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Quantized Low-Rank Multivariate Regression
With Random Dithering
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Abstract—Low-rank multivariate regression (LRMR) is an
important statistical learning model that combines highly cor-
related tasks as a multiresponse regression problem with low-
rank priori on the coefficient matrix. In this paper, we study
quantized LRMR, a practical setting where the responses and/or
the covariates are discretized to finite precision. We focus on the
estimation of the underlying coefficient matrix. To make consis-
tent estimator that could achieve arbitrarily small error possible,
we employ uniform quantization with random dithering, i.e., we
add appropriate random noise to the data before quantization.
Specifically, uniform dither and triangular dither are used for
responses and covariates, respectively. Based on the quantized
data, we propose the constrained Lasso and regularized Lasso
estimators, and derive the non-asymptotic error bounds. With the
aid of dithering, the estimators achieve minimax optimal rate,
while quantization only slightly worsens the multiplicative factor
in the error rate. Moreover, we extend our results to a low-rank
regression model with matrix responses. We corroborate and
demonstrate our theoretical results via simulations on synthetic
data, image restoration, as well as a real data application.

Index Terms—Multiresponse regression, quantization,
M-estimator, low-rankness, dithering.

I. INTRODUCTION

QUANTIZATION is the process of mapping continuous
input to a discrete form (e.g. a finite dictionary or a finite

number of bits) [25]. Quantization of signals or data recently
has received considerable attention in the communities of sig-
nal processing, statistics and machine learning. In some signal
processing problems, power consumption, manufacturing cost
and chip area of analog-to-digital devices grow exponentially
with their resolution [34]. In this situation, it is infeasible to use
high-precision data or signals, and quantization with relatively
low resolution is preferable, e.g., see the distributed machine

Manuscript received 21 February 2023; revised 3 August 2023; accepted 3
October 2023. Date of publication 12 October 2023; date of current version
31 October 2023. The work of Junren Chen and Yueqi Wang was supported
by Hong Kong PhD Fellowship from Hong Kong Research Grant Council
(HKRGC). The work of Michael K. Ng was supported in part by the HKRGC
GRF under Grants 17201020 and 17300021, in part by CRF under Grant
C7004-21GF, and in part by Joint NSFC-RGC under Grant N-HKU76921. The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. George Atia. (Junren Chen and Yueqi Wang contributed
equally to this work.) (Corresponding authors: Junren Chen; Yueqi Wang.)

Junren Chen and Yueqi Wang are with the Department of Mathe-
matics, The University of Hong Kong, Hong Kong 852, China (e-mail:
chenjr58@connect.hku.hk; u3007895@connect.hku.hk).

Michael K. Ng is with the Department of Mathematics, Hong Kong Baptist
University, Hong Kong 852, China (e-mail: michael-ng@hkbu.edu.hk)

Digital Object Identifier 10.1109/TSP.2023.3322813

learning system described in [18]. Besides, in modern machine
learning problems extremely huge datasets and highly complex
models are ubiquitous, which often lead to distributed learning
systems [38], i.e., a setting involving repeatedly communication
among multiple compute nodes that are oftentimes GPUs linked
processors within a single machine or even multiple machines.
When the participating workers are typically large in number
and have slow or unstable internet connections (e.g., low-power
or low-bandwidth device such as a mobile device), the commu-
nication cost would become prohibitive [38], [51], and recent
works have studied how to send a small number of bits by
quantization to overcome the bottleneck [3], [31], [32], [36],
[51], [56], [70]. More specifically, working with low-precision
training data has proven useful in reducing computation cost
when training linear model, as shown by the experimental re-
sults in [68]. Additionally, while sending the quantized gradient
is the mainstream in machine learning, it may be inefficient
in distributed learning with a huge number of parameters to
learn; in this case, transmitting some important quantized data
samples could provably reduce the communication cost [28].
Thus, it is of particular interest to theoretically investigate the
interplay between parameter learning and data quantization in
some fundamental statistical learning or estimation problems,
e.g., [14], [15], [21].

Departing momentarily from quantization, low-rank multi-
variate regression (LRMR), also known as multi-task learning
and reduced-rank regression [2], [12], [50], is undoubtedly a
widely used statistical machine learning model. For clarity we
first provide its mathematical formulation:

yk =Θ�
0 xk + εk, k = 1, ..., n, (1)

and the main goal is to learn the underlying parameter Θ0 ∈
R

d1×d2 from the covariate-response pairs (xk,yk) ∈ R
d1 ×

R
d2 . Compared to the canonical regression problem with scalar

response (e.g., linear regression), the core spirit of LRMR is
to combine and jointly solve d2 highly correlated tasks. In
particular, the coefficient vectors of the d2 tasks are merged
into Θ0 in (1), and the low-rankness of Θ0 is often assumed
to exploit the “intrinsic relatedness” of the d2 learning prob-
lems (e.g., [23], [24], [44]). This model can capture many
natural phenomena and hence has a broad range of applica-
tions. For example, in genomics study [8], the gene expression
profiles (yk) and the genetic markers (xk) can be approxi-
mately associated through only a few linear combinations of
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highly-correlated genetic markers. Therefore, recovering a low-
rank and sometimes also sparse coefficient matrix holds the key
to reveal such connections between the responses and predic-
tors. In addition, in the study of functional magnetic resonance
imaging (fMRI) [30], each voxel within the brain is represented
by a time series of neurophysiological activity. Combining with
the multivariate voxel-based time series, researchers use a linear
model to describe the underlying large-scale network connec-
tivities among functionally specialized regions in the brain. A
practical way is to use a suitable matrix to identify these com-
plex interconnections in the brain; while aiming at modelling
the connections via only a small subset of the given data, one of-
ten imposes appropriate structures (e.g., low-rankness, sparsity)
on the coefficient matrix. Besides, other applications include
analysis of electroencephalography (EEG) data decoding [1],
neural response modeling [7], analysis of financial data [50],
chemometrics, psychometrics and econometrics [67], to name
just a few.

Note that in real applications, data are inevitably quan-
tized to bit streams for the purpose of storage, processing
and transmission. Also, the problem of LRMR can possibly
arise in a distributed learning regime where quantization is
necessary to render lower communication cost. Thus, a natu-
ral question is to study quantized LRMR, i.e., LRMR where
data are quantized by some mechanism, and one can only
access the quantized data for subsequent learning procedure.
In signal and image processing, the most natural quantization
method is arguably the uniform quantizer that discretizes data
in a uniform manner [25], [26], [40]. More precisely, given
quantization level δ, a real scalar a is quantized to Qδ(a) :=
δ
(
�a
δ �+

1
2

)
∈ δ · (Z+ 1

2 ). For instance, under Q1(.), the data
would be discretized to {...,− 3

2 ,−
1
2 ,

1
2 ,

3
2 , ...}, depending on

which cell they belong to. Unfortunately, directly applying the
uniform quantizer Qδ(.) to LRMR will limit our ability to
learn the desired Θ0 — specifically, consistent estimator1 is
in general impossible from (xk,Qδ(yk)). This is true even
if we only have one task (d2 = 1): consider a problem with
binary features (i.e., xk ∈ {−1, 1}d1 ) and without noise; if
we quantize yk to Q1(yk), then we can never distinguish
Θ01 = [0.5, 0.4, 0, ..., 0]� and Θ02 = [0.5,−0.25, 0.2, ..., 0]�

because Q1(Θ
�
01x) =Q1(Θ

�
02x) holds for any x ∈ {−1, 1}d1 .

Later, this issue will be complemented by the numerical result
in Fig. 4.

To address the issue, in this paper, we study LRMR under
dithered quantization that involves random dithering — a pro-
cess that adds random noise to the signal before quantization.
The benefit of dithering for image or speech signals was empir-
ically observed quite early [33], [41], [52], while the theoretical
results for quantization error/noise were established in [54], see
also a cleaner proof provided by [26]. In a nutshell, the benefit
of dithering is to whiten the quantization noise. Even more
surprisingly, the quantization errors follow i.i.d. uniform distri-
bution (Lemma 1(a)). While we focus on the dithered uniform

1In regression problems, an estimator is consistent if its estimation error
vanishes when sample size tends to infinity.

quantizer, interested readers may consult [64] for an extensive
treatment of quantization noise under various quantizers.

We deal with the quantization of both response and covariate.
We propose to use uniform dither for yk, triangular dither for
xk (see precise definition later), and then apply the uniform
quantizer. Note that the quantization method is memoryless
and thus well suited to hardware implementation. Our main
contributions are as follows:

• Based on the quantized data, we develop an empirical �2
loss, which coupled with either nuclear norm constraint
or regularization leads to Lasso estimators. We establish
minimax optimal non-asymptotic error bounds for the es-
timators in the cases of “partial quantization” (i.e., only
quantize yk) and “complete quantization” (i.e., quantize
both xk, yk). The bounds also characterize how quantiza-
tion resolution affects the estimation error.

• We show that our quantization method is also applicable to
a low-rank linear regression model with matrix response
recently studied in [39]. Our Lasso estimators based on
quantized data could still achieve error rate comparable to
the full-data regime in [39].

A. Related Works

There has been rapidly growing literature on quantized com-
pressed sensing [5], [14], [15], [20], [22], [47], [57], [59], [66],
quantized matrix completion [4], [10], [14], [15], [19], [35], and
more recently quantized covariance estimation [14], [15], [21],
but we are not aware of any earlier work on quantized LRMR (or
more generally put, quantized multiresponse regression). Clos-
est to this paper are prior developments on compressed sens-
ing (CS) under dithered uniform quantization [14], [57], [59],
[66], which we briefly review here. Recall that the (noiseless)
CS problem is to recover a structured (e.g., sparse/low-rank)
signal θ0 ∈ R

d from the data of (xk, yk := x�
k θ0)

n
k=1, where

xk is the sensing vector, yk is the measurement, and the high-
dimensional setting n� d is of primary interest. It was shown
that, while quantizing yk via Qδ(.) with uniform dithering,
recovery with near optimal error rate can still be achieved by
constrained Lasso [59] or the Projected Back Projection (PBP)
estimator [66]. In [57], Sun et al. extended [59] to corrupted
sensing that aims at separating signal and corruption. While
[57], [59], [66] only considered the quantization of yk, a recent
work [14] developed the quantization method for xk, i.e., via
the same dithered uniform quantizer but with uniform dither
substituted with triangular dither.

Although we adopt a similar dithered quantization scheme
(specifically, similar to [14]), the estimation problem in this
paper totally differs from CS. In particular, we will study regres-
sion models with multivariate response that can be a vector with
considerably large dimension (LRMR in Section III) or even a
huge matrix (see Section IV), as in sharp contrast to the scalar
measurement yk in CS. A different point of view is to consider
each response scalar of (1). Let Θ0 = [θ0,1, ...,θ0,d2

], then the
i-th entry of yk in (1) can be expressed as yki = x�

k θ0,i + εki.
Because yki only involves the i-th column of the desired signal
Θ0, it is often referred to as a local measurement and considered
to be less informative than the global measurement used in CS
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(see, e.g., [61]). As a consequence, the technical ingredients in
this work, especially the technique to bound various random
terms arising in the proof, significantly deviate from those in
quantized CS.

From the more statistical side, without considering any data
quantization procedure, a lot of statistical procedures have been
developed for estimation and prediction in multivariate regres-
sion. Among them the most relevant are the regularized ones
that minimize an objective constituted by a loss function and
a suitable regularizer, see [16], [37], [39], [44], [53], [67] for
instance. Indeed, the key theoretical achievement of this work is
to show the compatibility between the dithered uniform quan-
tizer and the Lasso estimator. That is, Lasso estimator can still
achieve near optimal estimation error from data quantized by a
uniform quantizer with appropriate random dither.

B. Outline

The remainder of this paper is organized as follows: we pro-
vide the notational conventions and preliminaries in Section II;
we propose our Lasso estimators for quantized LRMR and
present the theoretical results in Section III; the main results are
then extended to low-rank linear model with matrix response
in Section IV; we provide experimental results in Section V
to validate our theory; we give some remarks to conclude this
work in Section VI.

II. PRELIMINARIES

(Notation). We denote matrices and vectors by boldface let-
ters, while scalars by regular letters. We write [m] = {1, ...,m}
for positive integer m. For vector x,y ∈ R

d, we work with
the �p norm ‖x‖p = (

∑
i∈[d] |xi|p)1/p, max norm ‖x‖∞ =

maxi∈[d] |xi|, and inner product
〈
x,y

〉
= x�y. For matrices

A,B, we work with the transpose A�, the operator norm
‖A‖op, Frobenius norm ‖A‖F , nuclear norm ‖A‖nu (sum of
singular values), max norm ‖A‖∞ =maxi,j |aij |, and the inner
product

〈
A,B

〉
=Tr(A�B). The standard Euclidean sphere

ofRd is denoted by Sd−1 = {x ∈ R
d : ‖x‖2 = 1}. For a random

variable X , we let ‖X‖ψ2
= inf{t > 0 : E exp(X

2

t2 )≤ 2} (resp.
‖X‖ψ1

= inf{t > 0 : E exp( |X|
t )≤ 2}) be the sub-Gaussian

norm (resp. sub-exponential norm), ‖X‖Lp =
(
E|X|p

)1/p
be

the Lp norm. We represent universal constants by C, c, Ci or
ci, whose value may vary from line to line. We write T1 � T2 or
T1 =O(T2) if T1 ≤ CT2; Conversely, T1 � T2 or T1 =Ω(T2)
if T1 ≥ cT2. Note that T1 	 T2 if T1 =O(T2) and T2 =Ω(T1)
simultaneously hold. We use U (W ) to denote the uniform
distribution over W . We use vec(A) ∈ R

mn×1 to vectorize a
matrix A ∈ R

m×n, while mat(.) denotes the inverse operator.

A. High-Dimensional Probability

A random variable X with finite ‖X‖ψ2
is said to be sub-

Gaussian. Note that sub-Gaussian X exhibits exponentially
decaying probability tail, i.e., for any t > 0,

P(|X| ≥ t)≤ 2 exp

(

− ct2

‖X‖2ψ2

)

. (2)

Similarly, X with finite ‖X‖ψ1
is sub-exponential and has the

following tail bound for any t > 0

P(|X| ≥ t)≤ 2 exp

(
− ct

‖X‖ψ1

)
. (3)

Conversely, both properties in (2) (resp. (3)) can characterize
the norm ‖.‖ψ2

(resp. ‖.‖ψ1
) up to multiplicative constant,

see [62, Proposition 2.5.2, 2.7.1] for instance. To relate sub-
Gaussian norm and sub-exponential norm, one has (see, e.g.,
[62, Lem. 2.7.7])

‖XY ‖ψ1
≤ ‖X‖ψ2

‖Y ‖ψ2
. (4)

For n-dimensional random vector X we let ‖X‖ψ2
=

supv∈Sn−1 ‖v�X‖ψ2
.

B. Dithered Uniform Quantization

First, we describe the dithered uniform quantization with δ >
0 for an input signal x ∈ R

N as follows:
• Independent of x, we i.i.d. draw the entries of the random

dither τ ∈ R
N from some suitable distribution;

• Then, we quantize x to ẋ=Qδ(x+ τ ), with Qδ(a) :=
δ
(⌊

a
δ

⌋
+ 1

2

)
(a ∈ R) applied element-wisely.

We adopt the following conventions (as in [25], [26]): w :=
ẋ− (x+ τ ) is the quantization error, and ξ := ẋ− x is the
quantization noise.

The principal properties of the dithered quantization that
underlie our analysis are provided in Lemma 1.

Lemma 1: (Theorems 1–2 in [26]). We consider the above
dithered uniform quantization: x= [xi] is the input signal,
τ = [τi] is the random dither whose entries are i.i.d. copies of
random variable Y . We use i to denote the complex unit.

(a) (Quantization Error). Let w := ẋ− (x+ τ ) = [wi]
be the quantization error. If f(u) := E(exp(iuY )) satisfies
f
(
2πl
δ

)
= 0 for all non-zero integer l, then xi and wj are

independent for all i, j ∈ [N ]. Moreover, {wj : j ∈ [N ]} are
i.i.d. distributed as U

(
[− δ

2 ,
δ
2 ]
)
.

(b) (Quantization Noise). Let ξ := ẋ− x= [ξi] be the quan-
tization noise. Assume Z ∼ U [− δ

2 ,
δ
2 ] is independent of Y .

Let g(u) := E(exp(iuY ))E(exp(iuZ)). Given positive integer
p, if the p-th order derivative g(p)(u) satisfies g(p)

(
2πl
δ

)
= 0

for all non-zero integer l, then the p-th conditional moment of
ξi does not depend on x. More precisely, we have E[ξpi |x] =
E(Y + Z)p.

Given quantization level δ > 0, in this work we focus on
uniform dither τi ∼ U

(
[− δ

2 ,
δ
2 ]
)

and triangular dither2 τi ∼
U
(
[− δ

2 ,
δ
2 ]
)
+ U

(
[− δ

2 ,
δ
2 ]
)

(i.e., the sum of two independent
uniform distribution). From Lemma 1, the following properties
are immediate. The proof can be found in the Appendix.

Corollary 1: In the setting of Lemma 1, if τi ∼ U
(
[− δ

2 ,
δ
2 ]
)

or τi ∼ U
(
[− δ

2 ,
δ
2 ]
)
+ U

(
[− δ

2 ,
δ
2 ]
)
, then xi and wj are inde-

pendent (∀i, j), and {wj : j} are i.i.d. copies of U
(
[− δ

2 ,
δ
2 ]
)
;

In addition, for the triangular dither τi ∼ U
(
[− δ

2 ,
δ
2 ]
)
+

U
(
[− δ

2 ,
δ
2 ]
)
, the variance of ξi is independent of signal; more

precisely it holds that Eξ2i = δ2

4 .

2This is the term used in prior work, e.g., [26].



3916 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

The benefit of using proper dither (e.g., uniform dither)
is now clear, i.e., to whiten the quantization noise. For in-
stance, under τ ∼ U

(
[− δ

2 ,
δ
2 ]

N
)
, one has Eẋ= E(x+ τ +

w) = Ex+ Eτ + Ew = Ex.

III. QUANTIZED LOW-RANK MULTIVARIATE REGRESSION

The low-rank multivariate regression (LRMR) model is

yk =Θ�
0 xk + εk, k = 1, ..., n, (5)

where xk ∈ R
d1 is the covariate, yk ∈ R

d2 is the response per-
turbed by random noise εk, and Θ0 ∈ R

d1×d2 is the desired
parameter. Our goal is to estimate the Θ0 from (xk,yk)’s.
We make the following sub-Gaussian assumption. Note that we
assume Exk = 0 for simplicity, and the case of “Exk �= 0” can
be addressed by data centering or including an intercept term
in (5). It should be noted that these distributional assumptions
are standard and commonly adopted for analysing regularized
M-estimators (defined in (6) shortly) in multiresponse regres-
sion problems, see [44, Coro. 3], [27], [49] for instance. Indeed,
our Assumption 1 slightly relaxes the assumptions made in
these prior works from Gaussian data to sub-Gaussian data,
and note that this relaxation is important for certain cases, e.g.,
when we work with binary data that cannot be captured by
Gaussian distribution.

Assumption 1: The covariates x1, ...,xn are i.i.d., zero-mean
and sub-Gaussian with ‖xk‖ψ2

≤K; The covariance matrix
Σxx = E(xkx

�
k ) satisfies κ0 ≤ λmin(Σxx)≤ λmax(Σxx)≤

κ1 for some κ1 ≥ κ0 > 0; Independent of {xk : k ∈ [n]}, the
noise vectors ε1, ..., εn are i.i.d., zero-mean and sub-Gaussian
with ‖εk‖ψ2

≤ E; yk is generated from (5) for some low-rank
Θ0 satisfying rank(Θ0)≤ r.

Although this multivariate regression model was already in-
tensively studied in the literature (e.g., [24], [44], [53]), the
novelty of this work lies in the quantization that is inevitable
in the era of digital signal processing. In particular, we study
“partial quantization” where only the response is quantized,
as well as a more tricky setting of “complete quantization”
where the entire covariate-response pair (xk,yk) is quantized
to finite precision. We propose the dithered quantization scheme
as follows:

• (Covariate quantization). Independent of (xk,yk),
we i.i.d. draw triangular dither φk ∼ U

(
[− δ1

2 ,
δ1
2 ]

d1
)
+

U
(
[− δ1

2 ,
δ1
2 ]

d1
)
, and then quantize xk to ẋk =

Qδ1(xk + φk).
• (Response quantization). Independent of (xk,yk), we

i.i.d. draw uniform dither τ k ∼ U
(
[− δ2

2 ,
δ2
2 ]

d2
)
, and then

quantize yk to ẏk =Qδ2

(
yk + τ k

)
.

Note that δ1 = 0 means no quantization on xk, thus corre-
sponding to “partial quantization” that only involves response
quantization. While almost all works related works studied re-
sponse quantization (as reviewed in Section I-A), we comment
on the necessity of also studying covariate quantization (δ1 >
0). For instance, when LRMR appears as a distributed learning
problem where the features are transmitted among multiple
parties, quantization is often needed for reducing communi-
cation cost. Also note that, a mode direct benefit is the lower
memory load.

A. The Empirical Loss Under Quantization

Using the vector �1 norm as regularizer to promote sparsity,
Lasso is viewed as a benchmark procedure for recovering sparse
vector [60]. The efficacy of Lasso has extended to the recovery
of low-rank matrix by replacing the �1 norm with the nuclear
norm of a matrix, see [11], [44] for instance. Having assumed
Θ0 to be low-rank, one can apply similar idea to LRMR and
formulate the regularized Lasso recovery program as

argmin
Θ∈Rd1×d2

1

n

n∑

k=1

∥
∥yk −Θ�xk

∥
∥2
2

︸ ︷︷ ︸
L(Θ)

+λ
∥
∥Θ

∥
∥
nu

, (6)

where L(Θ) is the �2 loss function for data fitting purpose,
λ‖Θ‖nu is the regularization part for low-rank structure, and λ
should be tuned to balance data fidelity and the low-rankness.
Note that (6) also falls into the range of M-estimator [44], [45].
When a good estimate on ‖Θ0‖nu is available, one can also
consider the constrained Lasso

argmin
‖Θ‖nu≤R

1

n

n∑

k=1

∥
∥yk −Θ�xk

∥
∥2
2
:= L(Θ). (7)

We note that Lasso is known to achieve minimax rate in LRMR,
see [44] for instance.

However, under data quantization one can only access
(ẋk, ẏk) for recovery; while the regularizer ‖Θ‖nu is unprob-
lematic, one evidently lacks full data for constructing the empir-
ical �2 lossL(Θ); modification ofL(Θ) is thus needed. To draw
some inspiration, the quite instructive first step is to calculate
the expected �2 loss:

EL(Θ) = E‖yk −Θ�xk‖22
(i)
= E‖Θ�xk‖2 − 2E

(
y�
k Θ

�xk

)

=
〈
ΘΘ�,E(xkx

�
k )
〉
− 2

〈
Θ,E(xky

�
k )
〉

:
(ii)
=
〈
ΘΘ�,Σxx

〉
− 2

〈
Θ,Σxy

〉
,

where (i) holds up to constant that has no effect on the optimiza-
tion, and in (ii) we introduce the shorthand for the covariance,
Σxx = E(xkx

�
k ) and Σxy = E(xky

�
k ). Therefore, in order to

construct a suitable empirical �2 loss, we need to find surrogates
for Σxx, Σxy based on (ẋk, ẏk).

To facilitate the exposition, we reserve the following notation
in subsequent developments: for quantization of xk with dither
φk, wk1 = ẋk − (xk + φk) is the quantization error, ξk1 :=
ẋk − xk is the quantization noise; for quantization of yk with
dither τ k, wk2 := ẏk − (yk + τ k) stands for the quantization
error, while ξk2 := ẏk − yk the quantization noise. We use ξkj,i
to denote the i-th entry of ξkj , and the meanings of notation like
wkj,i, φk,i are similar. Now we are ready to present a Lemma
that indicates the suitable surrogates of Σxx,Σxy .

Lemma 2: Based on the quantized data (ẋk, ẏk), we let
Σ̂xx := 1

n

∑n
k=1 ẋkẋ

�
k − δ21

4 Id1
, Σ̂xy = 1

n

∑n
k=1 ẋkẏ

�
k , then

we have EΣ̂xx =Σxx, EΣ̂xy =Σxy .
Proof: We first calculate the easier EΣ̂xy = E(ẋkẏ

�
k ):

E(ẋkẏ
�
k ) = E(xk + φk +wk1)(yk + τ k +wk2)

�
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= E(xky
�
k ) + E(xkτ

�
k ) + E(xkw

�
k2)

+ E(φky
�
k ) + E(φkτ

�
k ) + E(φkw

�
k2)

+ E(wk1y
�
k ) + E(wk1τ

�
k ) + E(wk1w

�
k2)

(i)
= Σxy,

where (i) is because in the previous step, all terms but E(xky
�
k )

vanish, due to the nice property that wk1,wk2 are independent
of (xk,yk), wk1

iid∼ U
(
[− δ1

2 ,
δ1
2 ]
)
, wk2

iid∼ U
(
[− δ2

2 ,
δ2
2 ]
)
, see

Corollary 1. Similarly, to evaluate EΣ̂xx = E(ẋkẋ
�
k )−

δ21
4 Id1

,
we calculate E(ẋkẋ

�
k ) as follows:

E(ẋkẋ
�
k ) = E(xk + ξk1)(xk + ξk1)

�

(i)
= E(xkx

�
k ) + E(ξk1ξ

�
k1)

(ii)
= E(xkx

�
k ) +

δ21
4
Id1

,

(8)

where (i) is due to E(xkξ
�
k1) = E(xkφ

�
k ) + E(xkw

�
k1) = 0,

(ii) is because the diagonal entry equals Eξ2k1,i =
δ21
4 (Corol-

lary 1), and for i �= j, E(ξk1,iξk1,j) = E(φk,i + wk1,i)(φk,j +
wk1,j) = 0, again due to the properties in Corollary 1. The proof
is complete.

Remark 1: (Triangular dither) While the uniform dither is
a quite standard choice in the literature, we comment on the
necessity of using triangular dither for xk. In essence, this
is because in the estimation of Σxx, the quantized sample
covariance contains the bias E(ξk1ξ

�
k1) (see (8)), which must

be removed. However, the diagonal entry Eξ2k1,i remains un-
known under the dither of U

(
[− δ1

2 ,
δ1
2 ]
)
, see [26, Page 3].

Fortunately, by Lemma 1(b), the direct remedy is to use a
dither that enjoys quantization noise with signal-independent
variance, e.g., U

(
[− δ1

2 ,
δ1
2 ]
)
+ U

(
[− δ1

2 ,
δ1
2 ]
)
. Such triangular

dither was also adopted in [14] when studying covariate quan-
tization in compressed sensing.

With all these preparations, we are in a position to specify
the empirical loss

L̇(Θ) =
〈
ΘΘ�, Σ̂xx

〉
− 2

〈
Θ, Σ̂xy

〉
. (9)

Note that L̇(Θ) reduces to the ordinary �2 loss L(Θ) (up to
additive constant) if δ1 = δ2 = 0. Further combined with the
regularizer, the Lasso recovery procedure for our quantized set-
ting can be proposed. The remainder of this section is devoted
to the theoretical analysis of Lasso.

B. Constrained Lasso

First, we study the constrained Lasso where the sparsity is
promoted by a “hard” constraint. Indeed, we simply substitute
the unknownL(Θ) in (7) with L̇(Θ), and to focus on estimation
problem per se we ideally assume the prior estimate is precise,
i.e., R := ‖Θ0‖nu.3 Hence, we formulate the constrained Lasso
estimator as

Θ̂c = argmin
‖Θ‖nu≤‖Θ�‖nu

L̇(Θ), (10)

where L̇(Θ) is defined as (9). For convenience we define the
estimation error Δ̂c := Θ̂c −Θ0.

3One may relax this via more localized arguments as in [48], which we do
not pursue here.

We begin with two Lemmas that will support the proof of
our main Theorem.

Lemma 3: Assume a1, ...,an ∈ R
d1 are independent and

satisfy maxk ‖ak‖ψ2
≤ E1; b1, ..., bn ∈ R

d2 are independent
and satisfy maxk ‖bk‖ψ2

≤ E2. Assume n≥ d1 + d2, then it
holds with probability at least 1− 2 exp(−c2(d1 + d2)) that,

∥
∥
∥
1

n

n∑

k=1

{
akb

�
k − E(akb

�
k )
}∥∥
∥
op

≤ C1E1E2

√
d1 + d2

n
.

Lemma 3 follows similar courses as [44, Lemma 3] and
involves a standard covering argument. We defer the proof to
the Appendix.

Lemma 4: Under Assumption 1 and our quantization scheme,
recall that Σ̂xx = 1

n

∑n
k=1 ẋkẋ

�
k − δ21

4 Id1
, then the event

∥
∥Σ̂xx −Σxx

∥
∥
op

≤ C1A1

(√d1 + t

n
+

d1 + t

n

)
(11)

holds with probability at least 1− 2 exp(−t), where the multi-
plicative factor is A1 :=

(K+c2δ1)
2

κ0+δ21/4
.

Proof: By (8) we first note that

Σ̂xx −Σxx =
1

n

n∑

k=1

ẋkẋ
�
k − δ21

4
Id1

− E(xkx
�
k )

=
1

n

n∑

k=1

ẋkẋ
�
k − E(ẋkẋ

�
k ).

We then verify the sub-Gaussianity of ẋk. Since φk ∼
U
(
[− δ1

2 ,
δ1
2 ]

d1
)
+ U

(
[− δ1

2 ,
δ1
2 ]

d1
)
, wk1 ∼ U

(
[− δ1

2 ,
δ1
2 ]

d1
)
,

we have

‖ẋk‖ψ2
≤ ‖xk‖ψ2

+ ‖φk‖ψ2
+ ‖wk1‖ψ2

≤K + c2δ1

for some c2. Moreover, λmin

(
E(ẋkẋ

�
k )
)
= λmin

(
Σxx

)
+

δ21
4 ≥ κ0 +

δ21
4 , thus giving

‖v�ẋk‖L2 =

√
E(v�ẋkẋ

�
k v)≥

√

κ0 +
δ21
4

for any v ∈ S
d1−1. Therefore, it holds that

∥
∥v�ẋk

∥
∥
ψ2

≤K + c2δ1 ≤
K + c2δ1√
κ0 + δ21/4

∥
∥v�ẋk

∥
∥
L2 ,

which is just
√
A1

∥
∥v�ẋk

∥
∥
L2 . Finally, we can invoke [62, Ex-

ercise 4.7.3], which is a well-known estimate in covariance
estimation, to arrive at the desired claim.

We are now in a position to present our first main Theorem
on error bound of (10). The proof follows standard lines for
analysing regularized M-estimator (e.g., [44]), but there are ad-
ditional random terms to bound due to quantization noise/error,
e.g., (ξk1, ξk2) in T1 and T2 in (18).

Theorem 1: (Constrained Lasso). We consider LRMR under
Assumption 1 and the quantization procedure described above.
We assume the sample complexity n�

(
A1

κ0

)2
(d1 + d2), where

A1 is the multiplicative factor in (11). Then for the estimator
Θ̂c in (10) we have the following guarantees.
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(a) (Partial Quantization). If δ1 = 0, we let A2 :=
K(E+δ2)

κ0
,

then with probability at least 1− c2 exp(−c3(d1 + d2)) it
holds that

‖Δ̂c‖F ≤ C1A2

√
r(d1 + d2)

n
. (12)

(b) (Complete Quantization). If δ1 > 0, ‖Θ0‖op ≤R, we let
A3 :=

(K+δ1)(E+δ2+Rδ1)
κ0

, then with probability at least 1−
c5 exp(−c6d1) it holds that

‖Δ̂c‖F ≤ C4A3

√
r(d1 + d2)

n
. (13)

Proof: We begin with the optimality of Θ̂c

〈
Θ̂cΘ̂

�
c ,Σ̂xx

〉
−2

〈
Θc,Σ̂xy

〉
≤
〈
Θ0Θ

�
0 ,Σ̂xx

〉
−2

〈
Θ0,Σ̂xy

〉
.

Then we use Θ̂c =Θ0 + Δ̂c and perform some algebra to
arrive at

〈
Δ̂cΔ̂

�
c , Σ̂xx

〉
≤ 2

〈
Δ̂c, Σ̂xy − Σ̂xxΘ0

〉
, (14)

and the remainder of the proof is essentially to bound both
sides of (14).

Step 1. Bound the left-hand side from below.
Due to the scaling n�

(
A1

κ0

)2
(d1 + d2), we can invoke

Lemma 4 with t= d1 + d2, then ‖Σ̂xx −Σxx‖op ≤ κ0

2 holds
with probability at least 1− 2 exp(−(d1 + d2)). Combined
with λmin(Σxx)≥ κ0, it implies λmin(Σ̂xx)≥ κ0

2 . Therefore,
with high probability we have

〈
Δ̂cΔ̂

�
c , Σ̂xx

〉
=

d2∑

j=1

(Δ̂c)
�
:,jΣ̂xx(Δ̂c):,j

≥ κ0

2

d2∑

j=1

‖(Δ̂c):,j‖22 =
κ0

2
‖Δ̂c‖2F . (15)

Step 2. Bound the right-hand side from above.
Note that
〈
Δ̂c, Σ̂xy − Σ̂xxΘ0

〉
≤ ‖Δ̂c‖nu‖Σ̂xy − Σ̂xxΘ0‖op (16)

To bound ‖Δ̂c‖nu, we let Θ0 =U1ΣV �
1 be the (com-

pact) singular value decomposition, where U1 ∈ R
d1×r, V 1 ∈

R
d2×r. Also, let U2 ∈ R

d1×(d1−r) (resp. V 2 ∈ R
d2×(d2−r)) be

the orthogonal complement of U1 (resp. V 1). Following [46],
we define a pair of subspaces as

M= {U1AV �
1 : ∀A ∈ R

r×r},
M= {U1A+BV �

1 : ∀A ∈ R
r×d2 ,B ∈ R

d1×r}.

For subspace V , we let V⊥ be its orthogonal complement, and
PV(.) be the projection onto V . Then it is not hard to see the
decomposibility [46]:

‖A+B‖nu = ‖A‖nu + ‖B‖nu

if A ∈M, B ∈M⊥
. Now we can deduce that

‖Θ0 + Δ̂c‖nu = ‖Θ0 + PMΔ̂c + PM⊥Δ̂c‖nu
≥ ‖Θ0 + PM⊥Δ̂c‖nu − ‖PMΔ̂c‖nu

≥ ‖Θ0‖nu + ‖PM⊥Δ̂c‖nu − ‖PMΔ̂c‖nu.
(17)

Combined with the constraint ‖Θ̂0 + Δ̂c‖nu = ‖Θ̂c‖nu ≤
‖Θ0‖nu, we obtain ‖PM⊥Δ̂c‖nu ≤ ‖PMΔ̂c‖nu. Thus,

‖Δ̂c‖nu ≤ ‖PM⊥Δ̂c‖nu + ‖PMΔ̂c‖nu
≤ 2‖PMΔ̂c‖nu ≤ 2

√
2r‖Δ̂c‖F .

The last inequality is because rank(A)≤ 2r if A ∈M, and it
always holds that ‖A‖nu ≤ rank(A)‖A‖F .

It remains to bound ‖Σ̂xy − Σ̂xxΘ0‖op. We first plug in
Σ̂xx, Σ̂xy , and further

ẋk = xk + ξk1, ẏk = yk + ξk2 =Θ�
0 xk + εk,

some algebra yields

Σ̂xy − Σ̂xxΘ0 =
1

n

n∑

k=1

(xk + ξk1)(εk + ξk2)
�

− 1

n

n∑

k=1

(
xkξ

�
k1 + (ξk1ξ

�
k1 −

δ21
4
Id1

)
)
Θ0 := T1 − T2.

(18)

Thus, ‖Σ̂xy − Σ̂xxΘ0‖op ≤ ‖T1‖op + ‖T2‖op.
(a) We consider the case of partial quantization (δ1 = 0). In

this case ξk1 = 0, so T2 = 0 and we only need to bound ‖T1‖op
with T1 =

1
n

∑
k xk(εk + ξk2)

�. Note that

‖εk + ξk2‖ψ2
≤ ‖εk‖ψ2

+ ‖ξk2‖ψ2
� E + δ2,

‖xk‖ψ2
≤K, E(xkε

�
k ) = E(xkξ

�
k2) = 0, Lemma 3 guaran-

tees the following to hold with probability at least 1−
2 exp(−c1(d1 + d2))

‖T1‖op �K(E + δ2)

√
d1 + d2

n
. (19)

Overall, we have
〈
Δ̂c, Σ̂xy − Σ̂xxΘ0

〉

�K(E + δ2)‖Δ̂c‖F
√

r(d1 + d2)

n
. (20)

The result of part (a) follows by putting (15) and (20) into (14).
(b) We then consider the complete quantization case (δ1 > 0).

Similarly to (a), we have the bound

‖T1‖op � (K + δ1)(E + δ2)

√
d1 + d2

n
.

So it remains to bound ‖T2‖op. Since ‖Θ0‖op ≤R, and by
Lemma 3, with the promised probability we have

‖T2‖op ≤R
∥
∥
∥
1

n

n∑

k=1

(
ξk1ξ

�
k1 −

δ21
4
Id1

)∥∥
∥
op

+R
∥
∥
∥
1

n

n∑

k=1

xkξ
�
k1

∥
∥
∥
op

�Rδ1(K + δ1)

√
d1 + d2

n
. (21)

By putting pieces similarly, we conclude the proof.
Several remarks are in order.



CHEN et al.: QUANTIZED LOW-RANK MULTIVARIATE REGRESSION WITH RANDOM DITHERING 3919

Remark 2: (Prediction error) As presented in Theorem 1, we
will focus on the estimation of Θ0 in this work, whereas in
regression one may also be interested in the prediction perfor-
mance. From ‖Δ̂c‖F , the bound for prediction error is indeed
immediate. For instance, when δ1 = 0, because with high prob-
ability ‖Σ̂xx −Σxx‖op ≤ κ0

2 and λmax(Σ̂xx)≤ κ1, one has

1

n

n∑

k=1

‖Δ̂
�
c xk‖22 =

〈
Σ̂xx, Δ̂cΔ̂

�
c

〉
=O

(
κ1‖Δ̂c‖2

)
.

Remark 3: (Compared to the least squares estimation) The
ordinary least squares (OLS) estimator Θ̂LS is to minimize
L̇(Θ) over Θ ∈ R

d1×d2 without the nuclear norm constraint.
This amounts to estimating d2 columns of Θ0 separately with-
out utilizing their correlations. Under similar assumptions on
covariate and noise, one can easily show ‖Θ̂LS −Θ0‖F scales

as O
(√

d1d2

n

)
, which is essentially inferior to O

(√ r(d1+d2)
n

)

in the case of r�min{d1, d2}. This illustrates the benefit of
incorporating the low-rank priori on Θ0, which will be com-
plemented by numerical example later (Fig. 5).

Remark 4: (Minimax optimality and the role of quantization)

The non-asymptotic error bound O
(√ r(d1+d2)

n

)
is minimax

optimal compared to the information-theoretic lower bound in
[53, Theorem 5] (also see [23, Remark 11], [24, Fact 1], [9, Page
12] for alternative statements). In fact, the quantization does
not affect the order of (n, r, d1, d2) in the sample complexity
and error bounds but only slightly worsens the multiplicative
factors, i.e., A1 in n�

(
A1

κ0

)2
(d1 + d2), A2 in (12) and A3 in

(13). Thus, in a regime where the quantization levels δ1, δ2 are
fixed, our result matches the one in a case without quantization
up to multiplicative constant. In addition, δ1 and E are on
equal footing in A2, hence the role of partial quantization can
be nicely interpreted as additional sub-Gaussian noise. This
extends similar findings in [57], [59], [66] from compressed
sensing to LRMR. Further, a useful perspective is that the result
for the setting without quantization can be recovered by letting
δ1, δ2 = 0. For instance, when δ2 = 0 the bound in Theorem 1

reads as O
(
KE
κ0

√
r(d1+d2)

n

)
, thus agreeing with the bound in

[44, Coro. 3]. The above discussions regarding the role of
quantization remain valid for our subsequent results.

C. Regularized Lasso

Since prior estimate on ‖Θ0‖nu is often unavailable, a more
practically appealing recovery procedure is the following reg-
ularized Lasso given by

Θ̂p = argmin
Θ∈Rd1×d2

L̇(Θ) + λ‖Θ‖nu, (22)

and we let Δ̂p be the estimation error. By properly tuning λ, the
Regularized Lasso estimator Θ̂p achieves the same error rate as
the previous Θ̂c.

Theorem 2: (Regularized Lasso). We consider LRMR under
Assumption 1 and the quantization procedure described above.
We assume the scaling n�

(
A1

κ0

)2
(d1 + d2), where A1 is the

multiplicative factor in (11). Then for the estimator Θ̂p in (22)
we have the following guarantees.

(a) (Partial Quantization). If δ1 = 0, we let A4 :=

K(E + δ2). Set λ= C1A4

√
d1+d2

n with sufficiently large
C1, then with probability at least 1− c3 exp(c4(d1 + d2)) it
holds that

‖Δ̂p‖F ≤ C2κ
−1
0 A4

√
r(d1 + d2)

n
. (23)

(b) (Complete Quantization). If δ2 > 0, ‖Θ0‖op ≤R, we

let A5 := (K + δ1)(E + δ2 +Rδ1). Set λ= C5A5

√
d1+d2

n

with sufficiently large C5, then with probability at least 1−
c7 exp(−c8d1) it holds that

‖Δ̂p‖F ≤ C6κ
−1
0 A5

√
r(d1 + d2)

n
.

By using some standard analyses for regularizer M-estimator
(e.g., see [44]), the proof of Theorem 2 follows similar lines of
Theorem 1. We defer the proof to the Appendix.

It is clear that we need an additional constraint on ‖Θ0‖op
for the cases of complete quantization in Theorems 1–2, while
this is not needed when we have access to the full-precision
covariate. The following remark elaborates on this point.

Remark 5: (The norm constraint of Θ0) When there is error
in covariate, a norm constraint on the true parameter Θ0 seems
indispensable rather than an artifact from the proof technique.
The main reason is that the error in covariate propagates along
the true parameter, and hence its overall contribution to the re-
sponse is proportional to Θ0. Note that similar observation was
also made in [42, Section 3.2] for corrected linear regression
where the covariates suffer from zero-mean random noise with
known covariance matrix.

IV. QUANTIZED LOW-RANK LINEAR REGRESSION MODEL

WITH MATRIX RESPONSE

The proposed quantization scheme enjoys broader applicabil-
ity, as we will show in this section that the dithered quantizer
can be similarly applied to the problem of low-rank linear
regression (L2RM) with matrix response [39]. In particular,
such regression model finds application in imaging genetics,
with matrix responses representing the weighted or binary ad-
jacency matrix of a finite graph that characterizes structural or
functional connectivity pattern, while the covariates are a set
of genetic markers [43], [58], [63]. We would also like to note
some recent advances on variable selection [29] and covariance
estimation [69] for matrix-valued data.

Following the notation in [39], L2RM with matrix response
can be formulated as

Y k =

s∑

i=1

xkiΘ
(i)
0 +Ek, k = 1, ..., n, (24)

where xk = [xk1, ..., xks]
� is the covariate, Θ(i)

0 ∈ R
p×q are

the true coefficient matrices, Ek,Y k ∈ R
p×q are respectively

the noise matrix and response. Our goal is to estimate Θ0 =

[Θ
(1)
0 , ...,Θ

(s)
0 ] ∈ R

p×(sq) under moderately large s but p, q that
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can be extremely huge.4 Analogously to Assumption 1, for
analysing the nuclear norm regularized M-estimator (see (27)
below), we make the following sub-Gaussian data assumptions
that relax the Gaussian ones in [39, (A9)-(A11)].

Assumption 2: The assumptions on covariates xk’s are the
same as Assumption 1; Independent of xk’s, the noise ma-
trices E1, ...,En are i.i.d., zero-mean and sub-Gaussian with
‖Ek‖ψ2

:= supu∈Sp−1 supv∈Sq−1 ‖u�Ekv‖ψ2
≤ E; the ma-

trix responses Y k’s are generated from (24) for some Θ0 sat-
isfying

∑s
i=1 rank(Θ

(i)
0 )≤ r.

Similarly, the dithered quantization for (xk,Y k) is as
follows: ẋk =Qδ1(xk + φk) for triangular random dither
φk; Ẏ k =Qδ2(Y k + τ k) with uniform random dither
τ k ∼ U

(
[− δ2

2 ,
δ2
2 ]

p×q
)
. To be concise we only consider

the more practical regularized Lasso. Based on the full data
(xk,Y k), [39] proposed the unconstrained convex program that
minimizes

1

n

n∑

k=1

∥
∥
∥Y k −

s∑

i=1

xkiΘ
(i)
∥
∥
∥
2

F

︸ ︷︷ ︸
L1(Θ)

+λ ·
s∑

i=1

∥
∥Θ(i)

∥
∥
nu

over Θ= [Θ(1), ...,Θ(s)], where
∑

i ‖Θ
(i)‖nu is the regular-

izer that incorporates the low-rankness structures of Θ(i)’s.
However, in our quantized regime one only observes (ẋk, Ẏ k)
(ẋk = xk in partial quantization with δ1 = 0), modification of
L1(Θ) is needed. By vectorization we first reformulate (24) as
vec(Y k) =

∑s
i=1 xki · vec(Θ(i)

0 ) + vec(Ek). Here, for Θ=

[Θ(1), ...,Θ(s)] we define the rearrangement Θ̃ as

Θ̃=

⎡

⎢
⎣

vec(Θ(1))�

...
vec(Θ(s))�

⎤

⎥
⎦ ∈ R

s×pq, (25)

then we have

vec(Y k) = Θ̃
�
0 xk + vec(Ek) (26)

that agrees with (5). Now we can employ the prior develop-
ments — similar to (9) we let Σ̂xx := 1

n

∑n
k=1 ẋkẋ

�
k − δ21

4 Is,
Σ̂xy = 1

n

∑n
k=1 ẋkvec(Ẏ k)

�, and then change L1(Θ) to

L̇1(Θ) =
〈
Θ̃Θ̃

�
, Σ̂xx

〉
− 2

〈
Θ̃, Σ̂xy

〉
,

which can be constructed from the quantized data. Combining
these pieces, we are in a position to define the Lasso estimator:

Θ̂= argmin
Θ

L̇1(Θ) + λ ·
s∑

i=1

‖Θ(i)‖nu

subject to Θ= [Θ(1), ...,Θ(s)] ∈ R
p×sq (27)

We have the following theoretical guarantee for Θ̂.
Theorem 3: (Regularized Lasso). We consider L2RM

with matrix response under Assumption 2 and the quantiza-
tion procedure described above. We assume the scaling n�

4In fact, s in real applications can also be very large. For dimension
reduction, [39] assumed Θ

(i)
0 = 0 for most i’s and developed a screening

method to estimate those i’s with non-zero Θ
(i)
0 . We focus on the estimation

after this screening step.

max{s, p, q} for some sufficiently large hidden constant and
log s=O(p+ q). Then for estimator Θ̂ in (27) we have the
following guarantees.

(a) (Partial Quantization). If δ1 = 0, we let A6 :=K(E +

δ2). Set λ= C1A6

√
p+q
n with sufficiently large C1, then

with probability at least 1− exp(−s)− c3 exp(−c4(p+ q)) it
holds that

‖Θ̂−Θ0‖F ≤ C2κ
−1
0 A6

√
r(p+ q)

n
. (28)

(b) (Complete Quantization). If δ1 > 0, we further as-
sume

∑s
i=1 ‖Θ

(i)
0 ‖2op ≤R2 for some R> 0, s=O(p+ q), and

then let A7 := (K + δ1)(E + δ2 +Rδ1). Set λ= C2A7

√
p+q
n

with sufficiently large C2, then with probability at least 1−
exp(−s)− c1 exp(−c2(p+ q)) it holds that

‖Θ̂−Θ0‖F ≤ C3κ
−1
0 A7

√
r(p+ q)

n
. (29)

Setting δ2 = 0 in Theorem 3(a) exactly recovers [39, The-
orem 5]. While beyond the range of [39], our results clearly
display how the dithered quantization affects the error bounds,
i.e., slightly worse multiplicative factors (A6, A7). Specifically,
when δ1 and δ2 are chosen and then fixed, the estimation error

still scales as O
(√ r(p+q)

n

)
, which matches the case without

quantization up to multiplicative constant.
There are some technical differences between our proof and

the one for [39, Theorem 5]. First, because we assume sub-
Gaussian (xk,Ek) rather than the Gaussian ones as in [39],
different arguments are required to proceed the proof. More
specifically, Gaussian (xk,Ek) enables [39, Theorem 5] to use
techniques from [49] like Anderson’s comparison inequality
(see [39, Lemma 4]) and tail bound of χ2 random variable to
bound ‖ 1

n

∑n
k=1 xkiEk‖op. In contrast, this term is bounded

via Lemma 5 in (32); besides handling sub-Gaussian (xk,Ek),
Lemma 5 itself represents a cleaner way to bound this random
term compared to the arguments in [39]. Second, in the “com-
plete quantization” case, due to error in the covariate, there
appears an additional random term in (33), (34), and to bound it
we need to further assume

∑s
i=1 ‖Θ

(i)
0 ‖2op ≤R2 (as explained

in Remark 5). We defer the detailed proof to the Appendix.
We give the following remark to compare (27) with the

ordinary least squares method and the Lasso for LRMR based
on the reformulation (26).

Remark 6: (Compared to OLS and LRMR via vectorization)
For the estimator Θ̂LS defined by minimizing the empirical �2
loss over Θ ∈ R

p×sq , the error ‖Θ̂LS −Θ0‖F would scale as
O
(√

spq
n

)
even without quantization. By contrast, the deduced

O
(√ r(p+q)

n

)
can be essentially better when r� smin{p, q}.

This illustrates the benefit of incorporating the low-rank struc-
ture. Moreover, if we impose low-rankness on Θ̃0 after vector-

ization (26), then by Theorem 2 the estimation error scales as

O
(√

r1pq
n

)
(here, r1 = rank(Θ̃0)), which still suffers from the

extremely large pq. Thus, the method in this section (also, as in
[39]) achieves more effective dimension reduction in the case
of matrix response.
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Fig. 1. (a) Constrained Lasso (partial quantization); (b) constrained Lasso
(complete quantization); (c) regularized Lasso (partial quantization); (d)
regularized Lasso (complete quantization).

V. EXPERIMENTAL RESULTS

In this section we provide experimental results to support and
demonstrate our theoretical results. Otherwise specified, each
data point is set to be the mean value of 50 independent trials.

A. Simulations With Synthetic Data

We first present simulation results on synthetic data. Our
main purpose is to verify the established error rates, specifi-

cally O
(
A
√

r(d1+d2)
n

)
in Theorems 1–2 and O

(
A
√

r(p+q)
n

)
in

Theorem 3, are in the correct order for characterizing the Lasso
estimation errors. In particular, the dithered quantization only
results in slightly larger multiplicative factor A. We will also
demonstrate the important role played by the random dithering.

1) Constrained Lasso for Quantized LRMR: To simulate
the setting of quantized LRMR we generate the low-rank under-
lying Θ0 ∈ R

d1×d2 as follows: we first generate Θ1 ∈ R
d1×r,

Θ2 ∈ R
r×d2 with i.i.d. standard Gaussian entries, and then use

a rescaled version of Θ1Θ2 (with unit Frobenius norm) as
Θ0. To simulate the sub-Gaussian data in Assumption 1, for
simplicity, we use xk ∼N (0, Id1

) and εk ∼N (0, 0.1 · Id2
).

The constrained Lasso is fed with R= ‖Θ0‖nu and optimized
by an algorithm based on alternating direction method of multi-
pliers (ADMM) [6]. To verify and demonstrate the error rate of

O
(
A
√

r(d1+d2)
n

)
, we test different choices of (d1, d2, r, δ1, δ2)

under n= 1000 : 500 : 3500, with the log-log error plots dis-
played in Fig. 1. Firstly, the experimental curves are aligned
with the dashed line that represents the decreasing rate of n−1/2,
thus confirming the order regarding the sample size. Then, to
illustrate that quantization merely affects multiplicative fac-
tors, we compare the curves of δ2 = 0.2, 0.3, 0.4 in Fig. 1(a)

Fig. 2. (a) Constrained Lasso (partial quantization); (b) constrained Lasso
(complete quantization); (c) regularized Lasso (partial quantization); (d)
regularized Lasso (complete quantization).

(partial quantization) and the curves for δ1 = δ2 = 0.2, 0.3, 0.4
in Fig. 1(b) (complete quantization). Note that these curves are
still parallel to each other, while the ones with larger δi are
higher, which is consistent with our theory. Moreover, we note
that increasing d1 (from 50 to 70) or r (from 5 to 8) also leads to
larger estimation errors. This is also predicted by the theoretical

bound O
(√ r(d1+d2)

n

)
, that is, LRMR with more coefficients or

weaker low-rank structure is harder.
2) Regularized Lasso for Quantized LRMR: We switch

to the Regularized Lasso estimator, which is more practically
appealing in that it does not requires a pre-estimate on ‖Θ‖nu.
The choices of parameters, data generation and quantization
are exactly the same as before. We follow the instruction in
Theorem 2 for choosing λ in (22). That is, for each curve

we slightly tune C(λ) and then set λ= C(λ)
√

r(d1+d2)
n . We

solve the regularized Lasso with ADMM algorithm and show
the results in Fig. 1(c) and 1(d). Note that these results have
implications similar to the previous ones for constrained Lasso,
in terms of the O(n−1/2) decreasing rate, the effect of quanti-
zation, problem size, low-rank structure. Thus, we do not repeat
the demonstrations.

As suggested by an anonymous reviewer, we simulate quan-
tized LRMR under a sample size n closer or even smaller
than d1, d2. Specifically, we generate the low-rank Θ0 ∈
R

30×30 using the same mechanism, and then test the con-
strained/regularized Lasso estimators under sample size n=
[20, 25, 30, 50, 70, 90, 110, 130] for partial quantization, or un-
der n= [30, 50, 70, 90, 110, 130] for complete quantization.5

The results in Fig. 2 indicate that, using sample size close to

5We do not test complete quantization under n < d1 because this leads to
non-convex program, see (9).
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Fig. 3. (Left) Partial quantization; (right) complete quantization; we denote
(d1, d2) = (p, q) in the labels.

d1 and d2, the theoretical error bounds still characterize the
estimation errors of our Lasso estimators fairly well.

3) Lasso for Quantized L2RM With Matrix Response: Now
we move to the problem of low-rank linear regression with
matrix response. Specifically, we set s= 4 in (24) and thus
there are Θ(1)

0 , ...,Θ
(4)
0 as underlying coefficients matrices. We

generate each Θ
(i)
0 ∈ R

p×q with rank r
4 as before. To fulfill As-

sumption 2, we adopt covariates xk ∼N (0, Is) and the noise
matrices Ek ∼N p×q(0, 0.01). We simulate different choices
of (p, q, r, δ1, δ2) under n= 4000 : 1000 : 8000. We note the
following facts from the results in Fig. 3 that can support

our theoretical error rate O
(√ r(p+q)

n

)
: all experimental curves

decrease with n in a rate of O(n−1/2); coarser quantization
only lifts the curve a little bit; larger (p, q, r) results in larger
estimation error.

4) The Importance of Dithering: As already analysed in
Section I, under a direct uniform quantization without dithering,
it is in general not possible to estimate the low-rank parameter
matrix to arbitrarily small error. To demonstrate this, we use
covariates with entries i.i.d. drawn from {±1}-valued Bernoulli
distribution to simulate LRMR with 50× 60 underlying low-
rank matrix given by

Θ0 =

[
A 0
0 0

]
,B =

[
0.5 0.5
0.4 0.4

]
,A= diag

(
B, ...,B
︸ ︷︷ ︸

ten B’s

)
.

Also, we simulate (24) with s= 4 and 50× 60 true matrices

Θ
(1)
0 =

[
1
2C 0
0 0

]
, Θ

(2)
0 =

[
2
5C 0
0 0

]
,

Θ
(3)
0 =

[
0 0
0 1

2C

]
, Θ

(4)
0 =

[
0 0
0 2

5C

]
,

where C = diag(D, ...,D) ∈ R
10×10 has five D’s, and D is

the 2× 2 all-ones matrix. Under Gaussian noise, we quan-
tize the responses with δ2 = 1 either under the uniform dither
U [− 1

2 ,
1
2 ], or directly without dithering. Then we estimate the

parameters via regularized Lasso under different sample sizes,
the results are shown in Fig. 4. We find that, compared to a direct
quantization, using dithering significantly reduces estimation
errors; more prominently, the errors under dithering decrease
at a sharp rate, whereas the curves without dithering reach
some error floor where more data can no longer improve the
estimation. We refer to [57, Fig. 1], [14, Fig. 5] for similar

Fig. 4. We compare the quantized setting with or without random dithering.
(Left) Quantized LRMR; (right) quantized L2RM with matrix response.

Fig. 5. Row 1: n= 300; row 2: n= 400. Column 1: The true image (pep-
pers) and the singular values of its red channel (which indicates approximate
low-rankness); column 2: Lasso with noisy unquantized data; column 3: Lasso
with noisy quantized data; column 4: Least squares estimation with noisy
quantized data.

experimental results in the contexts of compressed sensing,
matrix completion, and covariance estimation.

B. Simulations of Image Restoration

Note that natural images are approximately low-rank6 (e.g.,
[13], [17]), and our theoretical results can be easily extended
to approximately low-rank case by slightly more work (e.g.,
[13], [23], [44]). To better visualize the effect of quantization,
following prior work like [39], we conduct simulations with
images as underlying low-rank matrices in this part.

1) Quantized LRMR: This numerical example simulates
(5) with each channel of “Peppers” as Θ0, aiming to test the
effect of quantization in a relatively high-noise setting. We also
demonstrate the advantage of LRMR over the ordinary least
squares (OLS) estimation (see Remark 3). In the experiment,
we separately deal with each channel, which is a 256× 256
approximately low-rank matrix (see the left bottom of Fig. 5).
Specifically, we draw entries of xk from N (0, 1); let e be the
average magnitude of the signal part (Θ�

0 xk)
n
k=1, we use εk ∼

2e
5 · N (0, I256) to simulate a relatively large noise (signal-

to-noise ratio less than 7); in the quantized setting, we use
uniform dithering and quantize yk with δ2 =

e
8 . Under n=

300 or n= 400, we test regularized Lasso with noisy unquan-
tized/quantized yk, as well as OLS with noisy quantized yk.
The results in Fig. 5 indicate that, quantization does not notably

6This means that its singular values decrease rapidly and only the first few
are dominant.
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Fig. 6. n= 2000. (Row 1): The true images Θ
(i)
0 ; (rows 2–5): images

reconstructed by regularized Lasso (27) under response quantization with δ2 =
0.0 (no quantization), δ2 = 0.5, δ2 = 1.0 and δ2 = 3.0, respectively.

TABLE I
n= 2000. MEAN RELATIVE FROBENIUS NORM ERRORS (STANDARD

DEVIATION (×10−3))

δ2 Θ
(1)
0 Θ

(2)
0 Θ

(3)
0 Θ

(4)
0

0.0 0.0532(7.91) 0.0263(5.53) 0.0791(4.71) 0.0801(5.90)
0.5 0.0536(7.86) 0.0265(5.48) 0.0795(4.67) 0.0804(5.86)
1.0 0.0551(7.67) 0.0272(5.39) 0.0805(4.62) 0.0813(5.77)
3.0 0.0769(5.96) 0.0376(4.23) 0.0920(4.12) 0.0923(5.00)

harm the restoration (comparing columns 2 and 3). Moreover, in
such a noisy and quantized setting, Lasso estimator significantly
outperforms the OLS estimation that is ignorant of the low-rank
structure (comparing columns 3 and 4).

2) Quantized L2RM With Matrix Response: We follow the
experiment in [39, Figs. 1 and 2]. Specifically, we simulate (24)
with s= 4 where Θ

(i)
0 ’s are 64× 64 0-1 matrices and shown

as images in the first row of Fig. 6. It can be verified that they
are approximately low-rank. We also adopt the method of gen-
erating (xk,Ek) in [39]. While the experiment in [39] aims at
comparing different methods of recovering Θ

(i)
0 , however, our

main goal here is to exhibit how quantization resolution affects
the recovery. Thus, we simulate the regularized Lasso (27) un-
der response quantization with δ2 = 0.0, 0.5, 1.0, 3.0. Under the
sample size of n= 2000, the reconstructed images are shown
in rows two through five in Fig. 6. We also run 100 independent
trials and report the mean (relative) Frobenius norm error and
standard deviation for each Θ

(i)
0 in Table I. It is clear both vi-

sually and on the mean error that, under quantization with rela-
tively high resolution (δ2 = 0.5, 1.0), Lasso returns estimations
fairly close to the ones obtained in a full-data regime. In fact,
even if we quantize Y k with δ2 = 3,7 the Lasso estimator still
delivers quite acceptable results. Therefore, we conclude that
the dithered quantization will not significantly deteriorate one’s

7This represents rather low resolution because in the simulation, entries of
Y k have magnitude about 1.6 in average.

TABLE II
n= 400. MEAN RELATIVE FROBENIUS NORM ERRORS (STANDARD

DEVIATION (×10−3))

δ2 Θ
(1)
0 Θ

(2)
0 Θ

(3)
0 Θ

(4)
0

0.0 0.1470(8.60) 0.0775(9.57) 0.1233(10.29) 0.1249(10.50)
0.5 0.1496(8.34) 0.0787(9.48) 0.1245(10.22) 0.1261(10.36)
1.0 0.1575(8.08) 0.0825(9.09) 0.1284(9.81) 0.1300(10.09)
3.0 0.2507(6.05) 0.1278(6.30) 0.1699(7.67) 0.1723(7.36)

ability to recover the underlying low-rank parameters; rather,
the dithered uniform quantizer preserves the information fairly
well. Generally speaking, there should be a trade-off between
quantization resolution and recovery accuracy in practice. Note
that the smaller sample size n= 400 is also simulated, see
Table II for the results with similar implications.

C. A Real Data Application

To confirm the efficacy of the proposed method, we per-
form the quantization and estimation in a genetic association
study for examining the regulatory control mechanisms in gene
networks for isoprenoids in Arabidopsis thaliana [55], [65].
We adopt the LRMR model (5) with xk being the expression
levels of d1 = 39 genes from the two isoprenoid biosynthesis
pathways, yk being the expression levels of d2 = 62 genes from
four downstream pathways, and we use n= 115 samples in
total.8 Besides, the mean magnitudes of the entries of xk and
yk are 2160 and 3707, respectively.

We will focus on how the dithered quantization of (xk,yk)
affects the estimation and prediction of regularized Lasso (6).
Note that the two major differences between this real data
application and the previous simulations are that the data here
may not be nicely captured by the sub-Gaussian distributions
(Assumption 1), and that the relation between xk,yk may not
be perfectly modeled by LRMR (5). Thus, there is not an
underlying Θ0 serving as the ground truth. Alternatively, since
the emphasis is on the effect of quantization, we use the Lasso
estimator with suitable λ from unquantized data as Θ0.

For partial quantization, we quantize yk to ẏk under δ2 = 0 :
100 : 1000 and obtain Θδ from (xk, ẏk) as in (22), where the
parameter λ increases with δ2, as instructed by Theorem 2. The
relative estimation error ‖Θδ−Θ0‖F

‖Θ0‖F
and relative prediction error

‖Y −Θ�
δ X‖F

‖Y ‖F
are reported as their mean values in 50 indepen-

dent trials in Fig. 7(a) and 7(b). Specifically, the curves slowly
increase with δ2; compared to the unquantized case δ2 = 0, the
estimation and prediction under the coarse quantization δ2 =
1000 are still acceptable. We also test the complete quantization
setting where xk is quantized to ẋk with δ1 = 0 : 5 : 50, yk

is quantized to ẏk with δ2 = 0 : 50 : 500. Similar results are
reported in Fig. 7(c) and 7(d), but comparing Fig. 7(c) and 7(a),
we also note that Θδ deviates from Θ0 more significantly in
complete quantization (even though δ1 = 0 : 5 : 50 is relatively
small compared to the mean magnitude of xk); that is, the
quantization of xk affects the estimation more severely. Finally,

8There are originally 118 samples in this real data study, but we remove 3
samples that are detected as (potential) outliers in [55], see Fig 1 therein.
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(a) (b) (c) (d) (e)

Fig. 7. (a, b) Estimation/prediction errors, partial quantization; (c, d) estimation/prediction errors, complete quantization; (e) prediction error over “testing
data”, partial quantization.

we conduct a more practical learning and prediction setting as
follows: randomly dividing the columns of X ∈ R

39×115,Y ∈
R

62×115 into the “training data” X1 ∈ R
39×95,Y 1 ∈ R

62×95

and the “testing data” X2 ∈ R
39×20,Y 2 ∈ R

62×20, we quan-
tize Y 1 to Ẏ 1 with δ2 = 0 : 100 : 1000 and use (X1, Ẏ 1) to
obtain the estimator Θδ defined in (22), then we track the rel-
ative prediction error over the testing data, i.e., ‖Y 2−Θ�

δ X2‖F

‖Y 2‖F
,

whose mean value in 50 independent trials is reported in
Fig. 7(e). Compared to Fig. 7(b), the prediction error increases
even more slowly with δ2. In conclusion, our quantization
scheme well preserves the data information for subsequent es-
timation and prediction procedures.

VI. CONCLUSION

This paper, for the first time, studied low-rank multivariate
regression (LRMR) in a realistic setting that involves data quan-
tization. We proposed to use the dithered uniform quantizer, as-
sociated with uniform dither for the response, or with triangular
dither for the covariate. We proposed the Lasso estimators based
on quantized data in a constrained or regularized manner. With
the aid of random dithering, albeit losing information in quan-
tization, our estimators achieve minimax optimal error rate. In
fact, the derived error bounds demonstrate that the quantization
only results in slightly worse multiplicative factors, which is
reminiscent of similar results in quantized CS (Remark 4) and
has been clearly observed in our simulations (e.g., Fig. 1).
Moreover, we similarly applied the quantization scheme to a
low-rank regression problem with matrix response and estab-
lished the theoretical results accordingly. Experimental results
were reported to complement our theoretical developments.

For future work, our first direction is to study LRMR under
the more extreme 1-bit quantization, which only retains the
sign of the data. Secondly, while we separately worked on
LRMR and L2RM with matrix response in this paper, it would
be of interest to attempt to unify their analyses, and ideally
build a general theoretical framework for quantized multire-
sponse regression. Last but not least, it is desired to investigate
whether our quantization method and theoretical results could
be extended to a high-dimensional setting where n < d1, which
probably requires new machinery in the technical proofs and
structure on Θ0 beyond low-rankness.

APPENDIX

A. The Proof of Corollary 1

Proof: Following Lemma 1, the proof can be done by some
elementary algebraic manipulation. For the first part of the

claim, we only need to verify both choices of τi satisfy the
condition in Lemma 1(a): If τi ∼ U

(
[− δ

2 ,
δ
2 ]
)
, then

E exp(iuτi) =
∫ δ

2

− δ
2

1

δ

(
cos(ux) + i sin(ux)

)
dx

=
2

δu
sin

(δu
2

)
,

which obviously vanishes at u= 2πl
δ for non-zero integer l; It is

similar for triangular dither. For the second part of the claim, let
us show the triangular dither satisfies the condition in Lemma
1(b). Let Z ∼ U

(
[− δ

2 ,
δ
2 ]
)

be independent of τi, then

g(u) :=E(exp(iuZ))E(exp(iuτi))

=
[
E(exp(iuZ))

]3
=
[ 2

δu
sin

(δu
2

)]3
.

It is evident that g′′(u) contains a common factor sin
(
δu
2

)
, thus

g′′( 2πlδ ) = 0 holds for any non-zero integer l. Hence,

Eξ2i = E(Z + τi)
2 = EZ2 + Eτ2i = 3

∫ δ/2

−δ/2

x2

δ
dx=

δ3

4
,

the proof is complete.

B. The Proof of Theorem 2

Proof: We start with the optimality of Θ̂p

L̇(Θ̂p) + λ‖Θ̂p‖nu ≤ L̇(Θ0) + λ‖Θ0‖nu.

Recall that Δ̂p = Θ̂p −Θ0, by some algebra we arrive at
〈
Δ̂pΔ̂

�
p , Σ̂xx

〉
≤ 2

〈
Δ̂p, Σ̂xy − Σ̂xxΘ0

〉

+ λ
(
‖Θ0‖nu − ‖Θ̂p‖nu

)
. (30)

Note that the left-hand side is always non-negative (this holds
deterministically when δ1 = 0, and holds within the promised
probability when δ1 > 0, see step 1 in the proof of Theorem 1).
By (18), (19), (21) in the proof of Theorem 1, in both “partial
quantization” and “complete quantization”, our choices of λ can
guarantee λ≥ 4‖Σ̂xy − Σ̂xxΘ0‖op holds under the promised
probability. Under the same probability, we thus obtain

0≤ λ

2
‖Δ̂p‖nu + λ

(
‖Θ0‖nu − ‖Θ̂p‖nu

)
,

i.e., 1
2‖Δ̂p‖nu + ‖Θ0‖nu ≥ ‖Θ̂p‖nu. Recall that (17) can

provide ‖Θ̂p‖nu − ‖Θ0‖nu ≥ ‖PM⊥Δ̂p‖nu − ‖PMΔ̂p‖nu,
we deduce

∥
∥PM⊥Δ̂p

∥
∥
nu

≤
∥
∥PMΔ̂p

∥
∥
nu

+
1

2

∥
∥Δ̂p

∥
∥
nu

,
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where the involved subspaces and projections are defined in the
proof of Theorem 1. Thus,

∥
∥Δ̂p

∥
∥
nu

≤
∥
∥PMΔ̂p

∥
∥
nu

+
∥
∥PM⊥Δ̂p

∥
∥
nu

≤ 2
∥
∥PMΔ̂p

∥
∥
nu

+
1

2

∥
∥Δ̂p

∥
∥
nu

,

which further gives

‖Δ̂p‖nu ≤ 4‖PMΔ̂p‖nu ≤ 4
√
2r‖Δ̂p‖F ,

and the last inequality is because rank(A)≤ 2r if A ∈M.
Having deduced ‖Δ̂p‖nu �√

r‖Δ̂p‖F , we can upper bound
the right-hand side of (30) by

λ

2
‖Δ̂p‖nu + λ

(
‖Θ0‖nu − ‖Θ̂p‖nu

)

≤ 3

2
λ‖Δ̂p‖nu � λ

√
r‖Δ̂p‖F .

As deduced in (15), within the promised probability the left-
hand side of (30) is lower bounded by κ0

2 ‖Δ̂p‖2F . Thus, we
arrive at ‖Δ̂p‖F � κ−1

0 λ
√
r. To complete the proof, we only

need to plug in the value of λ in both cases.

C. The Proof of Theorem 3

Proof: We define Δ= Θ̂−Θ0 ∈ R
p×sq , Δ(i) = Θ̂

(i)
−

Θ
(i)
0 ∈ R

p×q , recall the rearrangement Θ̃ ∈ R
s×pq defined

in (25). We continue to use prior notation for quantization
noise/error:

ẋk = xk + ξk1 = xk + φk +wk1

and

Ẏ k = Y k + ξk2 = Y k + τ k +wk2.

Now we use the definition and obtain L̇1(Θ̂) + λ ·
∑s

i=1

‖Θ̂‖nu ≤ L̇1(Θ0) + λ ·
∑s

i=1 ‖Θ0‖nu. Then we perform
some algebra to arrive at
〈
Δ̃Δ̃

�
, Σ̂xx

〉
≤ 2

〈
Σ̂xy − Σ̂xxΘ̃0, Δ̃

〉

+ λ ·
s∑

i=1

(
‖Θ(i)

0 ‖nu − ‖Θ̂
(i)
‖nu

)
. (31)

Step 1. Bound the left-hand side from below.
This is exactly the same as Step 1 in the proof of

Theorem 1. In more detail, because n� s, one can invoke
Lemma 4 to show that λmin(Σ̂xx)≥ κ0

2 holds with probability
at least 1− 2 exp(−s). Assume that we are on this event, then
evidently we have

〈
Δ̃Δ̃

�
, Σ̂xx

〉
≥ κ0

2
‖Δ̃‖2F =

κ0

2
‖Δ‖2F .

Step 2. Bound T :=
〈
Σ̂xy − Σ̂xxΘ̃0, Δ̃

〉
from above.

Using vec(Y k) = Θ̃
�
0 xk + vec(Ek) and the meaning of

ξk1, ξk2, we can first simplify Σ̂xy − Σ̂xxΘ̃0 to

1

n

n∑

k=1

ẋk

(
vec(Ek) + vec(ξk2)

)�

︸ ︷︷ ︸
T1

− 1

n

n∑

k=1

(
ẋkξ

�
k1 −

δ21
4
Is

)
Θ̃0

︸ ︷︷ ︸
T2

.

Thus, we have |T | ≤
∣
∣〈T1, Δ̃

〉∣∣+
∣
∣〈T2, Δ̃

〉∣∣, and it amounts
to estimating

∣
∣〈T1, Δ̃

〉∣∣ and
∣
∣〈T2, Δ̃

〉∣∣. For the first term, by
turning back to the R

p×q we have

∣
∣〈T1, Δ̃

〉∣∣=
∣
∣
∣
〈 1
n

n∑

k=1

ẋk

(
vec(Ek) + vec(ξk2)

)�
, Δ̃

〉∣∣
∣

=
∣
∣
∣

s∑

i=1

〈 1
n

n∑

k=1

ẋki(Ek + ξk2),Δ
(i)
〉∣∣
∣

≤
( s∑

i=1

‖Δ(i)‖nu
)(

max
i∈[s]

∥
∥
∥
1

n

n∑

k=1

ẋki(Ek + ξk2)
∥
∥
∥
op

)

≤ C(K + δ1)(E + δ2)

√
p+ q

n
·
( s∑

i=1

‖Δ(i)‖nu
)
, (32)

where in the last inequality we invoke Lemma 5 and a union
bound over i ∈ [s]; it holds with probability at least 1−
2 exp(−c(p+ q)) because log s=O(p+ q). Note that the sec-
ond term

∣
∣〈T2, Δ̃

〉∣∣ vanishes in partial quantization (δ1 = 0),
thus we estimate it on the complete quantization case (δ1 > 0)

where we further assume
∑

i ‖Θ
(i)
0 ‖2op ≤R2 and s=O(p+

q). In particular, we define

Ψ= [ψij ] =
1

n

n∑

k=1

(
ẋkξ

�
k1 −

δ21
4
Is

)
∈ R

s×s,

and note that we have EΨ= 0. Moreover Lemma 5 provides
that, ‖Ψ‖op � (K + δ1)δ1

√
s
n holds with probability at least

1− exp(−s). On this event, we estimate that
∣
∣〈T2, Δ̃

〉∣∣=
∣
∣〈ΨΘ̃0, Δ̃

〉∣∣

=
∣
∣
∣

s∑

i=1

〈 s∑

j=1

ψijΘ
(j)
0 ,Δ(i)

〉∣∣
∣

≤
(
max
i∈[s]

∥
∥
∥

s∑

j=1

ψijΘ
(j)
0

∥
∥
∥
op

)( s∑

i=1

‖Δ(i)‖nu
)

≤ C(K + δ1)Rδ1

√
p+ q

n

( s∑

i=1

‖Δ(i)‖nu
)
, (33)

where the last inequality is because for i ∈ [s],
∥
∥
∥
∑

j

ψijΘ
(j)
0

∥
∥
∥
op

≤
∑

j

|ψij |‖Θ(j)
0 ‖op

≤
(∑

j

ψ2
ij

)1/2(∑

j

‖Θ(j)
0 ‖2op

)1/2

≤R‖Ψ‖op =O
(
(K + δ1)Rδ1

√
s

n

)
(34)

also recall that s=O(p+ q).
To conclude, in “partial quantization” we have shown

T =O
(
A6

√
p+q
n

)
, and in “complete quantization”T =

O
(
A7

√
p+q
n

)
. Compared to our choices of λ, we can



3926 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

assume 2T ≤ 1
2λ
(∑

i ‖Δ
(i)‖nu

)
with the promised probabi-

lity. Because the left-hand side of (31) is non-negative
(deterministically if δ1 = 0, with the promised probability if
δ1 > 0), and λ > 0, we arrive at

s∑

i=1

(
‖Θ̂

(i)
‖nu − ‖Θ(i)

0 ‖nu
)
≤ 1

2

s∑

i=1

‖Δ(i)‖nu. (35)

Step 3. Conclude the proof.
We use a decomposability argument. In particular, we let

ri = rank(Θ
(i)
0 ), and exactly the same as the definition of

(M,M,M⊥
) at the beginning of Step 2 in the proof of Theo-

rem 1 (regarding Θ0 thereof), we now define (Mi,Mi,M
⊥
i )

regarding Θ
(i)
0 . Similarly, we have the decomposability

‖PMi
A+ PM⊥

i
B‖nu = ‖PMi

A‖nu + ‖PM⊥
i
B‖nu

holds for all i ∈ [s] and A,B ∈ R
p×q . Thus, we can use (17)

to obtain

‖Θ̂
(i)
‖nu − ‖Θ(i)

0 ‖nu ≥
∥
∥PM⊥

i
Δ(i)

∥
∥
nu

−
∥
∥PMi

Δ(i)
∥
∥
nu

.

Putting this into the left-hand side of (35), and also apply

‖Δ(i)‖nu ≤
∥
∥PM⊥

i
Δ(i)

∥
∥
nu

+
∥
∥PMi

Δ(i)
∥
∥
nu

to the right-hand side, it provides
∑

i

∥
∥PM⊥

i
Δ(i)

∥
∥
nu

≤
3
∑

i

∥
∥PMi

Δ(i)
∥
∥
nu

, which leads to
∑

i

‖Δ(i)‖nu ≤ 4
∑

i

∥
∥PMi

Δ(i)
∥
∥
nu

≤ 4
∑

i

√
2ri‖Δ(i)‖F

≤ 4
√
2
(∑

i

ri
)1/2(∑

i

‖Δ(i)‖2F
)1/2 ≤ 4

√
2r · ‖Δ‖F .

Now we are ready to put pieces together. Because ‖Θ(i)
0 ‖nu −

‖Θ̂
(i)
‖nu ≤ ‖Δ(i)‖nu, overall, the right-hand side of (31)

has the bound O
(
λ
∑

i ‖Δ
(i)‖nu

)
=O

(√
rλ‖Δ‖F

)
, while the

left-hand side is lower bounded by κ0

2 ‖Δ‖2F , so it holds with
the promised probability that, ‖Δ‖F =O

(√rλ
κ0

)
. The proof can

be concluded by using the chosen value of λ.

D. Auxiliary Facts

1) The Proof of Lemma 3:

Proof: The proof is a standard covering argument for con-
trolling the matrix operator norm. We construct N1 ⊂ S

d1−1 as
a 1

4 -net of Sd1−1, meaning that for any v ∈ S
d1−1 there exists

x ∈N1 such that ‖x− v‖2 ≤ 1
4 . Similarly, let N2 be a 1

4 -net
of Sd2−1. By [62, Corollary 4.2.13] we can assume |N1| ≤ 9d1 ,
|N2| ≤ 9d2 . Note that for any u ∈ N1, v ∈ N2, we have

∥
∥u�akb

�
k v − E(u�akb

�
k v)

∥
∥
ψ1

(i)

≤ C1

∥
∥(u�ak)(v

�bk)
∥
∥
ψ1

(ii)

≤ C1‖u�ak‖ψ2
‖v�bk‖ψ2

≤ C1E1E2 (36)

Note that (i) is due to centering [62, Exercise 2.7.10], and
we use (4) in (ii). Thus, we can use Bernstein’s inequal-
ity (see [62, Theorem 2.8.1]) to obtain the concentration
of 1

n

∑
k

(
u�akb

�
k v − E(u�akb

�
k v)

)
; Followedby a union

bound over (u,v) ∈N1 ×N2, then for any t > 0

P

(
sup
u∈N1

sup
v∈N2

∣
∣
∣
1

n

∑

k

(
u�akb

�
k v − E(u�akb

�
k v)

∣
∣
∣≥ t

)

≤ 2 exp
(
(d1 + d2) log 9− c2nmin

{( t

E1E2

)2
,

t

E1E2

})
.

(37)

We take t= C3E1E2

√
d1+d2

n with sufficiently large C3, recall
that n≥ d1 + d2, then the event

sup
u∈N1

sup
v∈N2

∣
∣
∣
1

n

∑

k

(
u�akb

�
k v − E(u�akb

�
k v)

∣
∣
∣

≤ C3E1E2

√
d1 + d2

n
(38)

holds with probability at least 1− exp(−c4(d1 + d2)).
Note that [62, Exercise 4.4.3] gives ‖ 1

n

∑
k{akb

�
k −

E(akb
�
k )}‖op ≤ 2 · (the left hand side of (38)), the proof

is complete.
2) A Lemma for the Proof of Theorem 3:
Lemma 5: Assume a1, ..., an ∈ R are independent and sat-

isfy maxk ‖ak‖ψ2
≤K; B1, ...,Bn ∈ R

p×q are independent
and satisfy supu∈Rp−1 supv∈Rq−1 ‖u�Bkv‖ψ2

≤ E for each
k. Assume n� p+ q, then it holds with probability at least
1− 2 exp(−c(p+ q)) that,

∥
∥
∥
1

n

n∑

k=1

{
akBk − E(akBk)

}∥∥
∥
op

≤ CKE

√
p+ q

n
.

Proof: Similarly to that of Lemma 3, the proof is essentially
a standard covering argument for controlling operator norm
of random matrix. For simplicity we assume E(akBk) = 0;
the proof extends to E(akBk) �= 0 by simple centering tech-
nique [62, Exercise 2.7.10]. We invoke a covering argument:
let N1,N2 be the 1

4 -net of S
p−1, Sq−1, respectively; we can

assume |N1| ≤ 9p, |N2| ≤ 9q . By [62, Exercise 4.4.3] we have
∥
∥
∥
1

n

n∑

k=1

akBk

∥
∥
∥
op

≤ 2 sup
u∈N1

sup
v∈N2

1

n

n∑

k=1

aku
�Bkv. (39)

For fixed u,v,

‖aku�Bkv‖ψ1
≤ ‖ak‖ψ2

‖u�Bkv‖ψ2
≤KE.

Thus, we can apply Bernstein’s inequality [62, Theorem 2.8.1],
together with a union bound on N1 ×N2, to obtain that for
any t > 0,

P

(
sup
u∈N1

sup
v∈N2

1

n

n∑

k=1

aku
�Bkv ≥ t

)

≤ 2 exp
(
(p+ q) log 9− cn ·min

{ t2

K2E2
,

t

KE

})
.

We set t= CKE
√

p+q
n with sufficiently large C, recall that

we assume n� p+ q, we obtain that with probability at least
1− 2 exp(−c1(p+ q)),

sup
u∈N1

sup
v∈N2

1

n

n∑

k=1

aku
�Bkv ≤ CKE

√
p+ q

n
.

Combined with (39), the result follows.
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