem-specific)
p and t. Every exponential inside the brackets is a rank-one
tensor (a separable function of the variables in x), and thus the
above is a tensor of order /N and rank at most M -+ 1, which is
very low compared to the maximal possible rank (/Y ~! when
SN = ZN). Here TV is the Cartesian product of N copies of Z
(note that S need not be a Cartesian product in general —
are using slightly overloaded notation).

B. Integer Least Squares
Consider the integer least squares (ILS) problem
. 2
min |[Hx — blf;, 3)
where H e RM*N Hh e RM Let G :=HTH and ¢ := 2H b.

Then, it is easy to see that

min ||Hx — b||§ = min x’ Gx — c’'x
xesN xeSN

EminZZGnm
xeSN

n=1m=1

N
-2 <l
n=1
“
Note that a term of the form'
x(n)x(m) = 7x0(1) - x(n — 1)x(n)x’(n + 1) -
x%(m — Dx(m)x"(m +1)---x%(N)
is separable (rank-one), and so is y(x(n))?. It follows that the
cost function in (4) has rank at most N(N=1) + N, which is
again very low compared to the maximal possible rank (V1!

when SV = TV). Note that here we have used the symmetry of
G := H"H to reduce the required number of rank-one terms.

'We may assume without loss of generality that m > n. Here, x° is

element-wise exponentiation, i.e., a vector of all ones.
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C. Integer Quadratic Programming

Consider the integer indefinite quadratic problem
min,cgv X Qx, where Q is not necessarily positive semidef-
inite, or even symmetric. Note that we can always symmetrize
without loss of generality, as x” Qx = (x7Qx)T = x"Q"x,
and thus x7 Qx = XT(Q—;iqT)X =xTGx, with G := (Q+27QT)
It follows that integer quadratic programming corresponds to

finding a minimum element of a CPD model of rank W

D. Mixed Integer Programming: Sign Retrieval

So far we have considered optimization problems with purely
categorical (“integer”) variables. As an example of a mixed in-
teger problem that falls under our framework, we next consider
sign retrieval (e.g., see [17], [18]). This is a special case of
phase retrieval [19], [20], and both have important applications
in a broad range of disciplines, from optical imaging [19] to
wireless communication — where it can be used for channel
estimation from coarse channel quality measurements [21]. The
starting point of the sign retrieval problem is the measure-
ment model

y:|AX+V|a

where x € RV*! is a vector of unknowns to be estimated,

A € RMXN with M > N (typically M >> N) is known, v is
additive white Gaussian noise, | - | takes the absolute value of
its argument, and y € Rf 1 is the sign-less vector of measure-
ments. Treating s = sign(y) and x as deterministic unknowns,
maximum likelihood estimation amounts to

ID(s)y — Ax][3,

min
s€{£1}Mx1 xcRNx1

where D(s) is a diagonal matrix holding the elements of s
on its diagonal. The problem is separable with respect to the
continuous parameters x. That is, solving for x as a function
of s, x = (ATA)"'ATD(y)s and substituting the result back
into the cost function, we obtain
i I-AATA)'ATD 2,
im0 AATA) T ATID()s)
where we have used D(s)y = D(y)s. Expanding and using the
idempotence of (I — A(ATA)"1AT), we can further rewrite
the problem as
. T
(BB S As
with Q :=D(y)(I - A(ATA)"'AT)D(y).

It follows from the preceding subsection on integer quadratic
programming that the sign retrieval problem corresponds to
finding a minimum element of a CPD model of rank w

E. Maximum Likelihood/Minimum Distance Decoding of Par-
ity Check Codes Over Galois Fields

Consider a parity check code [22] over GF(2) with M x N
parity check matrix C, where M is the number of parity checks,
N is the codeword length, and the code rate is %, where
K := N — M. A certain N x 1 binary vector x € {0,1}" is a
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valid codeword if and only if Cx = 0j;x; in GF(2) modulo 2
arithmetic, i.e., mod(Cx, 2) = 0,/ inreal arithmetic. Assum-
ing that the coded bits are transmitted over a memoryless binary
symmetric channel (BSC) with cross-over probability p < 0.5,
or over an additive white Gaussian noise (AWGN) channel,
maximum likelihood decoding reduces to minimum Hamming
or Euclidean distance decoding, respectively. Noting that for
{0, 1}-encoding of the channel input x and output y, Euclidean
distance squared is equal to Hamming distance, we can write
both using real arithmetic as

min lly — ][5 )

x€{0,1}" |mod(Cx,2)=0

Optimal decoding is an NP-hard problem for most “irregular”
codes of current interest?, including low-density parity check
(LDPC) codes which can come close to attaining the Shannon
limit. These are decoded using an iterative message passing
technique known as belief propagation, which performs well
for code graphs that are free of short loops [23], [24]. We
will next show that the same optimal decoding problem can be
approached in a very different way: as the problem of comput-
ing the minimum element of a low-rank tensor. Consider the
following problem

N ﬁ/[: (1) | 1 (1 N 1> Zle(y(n)*X(n))a
xe{0,1}N = e N

(©)

Note that (=1)Cmx — (_1)X5 Clmm)x(n) —

Hfj:l(—l)f(m’”)x("), wglich is a rank-one tensor. Likswise,
(1 4 %)Zn:l(y(n)*X(n)) _ Hﬁf:l (1 T %)(Y(")*x(”)) s
separable, and thus a rank-one tensor. The overall cost function
in (6) is therefore a tensor of rank (at most) M + 1. We have
the following result.

Proposition 2: Solving (6) is equivalent to solving (5).

Proof: Note that each term of the sum on the left is equal
to 1 when the corresponding parity equation is satisfied, or —1
otherwise. With the minus sign up front of the sum, minimiza-
tion of this term will produce a valid codeword that satisfies all
parity checks and yield an overall value —M. Any constraint
that is violated will increase this term by 2. The term on the right
is monotonically increasing with the squared loss ||y — x||3 =
ZnNzl(y(n) — x(n))?2. The maximum value of the latter is IV,
while (14 %) is upper bounded by its limit as N — oo,
which is the base of the natural logarithm, e. It follows that the
term on the right is strictly less than 1 (and lower bounded by %).
Since the all-zero codeword satisfies all parity checks, it follows
that the optimum solution to (6) should have cost less than or
equal to —M + 1. Moreover, this value cannot be attained by
any x which does not satisfy all parity checks, because such a
x would incur a cost of at least —M + 2, even discarding the
second term in (6). Hence, any solution of (6) must satisfy all
parity checks. Among all x that satisfy all parity checks, those
that minimize >, (y(n) — x(n))? yield the least overall cost
in (6), and thus the proof is complete. |

E.g., Convolutional codes with short memory can be optimally and
efficiently decoded using DP.
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Remark 4: When y is real-valued (AWGN channel) the only
difference is the scaling of the second term, which should be %
instead of 1, with ¢:= (1 + 1)!1“II2 and

y(n) > 0.5,
y(n) <0.5.

_ Jyn),
a(n) = {y(n) -1,

F. Codes Over Higher-Order Galois Fields

Our framework can also handle the decoding of codes over
higher-order Galois fields. For example, let L = 2¢ and consider
a system of parity equations over GF(L). Such systems are of
form Cx = q, where both C and q are given, and the equality
is modulo L = 2¢, i.e., Cx — q is a vector of integer multiples
of L. We can handle this type of equation by bringing in a
familiar signal processing tool, namely, the complex roots of
unity. That is, we seek to minimize over x € {0,--- , L — 1}N
the following cost function

M
~ 3 Re {ej%m(m,:)qu(m))}

m=1
] 1\ S ) =x(n)?
+ 2 (1 + N) : )

where j:=+/—1. The same logic applies for appropriately
choosing c.

G. Least Inconsistent Solution of Overdetermined Linear Sys-
tem of Equations Over GF(2)

So far, we have been dealing with underdetermined linear
equations over a GF, and looking at minimum distance solu-
tions relative to an “anchor”. This is similar to the minimum
norm solution of underdetermined linear equations in the real
or complex field. The overdetermined version of the problem
is also of interest, and has many applications — e.g., in crypt-
analysis [25], [26], [27]. It turns out that our framework can
deal with this problem as well. We are given a set of M > N
linear equations in IV variables Gx =y < Gx +y =0 over
GF(2). The system is usually inconsistent, so we seek a x that
minimizes the number of violated constraints, i.e., a solution
that is least inconsistent. This can be simply posed as

M
min — —1)Glm)xty(m) 8)
xe{0,1}V mzzl( )

H. Underdetermined or Overdetermined?

Every linear code can be generated as a linear combination
of the columns of a code generating matrix G. When G is
tall (M x N with M > N) and full column rank, the valid
code words live in a subspace of dimension N and they are
orthogonal to the rows of a parity check matrix C of size
(M — N) x M. Given a noisy code word, we may pose the
optimal decoding problem in two equivalent ways:

e One is in code space, i.e., find a valid code word that

is closest to the given noisy code word, and this is the
formulation in (6), wherein the unknown vector x is the

sought clean code word. After solving (6), we need to
solve a consistent system of linear equations over GF(2)
(via Gaussian elimination) to obtain the latent information
sequence — unless the code is systematic / in standard form
wherein the information sequence appears as the prefix of
the code sequence.

o The other option is to pose the problem in the lower-
dimensional space of the information sequence, i.e., find
an information sequence that produces a valid code word
that is closest to the given noisy code word; this is the
formulation in (8), wherein the unknown vector x is the
sought information sequence®. When we take this route,
there is no need for the additional Gaussian elimination
step at the end, as we directly recover the information
sequence. Note that the number of optimization variables
is smaller and the rank of the CPD model is higher this
way, but the complexity of our algorithms is linear in the
number of unknowns and the rank, so this does not really
affect the complexity of our approach.

o The difference between the two ways of approaching the
problem lies in the initialization. If we go via (6) there is a
natural initialization for x — the received noisy code word.
Notice that this works for any parity check matrix. If we
choose to solve (8) on the other hand, there is no obvious
way to initialize the information sequence X, unless the
code is systematic — in which case we read out a noisy
version of x from the noisy code word itself. It is there-
fore preferable to use (6) unless the code is systematic.
The code is not systematic in cryptography applications
for example.

1. Reprise

As we conclude this section, it is useful to reflect on what we
learned. The take-home point is that there are many important
problems which can be posed as instances of low-rank tensor
minimization, for which it is not even necessary to perform
tensor factorization — the low-rank factors can be readily derived
analytically, in closed-form. These clean-cut mappings of clas-
sic hard problems to instances of low-rank tensor minimization
reinforce our hopes that, even in cases where the problem is
more complicated and the cost function is not fully known (i.e.,
only examples / samples of the cost function are given), it may
be possible to model those “blind” optimization problems using
low-rank tensor factorization and minimization.

Another important observation which stems from uniqueness
of tensor completion, is that under certain conditions it is not
even necessary to completely specify an instance of ILS or
ILP in the traditional sense of providing its input parameters
H, b, c in order to solve it. It is enough to specify the cost at
certain (randomly chosen or systematic) points, and let tensor
completion fill out the “rest of the problem”. This possibility is
certainly intriguing, and the direct result of uniqueness of low-
rank tensor completion and our problem reformulation.

3In the problem statements, x is always taken to be an N x 1 vector for
consistency, but what is N (length of code word or length of information
sequence) changes depending on the context.
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Fig. 1.  Partition gap for 100 problem instances with N = 20 random inte-
gers in {1,---,100}, normalized to sum to 1. Greedy, optimal (enumeration-
based), and proposed minimum CPD algorithm using Frank-Wolfe. Each point
on the x axis corresponds to a problem instance, and the instances are sorted in
order of increasing partition gap for the optimal enumeration-based solution.

V1. EXPERIMENTS
A. Partition

Since we used the partition problem to establish the hardness
of our problem in the worst case, let us compare one of the
proposed continuous optimization algorithms for minCPD to an
established approximation algorithm for the partition problem.
For this purpose, we will use greedy partitioning algorithm
[14] which first sorts the given numbers and then parses the
sorted list from largest to smallest, assigning each to the bucket
with the smallest running sum. This algorithm comes with a 7/6
approximation guarantee in terms of the larger sum it outputs
divided by the larger sum of an optimal partition. For smaller
N we also use enumeration to compute the optimal partition as
another baseline.

The results obtained using the greedy algorithm and minCPD
via Frank-Wolfe with adaptive stepsize (Algorithm 1) are sum-
marized in Fig. 1 for N =20 (with enumeration as another
baseline) and Fig. 2 for N = 30 (without enumeration), for 100
Monte-Carlo trials each. In each trial, /N random integers in
{1,---,100} are first drawn and then normalized to sum to 1.
For Frank-Wolfe, we used C' = 5, a hard-stop at a maximum of
1000 iterations, and 5 random initializations.

It is clear that Algorithm 1 outperforms the well-established
greedy algorithm, and in many cases attains the optimal solu-
tion (zero subset imbalance, or the optimal subset imbalance
obtained via enumeration, see Figs. 1 and 2).

B. Sign Retrieval

Our second set of experiments considers the application of
our framework to the problem of sign retrieval. Towards this
end, we use Algorithm 4 with stepsize parameter fixed to 0.1
and a hard limit of 10° gradient iterations. For initialization, we
use the rank-one DP algorithm of Proposition 1, which is used
to efficiently determine the minimum of each rank-one factor.
The best of these rank-one factor minima (the one that mini-
mizes the full-rank cost) is then used to initialize Algorithm 4.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Vssubset imbalance: abs(sum(wn in S)-sum(wn not in S))

g x10

7+ | mean .0019 .0010 —%—cpd
std .0018 .0010 1 (]
N e S T e LI

6 | N=30 randint ,in1,..,100 noy
normalized to I, sumto 1 noy

5L | 100 MC trials !y :| ' T

Fig. 2. Partition gap for 100 problem instances with N = 30 random
integers in {1,---,100}, normalized to sum to 1. Greedy and proposed
minimum CPD algorithm using Frank-Wolfe. Enumeration is too costly at
N =30 (230 possible subsets), so the instances are sorted in order of
increasing CPD partition gap.

optimization cost
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Fig. 3. Sign retrieval: cost attained by the enumeration-based solution and
the proposed CPD-based approach, for M = 12, N = 6, 0 = 0.5. See text for
details. Each point on the x axis corresponds to a problem instance, and the
instances are sorted in order of increasing cost for the optimal enumeration-
based solution.

Ten additional random initializations are also used in case the
DP initialization is not good enough. As a baseline, we use
enumeration over all possible vectors of sign variables.

For each setting of the sign retrieval problem parameters
(N =length(x), M = length(y), o = std(v(m))), we conduct
100 Monte-Carlo trials. For each trial, we draw random 1i.i.d.
standard Gaussian x and A, and i.i.d. zero-mean Gaussian noise
v of standard deviation o,,.

For our first experiment, we choose N =6, M =12, and
o, = 0.5. Note that for this application the order of the tensor
used in the CPD model is M and its rank is % Fig. 3
shows the cost function value attained for 100 randomly drawn
problem instances, constructed as specified above. Note that
CPD comes very close to the optimal cost of enumeration, with
a few minor spikes, for all instances considered. For this appli-
cation, what is perhaps more important than the value of the cost
function is the squared error between the ground-truth x and the
X estimated by a given algorithm. The values of squared error
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Fig. 4. Sign retrieval: squared x-estimation error attained by the
enumeration-based solution and the proposed CPD-based approach, for M =
12, N =6, o =0.5. Each point on the = axis corresponds to a problem
instance, and the instances are sorted in order of increasing squared error of
the enumeration-based solution.
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Fig. 5. Sign retrieval: mean optimization cost and MSE attained by the
enumeration-based solution and the proposed CPD-based approach as a
function of o, for M =12, N = 6.

attained by CPD and enumeration are shown in Fig. 4. Notice
that enumeration is by definition optimal in terms of the cost
function, but not necessarily optimal in terms of instantaneous
or even mean squared error (MSE) — as the cost function is only
a surrogate for MSE. Indeed, there are a few instances where
CPD is better than enumeration in terms of squared error, and
vice-versa. Overall though, the two approaches are very close
in this experiment.

Monte-Carlo averages of the optimization cost and the
squared error are depicted in Figs. 5 and 6 as a function of
o and N (with M = 2N), respectively. We again observe the
excellent performance of the proposed CPD approach in this set
of experiments.

C. Decoding Parity Check Codes

In our last set of experiments, we consider decoding five
different rate—% parity check codes, for different code densities
and lengths N. For the first three scenarios N = 32, while

SR: cost and MSE asAfunction of M, for N=2M, 0=0.5

35F
3f
25¢
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oL = cost CPD
MSE ENUM
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051 4
3 4 5 6 7 8 9 10
M

Fig. 6. Sign retrieval: mean optimization cost and MSE attained by the
enumeration-based solution and the proposed CPD-based approach as a
function of N, for M = 2N and o = 0.5.
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Fig. 7. Parity check decoding: BER vs BSC cross-over probability for the
first scenario: LDPC code of N = 32 and M = 16.

for the last two N =96. In the first scenario we use a cus-
tom LDPC code design* [28]. In the remaining four scenarios,
we use a systematic parity check matrix whose non-identity
block is randomly generated from an i.i.d. {0, 1}-Bernoulli
distribution of density either 0.2 or 0.8. Each code is used
for encoding i.i.d. sequences of N/2 information bits, and
the coded sequences are transmitted over BSCs with cross-
over probability p € {107%5,1072,107'-*,10~*,10°*}. For
each scenario and cross-over probability, we conduct 10,000
Monte-Carlo runs and compare the decoding performance of
our method to two baselines: i) enumeration (applicable only
for N =32 due to its exponential complexity) and ii) belief
propagation (BP) based decoding. Regarding our method, we
use Algorithm 4 with step size equal to 0.05. The initialization
of Algorithm 4 in terms of {on}gzl and {un}ﬁlzl is 0, = 0.5,
Vn, while j1,, is set to the received noisy (possibly flipped) value
of the corresponding code bit. Algorithm 4 is terminated when
the number of iterations exceeds the limit of 2,000 iterations
or when the relative change of the objective drops below 10~7.
As for the BP baseline, we use the ldpcDecode function of

“https://rptu.de/en/channel-codes/channel-codes- database/more-Idpc-codes
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Fig. 8.  Parity check decoding: BER vs BSC cross-over probability for the

second scenario: random code of N = 32, M = 16, and 20% density.
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Fig. 9. Parity check decoding: BER vs BSC cross-over probability for the
third scenario: random code with N =32, M = 16 and 80% density.
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Fig. 10.  Parity check decoding: BER vs BSC cross-over probability for the
fourth scenario: random code with N =96, M = 48 and 20% density.

MATLAB, to which the log-likelihood ratios based on the corre-
sponding cross-over probabilities are provided as initialization,
while the upper limit of iterations is set to 100 (we did not
observe any improvement beyond that).

In Figs. 7-11, we report the average Bit Error Rate (BER) for
all the methods. We can observe that, in general, Algorithm 4
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Fig. 11.  Parity check decoding: BER vs BSC cross-over probability for the
fifth scenario: random code with N =96, M = 48 and 80% density.

achieves better or comparable performance than BP. At low
BSC cross-over probabilities, we can see that Algorithm 4
outperforms BP for the custom LDPC code design of [28],
and the high density parity check codes. In the rest of the
cases the two methods attain comparable performance. BP has
a small advantage for the longer low-density code in Fig. 10,
as expected; BP works best with low-density long codes. We
note that, unlike BP, Algorithm 4 does not (need to) use the
BSC cross-over probability, which is non-trivial to estimate for
time-varying channels. We also note that BP exhibits a degra-
dation in performance for the longer and denser code at low
BSC error rates, see Fig. 11. This is repeatable (not an artifact
of insufficient Monte-Carlo averaging) and likely due to the
existence of many short loops in this case. On the other hand, BP
is significantly faster than Algorithm 4. Overall though, given
that Algorithm 4 is a completely new and application-agnostic
take on a well-studied problem, the fact that it outperforms in
terms of BER a proven MATLAB implementation of a custom-
designed and widely used algorithm is satisfying. Matlab
programs that can be used to reproduce the results in this sub-
section can be found in the companion supplementary material
in IEEE Xplore.

VII. CONCLUSION

We have considered a fundamental tensor problem and
showed that it is NP-hard. While most tensor problems are NP-
hard [13], it is surprising to see that our particular problem is
NP-hard for rank as small as two, but not for rank equal to one.
We note here that the best rank-one least squares approximation
problem for tensors is already NP-hard.

Given the discrete / combinatorial nature of the problem
considered, it is also unexpected to see that it admits an equiv-
alent continuous reformulation. While this reformulation is it-
self NP-hard by virtue of equivalence, it opens the door for
gradient-based approaches from the nonconvex continuous op-
timization literature.

We have shown that an impressive variety of hard optimiza-
tion problems that are widely used in engineering can be posed
as special instances of our problem of interest. These include
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integer least squares, integer linear and quadratic programming,
certain mixed integer programming problems, and solving sys-
tems of underdetermined and overdetermined linear equations
over Galois fields. For all these problems, the low-rank fac-
torization needed to set up the optimization problem is avail-
able analytically, in simple closed-form. There is no need for
tensor factorization.

As tangible signal processing and communications engineer-
ing applications, we delved into sign retrieval and the decoding
of linear parity check codes. We have shown that the perfor-
mance of the proposed suite of gradient-based approaches is
surprisingly good in many of these applications, and under cer-
tain conditions it can beat tried-and-proven application-specific
algorithms that come with certain performance guarantees. This
success is sometimes dependent on using a suitable initializa-
tion, either application-specific (“dirty” code bits in the case
of parity decoding) or “universal” (the DP algorithm used to
initialize the gradient iterations for sign retrieval) in other cases.
For other problems, like the partition, a few random initializa-
tions seem to work well.

Our main results (hardness, equivalence of continuous re-
formulation) are also applicable to all popular tensor models
beyond CPD, including Tucker/HOSVD, TT, and TR.

Note that for the families of problems and applications con-
sidered in this paper, R is a small constant or linear / very
low-order polynomial function of N. For so-called black box
optimization problems out in the wild, the worst-case R can be
exponential in NV, and we would have to use low-rank approx-
imation to keep complexity at bay. This is not an issue though
for the various problems considered in this paper.

We are currently working on further improving scalabil-
ity and speed, establishing convergence for some of the al-
gorithmic variants, and considering applications in a variety
of settings. Performance analysis is naturally of interest, but
is likely to be application-specific. We are also considering
top-k/bottom-k extensions which are appropriate for top-k rec-
ommendation and other applications. We hope to report on these
directions in forthcoming work.
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