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Data Fusion for Multipath-Based SLAM:
Combining Information From Multiple
Propagation Paths

Erik Leitinger
Bryan Teague

Abstract—Maultipath-based simultaneous localization and map-
ping (SLAM) is an emerging paradigm for accurate indoor
localization constrained by limited navigation resources. The goal
of multipath-based SLAM is to support the estimation of time-
varying positions of mobile agents by detecting and localizing
radio-reflective surfaces in the environment. In existing Bayesian
methods, a propagation surface is represented by the mirror
image of each physical anchor (PA) across that surface — known
as the corresponding “virtual anchor” (VA). Due to this VAs
representation, each propagation path is mapped individually.
Existing methods thus ignore inherent geometrical constraints
across different paths that interact with the same surface, which
limits accuracy and speed. In this paper, we introduce an im-
proved statistical model and estimation method that enables data
fusion in multipath-based SLAM. By directly representing each
surface with a MVA, geometrical constraints across propagation
paths are also modeled statistically. A key aspect of the proposed
method based on MVAs is to check the availability of single-
bounce and double-bounce propagation paths at potential agent
positions by means of ray-tracing (RT). This availability check
is directly integrated into the statistical model as detection
probabilities for propagation paths. Estimation is performed by a
sum-product algorithm (SPA) derived based on the factor graph
that represents the new statistical model. Numerical results based
on simulated and real data demonstrate significant improvements
in estimation accuracy compared to state-of-the-art multipath-
based SLAM methods.

Index Terms—SLAM, factor graph, sum-product algorithm,
data fusion, multipath propagation, ray-tracing.
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1. INTRODUCTION

MERGING sensing technologies and innovative signal

processing methods exploiting multipath propagation will
lead to new capabilities for autonomous navigation, asset track-
ing, and situational awareness in future communication net-
works. Multipath-based SLAM is a promising approach in wire-
less networks for obtaining position information of transmitters
and receivers as well as information on their propagation en-
vironments. In multipath-based SLAM, specular reflections of
radio frequency (RF) signals at flat surfaces are modeled by
“virtual anchor”s (VAs) that are mirror images of base stations,
also referred to as physical anchors (PAs) [1]. The number
of VAs and their positions are typically unknown. Multipath-
based SLAM methods can detect and localize VAs and jointly
estimate the time-varying agent position [1], [2], [3], [4], [S].
The availability of VA location information makes it possible
to leverage multiple propagation paths of RF signals for agent
localization. It can thus significantly improve localization ac-
curacy and robustness [6], [7], [8], [9].

A. State of the Art

Multipath-based SLAM falls under the umbrella of feature-
based SLAM approaches that focus on detecting and mapping
distinct features in the environment [10], [11], [12], [13], [14],
[15]. In existing multipath-based SLAM methods, the distinct
features of interest are the VAs [3], [4], [5], [16], [17] while
“measurements’ are obtained by extracting parameters from the
multipath components (MPCs) of RF signals in preprocessing
stage [18], [19], [20], [21]. Measurements can be noisy dis-
tances, angles-of-arrival (AoAs), or angles-of-departure (AoDs)
[22], [23], [24].

As typical for feature-based SLAM, a complicating factor
in multipath-based SLAM is measurement origin uncertainty,
i.e., the unknown association of measurements with features
[3], [4], [5], [24], [25]. In particular, (i) it is not known which
VA was generated by which measurement, (ii) there are missed
detections due to low signal-to-noise-ratio (SNR) or occlusion
of features, and (iii) there are false positive measurements due to
clutter. Thus, an important aspect of multipath-based SLAM is
data association between measurements and VAs. Probabilis-
tic data association can increase the robustness and accuracy
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of multipath-based SLAM but introduces association variables
as additional unknown parameters. To avoid the curse of di-
mensionality related to the high-dimensional parameters space,
state-of-the-art methods for multipath-based SLAM perform
the sum-product algorithm (SPA) on the factor graph represent-
ing the underlying statistical model [3], [4], [5]. In addition,
since the models for the aforementioned measurements are
nonlinear, most methods typically rely on sampling techniques
[11, [21, [3], [4], [5], [6]. Recently, multipath-based SLAM was
applied to data collected in indoor scenarios by radios with
ultra-wide bandwidth [26] or multiple antennas [2], [4], [27].

In existing methods for multipath-based SLAM, each VA
represents a single propagation path from an agent to a PA. In
particular, even if a reflective surface takes part in multiple prop-
agation paths, each path is represented by a VA, and mapped
individually [1], [2], [3], [4], [5], [6], [28]. Existing methods
thus neglect inherent geometrical constraints across different
paths that interact with the same surface, which limits accuracy
and speed. Note that the multipath-based SLAM methods pro-
posed in [16], [17], [29] perform fusion of information provided
by multiple cooperating agents. However, these methods are
limited to single-bounce paths and do not perform fusion across
PAs. In [30], [31], [32], [33], it has been demonstrated that
double-bounce paths of RF signals exhibit considerable signal
strength and should thus be considered in real-world multipath-
based SLAM scenarios. This provides compelling evidence that
incorporating information from double-bounce paths can lead
to an improved multipath-based SLAM performance.

B. Contributions and Notations

The problem studied in this paper can be summarized
as follows.

Estimate the time-varying position of a mobile agent by
making use of the line-of-sight (LOS) and MPCs in RF signals.
To leverage the position information of MPCs, the unknown
number and positions of reflective surfaces in the environment
are estimated during runtime.

We introduce a new statistical model for multipath-based
SLAM that considers single-bounce and double-bounce prop-
agation paths and enables data fusion across multiple paths. In
existing multipath-based SLAM models, paths represented by
VAs are the SLAM features. In the proposed model, however,
every reflective surface is directly represented by a SLAM
feature referred to as MVA. The MVA representation makes
it possible to model inherent geometrical constraints across
paths statistically. Following the new model, a factor graph
is established, and an extension of the SPAs for multipath-
based SLAM in [3], [4], [5] is developed. The resulting SPA
can infer reflective surfaces by combining information across
multiple propagation paths. Particularly appealing is the ability
to fuse paths related to different PA. Within the SPA, ray-tracing
(RT) [34], [35], [36] is performed to determine the availability
of each single-bounce and double-bounce paths at potential
agent positions. The availability check is directly integrated
into the statistical model as detection probabilities for prop-
agation paths. The resulting multipath-based SLAM method
can provide fast and accurate estimates in scenarios with many
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reflective surfaces. Note that the proposed method uses distance
and angle-of-arrival (AOA) measurements, which have been
extracted from the RF signal in a preprocessing stage [18], [19],
[20], [21]. The key contributions of this paper are as follows.

e We introduce a statistical model and factor graph for
multipath-based SLAM that facilitates data fusion across
propagation paths.

e We integrate RT into our statistical model to determine
the availability of individual single-bounce and double-
bounce propagation path.

e We extend the SPA for multipath-based SLAM [3], [4],
[5] based on the introduced factor graph to establish data
fusion for multipath-based SLAM'.

e We demonstrate significant improvements in estimation
performance compared to existing multipath-based SLAM
methods based on both simulated and real data.

This paper advances beyond the preliminary account of our
method provided in the conference publications [38], [39] by
(i) extending the MVAs model to double-bounce propagation
paths, (ii) introducing RT to determine the availability of paths
and integrating it into the statistical model, (iii) presenting a
detailed derivation of the factor graph, and (iv) demonstrating
performance advantages compared to reference methods. As
reference methods, classical multipath-based SLAM [3], [4],
channel-SLAM [2], and multipath-based positioning assuming
known VAs positions [40] are considered.

Notation: Random variables are displayed in sans serif, up-
right fonts; their realizations in serif, italic fonts. Vectors and
matrices are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its realization
are denoted by x and x, respectively, and a random vector and
its realization by X and @, respectively. Furthermore, ||| and
2! denote the Euclidean norm and the transpose of vector x,
respectively, and (x, y) denotes the inner-product between the
vectors « and y; o indicates equality up to a normalization
factor; f () denotes the probability density function (PDF) of
random vector X (this is a short notation for fx(x)); f(x|y)
denotes the conditional PDF of random vector X conditioned
on random vector Yy (this is a short notation for fyz(x|z)).
The four-quadrant inverse tangent of position p = [p; p2|T is
denoted as atan2(p2, p1). The cardinality of a set X' is denoted
as | X|. 4(-) denotes the Dirac delta function. Finally, . denotes
the indicator function of the evente = 0 (i.e., 6, = 1 ife = 0 and
0 otherwise).

II. GEOMETRICAL RELATIONS

We consider a mobile agent equipped with an H-element an-

tenna array and J PAs equipped with a single antenna at known
» @) _ 1,0 6 1T w2

positions pyi = [py}, p3h.] €RZ je{l,...,J}, where J
is assumed to be known. The agent is in an environment with
S reflective surfaces indexed by s € S = {1,...,S}. At every
discrete time step n, the array element locations are denoted by
pg,,h), h €{1,..., H}. The agent position p,, refers to the center

of gravity of the array. We also define d®) = Hpslh) —p,ll

'We also provide a pseudocode for the particle-based implementation in
the supplementary material [37, Section V].
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Fig. 1. A multipath-based simultaneous localization and mapping (SLAM)
scenario at time step m, involving two reflective surfaces, a single physical
anchor (PA) with position p[()} ), and a single mobile agent with position and
orientation, p,, and ¥, respectively. The mobile agent is depicted with five

individual antenna elements at positions p;’”, defined by offset d™) and
angle ("), The reflecting surfaces can be represented by “virtual anchor’s

(VAs) or master virtual anchors (MVAs), e.g., pﬁ’)va OF Py myva» TESPECtively.
A single-bounce VA represents the location of the mirror image of a PA on
the corresponding reflective surface. A MVA represents the location of the
mirror image of a common origin on the corresponding reflective surface,
thus creating a unique MVA for each reflecting surface. For a second PA or
double-bounce propagation path involving surface 1 (not shown), VA positions
are different than pfl) while the unique MVA position pj ,,,, remains the
same. Note that w; and w9 are the unit vectors perpendlcular to surfaces 1 and
2, while ez is an arbitrary vector from the origin to surface 2. Distance and

angle for PA and VA at surface 1, i.e., (dé())n,tpéo ) and (dH)n,cpgll)n)

are also shown.

and (M) = atanZ( (h ) — P2 n,pg 7)1 p1,n) — 1, the distance
from the reference locatlon Py, and the orientation, respectively,
of the h-th element as shown in Fig. 1. At each discrete time slot
n, the position p,, € R? and the array orientation 1,, of the agent
are unknown. Each PA transmits a RF signal, and the agent
acts as a receiver.” The RF signal arrives at the receiver via the
LOS path as well as via MPCs originating from the reflection of
surrounding objects. We assume time synchronization between
all PAs and the agent. However, our algorithm can be extended
to an unsynchronized system according to [2], [6], [41].

We restrict the representation to MPCs related to single-
bounce and double-bounce paths. In particular, associated with
PA j there are | Ds| = S single-bounce VAs [3], [34] at unknown
positions pi)v. € R? with index-pair (s,s) € Ds 2 {(s,s) €
S x 8} and |Dp| = S(S — 1) double-bounce VAs at unknown
positions pié) o € R? with index-pair (s, s’) € Dp = {(s, ') €
S x S|s # s'}. Therefore, the maximum number of VAs for
PA jis given by |D| =S + S(S — 1) with D = {(s,5') € S x
S} =Dp UDs. Note that subscript indices denoted as (+)sy
indicate variables related to a pairs (s, s) of reflecting objects.
By applying the image-source model [34], [42], a VA associ-
ated with a single-bounce path is the mirror image of p§,{2 at
reflective surface s € S given by

D) =P +2(uTe, -

ss,va

Tp(J)) 1)

where (s,s) € Ds, us is the normal vector of reflective sur-
face s, and e is an arbitrary point on the considered surface.

2We assume the PAs to use orthogonal codes, i.e., there is no mutual
interference between individual PAs. Note that the proposed algorithm can
be easily reformulated for the case where the agent transmits a RF signal and
the PAs act as receivers.
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The second term in (1) represents the normal vector w.r.t. to
reflective surface s in direction us with the length of two times
the distance between PA j at position pga) and the normal-
point at the reflective surface s, i.e., 2(ule, — uTp) ). By
again applying the image-source model [34], [42] for VA at

.. j . . . .
posn(g;n Pgs v another VA that is obtained as the mirror image
J

of py , at surface s, ie.,
p(eje)' ,va = pgjl ,va + Q(UEES - ungzi/,va) Us (2)
where (s, ") € Dp. This VA represents a double-bounce prop-

agation path. For conveniently addressing PA-related variables
and factors, we also define pg%)va £ pl(ﬂl) and D = (0,0) UD.
The distances and AOAs related to the propagation paths at
the agent position p, represented by pgjs) va With (s,8") €

D are modeled by dgs =P - pSS Va” and oY) =

ss’,n
atan2 (pgjis va p27n,p1755 va pl,n) — 1, Note that the dis-

tance dOO)n and the AOAs 80(()]()), », are the parameters related to
the LOS path between agent at position p,, and PA j at position
pé]a). An example is shown in Fig. 1.

The availability of VAs at certain agent position p,, is limited
due to blockage of associated propagation paths or geometric
constraints between reflective surfaces [34], [35]. Especially,
double-bounce paths and their corresponding VA positions have
limited availability depending on the agent position p,, (see
Fig. 2(b) and 2(c)). Hence, the number of available VAs for
PA j is smaller than |D| =S + S(S — 1). As discussed in Sec-
tion III-D, the proposed statistical model and method performs
an availability check for each VA using RT [34], [35], [36]. In
this way, for each agent position p,,, it can be determine which
of the potential paths in D is available.

A. MVA-Based Model of the Environment

A reflective surface is involved in multiple propagation paths
and thus defines multiple VAs. To enable the consistent com-
bination, i.e., “fusion” of map information provided by mea-
surements of different PAs, we represent reflective surfaces by
S unique MVAs at positions p, ... € R?, s € S. The unique
MVA position p, ., € R? is defined as the mirror image of
[00]T on the reflective surface S.*> By using some algebra, the

transformation from MVA at Psmya 1O @ VA at pgjs{va, ie.,

pgjs)va = hya (ps mvas pga) ) can be obtained as

G) —_ (M’ma’p% 3

ss,va
Hps,mvaH

- 1>ps,mva + Pga)-

The transformation from MVAs at p; ., and p, ., to a
double-bounce VA at p(j )

) ss’,va
(4)

ss’,va = h\’a (ps,mvan hVﬂ (ps’,mva? pgé) ) ) . The

can be obtained by applying
(3) twice, ie., p

3Note that any point can be used, not only the coordinate center. And that
the MVA-model can be extended by the length of the corresponding walls.
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Three multipath-based SLAMs scenarios with two reflective surfaces illustrate single- and double-bounce paths in three different geometries. The

positions of the mobile agents, PAs, VAs, and MVAs are shown. (a) Depicts a single time step n of a scenario with perpendicular reflective surfaces, two

(1)
pa

PAs at positions pp,” and p[(,?
(1)

at position pp,”,

step n of a scenario with reflective surfaces at an acute angle, one PA at position py,

, and the agent at position p,,; only single-bounce paths are illustrated. (b) Shows perpendicular reflective surfaces, one PA

and agent positions p,,, and p,,, at two different time steps n1 and ng. Only double-bounce paths are shown. (c) Depicts a single time

(D) and the agent at position p,,. Again, only double-bounce paths are

illustrated. Note that in (b), due to perpendicular reflective surfaces, both double-bounce paths have equal lengths, and there is a single double-bounce VA. In
(c), however, due to reflective surfaces at an acute angle, the two double-bounce paths have different lengths, and there are two different double-bounce VAs.

inverse transformation from a VA to a MVA is given by

ps,mva = hmVﬂ( nga’ }(DQ)
i) 112 j 2
_ HPE’QJJ) - ||(1?)gjs)>va|2| (9 —pP.). @
H(ppja _psjsyva)H : o

Note that the inverse transformation in (4) will be used to
determine a proposal distribution for MVA states as discussed in
Section V. Details of the derivation of (3) and (4) are provided
in the supplementary material [37, Section I-A]. For example,
Fig. 2 shows three scenarios with two reflecting surfaces de-
scribed by two MVAs at positions p; ., and ps ,,,y,- Fig. 2(a)
shows a scenario with two PAs j € {1,2}, the corresponding
VAs, and an agent at position p,,. Each PA generates one VA
associated with a single-bounce propagation path. Fig. 2(b)
shows a scenario with one PA, the corresponding VAs associ-
ated with single-bounce and double-bounce propagation paths,
and two agents positions at different time steps, i.e., p,,, and
Dy, Note in case surfaces are perpendicular, a different order
of bounces from surfaces, i.e., surface “s — surface s’ or “sur-
face s’ — surface s”, does not lead to a different VA position.
Depending on the agent position p,,, only one double-bounce
propagation path (related to one of the two orders) is available
(see also Section III-D). Fig. 2(b) shows a scenario with non-
perpendicular surfaces. In this case, different “bounce orders”
lead to different VA-positions. In particular, if there is an acute
angle between a pair of reflecting surfaces, there exist regions
of agent positions p,, for which two double-bounce propaga-
tion paths are available at the same time (cf. Section III-D).
These regions depend on the PA position as well as the angle
between the two surfaces. Note that when the angle between a
pair is obtuse, only one of the two double-bounce propagation
paths is available for all positions p,, (an example is given in
[37, Section IV]).

III. SYSTEM MODEL

At each time n, the state of the agent is given by X, =
[PY vI], where v,, is the agent velocity vector. We assume
that the array is rigidly coupled with the movement direction,
i.e., array orientation is determined by the direction of the
agent velocity vector. As in [3], [43], [44], we account for the
unknown number of MVAs by introducing potential (PMVA)
s€S,={1,...,5,}. The number S, of PMVAs is the
maximum possible number of actual MVAs, i.e., all MVAs that
produced a measurement so far [3], [44] (where .S,, increases
with time). PMVA states are denoted as Y, ,, = [P} ,va rs,n]T.
The existence/nonexistence of PMVA s is modeled by the ex-
istence variable ry ,, € {0,1} in the sense that PMVA s exists
if rg , = 1. Formally, its states is considered even if PMVA s
is nonexistent, i.e., if r;, = 0. The states p?mva of nonex-
istent PMVAs are obviously irrelevant. Therefore, all PDFs
defined for PMVA states, f(Y ,) = f(Ps myas s,n)» are of the
form f(ps,mvaw O) = fsmfd(ps,mva)’ where fd(ps,mva) is an
arbitrary “dummy PDF” and f , € [0,1] is a constant and can
be interpreted as the probability of non-existence [3], [44]. A
summary of all variables related to agent and PMVA states as
well as other variables of the proposed statistical model can be
found in Table I.

A. Measurements and New PMVAs

The distance and AOA measurements related to the path
“agent at position p,, — VA at position pg)/7va” with (s, s') € Dy,
are given by

ng?n = ||pn - pi?’,va” + Vd%?" )
zy;%?n = atan2 (pé{zsl,va - p27n7p;(125/,va —Pin)
—atan2 (vz,n, Ul,n) + V‘Pg?n ©)

where I/d%)n and v, are, respectively, zero-mean Gaus-
) Pm,n

2,

sian measurement noise with standard deviations oq and
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TABLE I
NOTATIONS AND DEFINITIONS OF IMPORTANT QUANTITIES

Notation Definition Notation Definition

pga) 2D position of physical anchor j Pn 2D position of mobile agent at time n

Un Orientation of mobile agent at time n Un 2D velocity of mobile agent at time n

S Total number of reflecting surfaces (MVAs) Mg{ ) Number of measurements with PA j at time n
ngs)va Single-bounce virtual anchor position pijs >, va Double-bounce virtual anchor position

Ps mva Position of MVA corresponding to PA s Sn Number of potential MVAs (PMVAs) at time n
zdgﬂ?n Distance measurement m with PA j at time n Zy S,”)n angle-of-arrival measurement m with PA j at time n
vr %)n Distance measurement noise vy %?n angle-of-arrival measurement noise

rs,n Binary existence variable related to PMVA s at time n p((j] i . detection probability of available path

Hip False alarm Poisson point process mean fp (Z,(%)n) False positive point process PDF

Ps Probability of survival of legacy PMVA Pcf Confirmation threshold for PMVAs

Dpr Pruning threshold to remove PMVAs AT Simulation sampling period

wn Process noise of the agents” motion model

w%)y The measurements are combined in the vector ZE,J,),, =
2% 2,9 |7 with me MY 2 {1, ..., M%)} for PA j.

(These mggéﬁrements represent the MPC parameters. For de-

tails see [2], [4], [24].) Note that before measurements are

acquired, the number of measurements M(J is random.
Likelihood function for LOS paths: Using (5), (6), and

péjo) va pI(Ja) , We can d1rectly obtain the likelihood function for
n|Py)-

the LOS path as f(z
Likelihood function for single- bounce paths: Using (5), (6),
7) (9)
and the transformation in (3), i.e., pss va = hya (ps,mvavppa )
the likelihood function related to the single-bounce propagation
path “agent — surface s” with s € § —PA j with MVA index-pair
(87 S) € DS,n reads f(z’g'jl)vn|pn7ps,mva)'
Likelihood function for double-bounce paths:

Usm% ),
and (6), and the transformation in (3) twice, i.e.,

pss ,va
hva (P vas Pva (P mvas p))), the likelihood function related
to the double-bounce path “agent — surface s — surface s’
PA j” with MVA index-pair (s,s’) € Dp,, can be expressed
by f(z%?n |a Dy ps,mvm ps’,mva)'

With the MVA-based measurement model, at time n, the
measurements collected by all PAs j € {1,..., J} can provide
information on the same MVA and agent positions P, ., S €
S and p,,, respectively. It is assumed that each VA (related to
a specific PA, MVA or MVA-MVA pair) generates at most one
measurement and that a measurement originates from at most
one VA. PA j at position pgjo)va = pga) with (0,0) € D,, gener-
ates a measurements zE,)n with detection probability p(J ) (pn)
If MVA s exists (rs,, = 1), the corresponding single-bounce
path (s, s) € Ds,, generates a MVA—orlglnated measurements
{7, with detection probability p (pmpgmva) The same
holds for the double-bounce path (s, s") € Dp ,, with detection
probability p(”(pn,p&mva, ps,’mva). Note that the detection
probability is determinéd by the SNR of the measurement [4]
as well as the availability check performed by RT. In particular,
if a path is unavailable, its detection probability is set to zero.
A measurement z%)n may also not originate from any MVA.
This type of measurement is referred to as a false positive
and is modeled as a Poisson point process with mean pg, and
PDF fg,(25)n).

Newly detected MVAs, i.e., MVAs that generated a measure-
ment for the first time, are modeled by a Poisson point process
with mean 1, and PDF f,, (P,, mval pn) N ewly detected MVAs

are represented by new PMVA states Vn mom {1, MY )}
in our statistical model [3], [44]. Each new PMVA state cor-
responds to a measurement z,ﬁb,n; Tm,n=1 implies that mea-
surement Z(J ), was generated by a newly detected MVA. All
new PMVA states are introduced, assuming the correspond-
ing measurements originate from a single-bounce path. This
assumption leads to a simpler statistical model and reduced
computational complexity as further discussed in Section V-D.
This assumption is well motivated by the fact that, due to the
lower SNR of double-bounce paths, new surfaces are typically
detected first via a single-bounce measurement. However, the
assumption also implies that any reflecting surface can only be
mapped if it originates at least one single-bounce measurement.

We denote by y\/) £ [ygjzf . y(J ()JT) ] the joint vector of

all new PMVA states. Introducing new PMVA for each mea-
surement leads to a number of PMVA states that grows with
time n. Thus, to keep the proposed SLAM algorithm feasible,
a sub-optimum pruning step is performed, removing PMVAs
with a low probability of existence (see Section IV-B).

B. Legacy PMVAs and State Transition

At time n, measurements are incorporated sequentially
across PAs j € {1,...,J}. Previously detected MVAs, i.e.,
MVAs that have been detected either at a previous time n’ < n
or at the current time n but at a previous PA j'< j, are rep-
resented by legacy PMVA states y(J ). New PMVAs become
legacy PMVAs when the next measurements—either of the
next PA or at the next time instance—are taken into account.
In particular, the MVA represented by the new MVA state
Vgi?n, introduced due to measurement m’ of PA j’ at time
n’ < n is represented by the legacy PMVA state XST)L at time n,

with s =S,/ 1 + Ej”_ MY 4+ m’. The number of legacy
PMVA at time n, when the measurements of the next PA j are
mcorporated is updated accordmg to S(] S(j D4 M(j 71)

where S =S,,_1. Here, S;; W) i equal to the number of all
measurements collected up to time n and PA j — 1. The vector
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of all legacy PMVA states at time n and up to PA j can now be
() — [y G-DT glG—nTT
written as Yy, [y Y., ] .

Let us denote by y(l) = [y —yT Yo ] , the vector of
all legacy PMVA states before any measurements at time 7
have been incorporated. After the measurements of all PAs j €
{1,...,J} have been incorporated at time n, the total number
of PMVA states is given by

J
Sn=Sn_1+Y_ MY
j=1

and the vector of all PMVA states at time n is given by Y, =
M )T V(‘])T] T 4 We also define the number of VAs for each PA
given as [DY| =S5 + 5% (SY — 1) with bej)‘ €{(s,¢) €
Sy X Sy} = Dsj, Dg; and DY) = (0,0) U D,

Legacy PMVAs states y’n and the agent state X,, are
assumed to evolve independently across time according to
state-transition PDFs f(,s,n|ys,n71) and f(x,|T,_1), re-
spectively. If PMVA k exists at time n —1, i.e., r5,—1 =1,
it either disappears, i.e., 75, = 0, or survives, i.e., s, = 1.
The probability of survival is denoted by ps. Suppose the
PMVA survives. In that case, its position remains unchanged,

, the state-transition pdf of the MVA positions P, is

given by f( s, de|ps,mva) = 6(Bs,nlva
f(p 7rs,n’ps,mva? Tsm—l) for r5,n—1 = 1 s obtained as

—s,mva’ —

=S+ M ™

- ps,mva) . Therefore,

f(BS mva’ Ts n|ps mvas s,n—1 = 1)

{(1 p@)fd(

) Ls,n
é mva ’ (8)
ps5(p

ps,mva) ) zs,n =1

s, mva

If MVA s does not exist at time n —1, i.e., 75 ,—1 =0, it cannot
exist as a legacy PMVA at time n either, thus we get

f(ps mva’ﬁs n‘ps,mvm Ts;n—1= 0)

fd( =0
07

s mva) =S, (9)
,57n=1.
For j > 2, we also define f(7) (g(j) |g(j—1)) as

FO @) O pY D 0 =1
) _
fd (pgjmigl) fs],n* 0 (10)
~ L6, ~pUzh), =1
and
() () |pla—1) ,G-1) —
f ! ( s mvw’ QJ'" |pgjmva’—sjn - 0)
fa(@Y) ), rh=0
s, mva ( (11)
0, TSJ,)L_ .
where we introduced ggﬂgl) éys . p(sjmig A Py v and

rg]n Da sm- It is assumed that at time n =0 the initial

prior PDF f7(y370), s={1,...,S0} and f(xo) are known. All

“#Note that this sequential incorporation of new PMVA states is based on
the multisensor multitarget tracking approach introduced in [44, Section VIII].
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(legacy and new) PMVA states and all agent states up to time
n are denoted as Y., = [yg o -ny]T and Xg., £ [Xg .. 'XIL]T’
respectively.

C. Data Association Uncertainty

Mapping of reflective surfaces modeled by MVA is com-
plicated by the data association uncertainty: at time n it is
unknown which measurement zﬁ,i)n extracted at PA j originated
from PA j itself (0, 0), from which MVA (s, s) € DY) | or from

S,n?

which MVA-MVA pair (s, s') € D](){ ZL associated with single-
bounce and double-bounce path. Any PMVA-to-measurement
association (which considers associations to single PMVAs and
PMVA-PMVA pairs as well as to PA j itself) is described by
PMVA-oriented association variables

m € ./\/l(] )it legacy PMVA ss’ generates
ég), i 2 Tneasurement m (12)
i 0, if legacy PMVA ss’ does not
generate any measurement
with (s,s) € € DY’ and stacked into the PMVA—oriented asso-

(@ _1,0) @) ()
ciation vector as @;’ = [ag( ,, a7, - - s, ]". To reduce

computation complexity, following [3], [43] [44] [45], [46],
[47], we use a redundant description of PMVA-measurement
associations, i.e., we introduce measurement-oriented associa-
tion variables

(s,s) € DY), if measurement m is originated
by legacy PMVA ss’

0, if measurement m is not generated

3,2
by any legacy PMVA ss’
(13)

and stacked into the measurement-oriented association vector
as ay) = a7, - 5%1)(7) } Note that any data association
event that can be expressed by both a joint PMVA-oriented
association vector ggL) and measurement-oriented association
vector 551] ) is a valid event in the sense that an PMVA gen-
erates at most one measurement. A measurement is origi-
nated by at most one PMVA. This hybrid representation of
data association makes it possible to develop scalable SPAs
for simultaneous agent localization MVA mapping [3], [43],
[44], [47]. Finally, we also introduce the joint association vec-

tors @, = [QS)T o 'Q%J)T]T’ a, = [agl)T .. ESZI)T ]T, a,., =
a - .Q;FL}T, and @, = [a] - EIJT

D. Detection Probabilities and Availability of Paths

RT relies on visibility-tree techniques [34], [35], [36] to
determine the visibility of a path in a backward manner as
discussed in what follows for the double-bounce case (s, s’) €

D(] ) First, starting from the agent’s position, p,,, a straight

hne is drawn towards the VA position, p(gjg), va» until it intersects

with the reflective surface with index s’. From the resulting in-
tersection point, another line is drawn towards the VA position,
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p?s),va, until it intersects with the reflective surface with index
s. From this second intersection point, a line is finally drawn
towards physical anchor position pﬁiﬁ. If this procedure fails,
because (i) there is no intersect first with surface s’ and then
with surface s, or (ii) along the path, there is an intersection
with another surface s” € S\{7, j'}, the path is considered not
available or “blocked”. Intersections are calculated efficiently
based on the fast line intersection algorithm [48].

For single-bounce and LOS paths, the procedure is simpler.
In particular, for the single-bounce case (s, s) € Dl()], 31’ starting
from the agent’s position, the first of two straight lines is already
drawn from the agent’s position p,,, towards the VA position,

pgi),’va. For the LOS case, the first and only straight line is

directly drawn from the agent’s position p,, to pg;) . For each

PA j, this availability check is directly integrated into detection
probabilities. In particular, the LOS path detection probability,

p'(jj) (pn), is given by

(7) (4)

Di.oon, Path from agent at p,, to VA at Py,
pé]) (pn) £ is available
0, path is not available

(14)

where pY) is the detection probability [4], [24], [44] of
the available LOS path. Similarly, the single-bounce detection
probability, p’’ (Pos Pymva)s (5:5) € Déjﬂ)l, reads

()

D ssns Path from agent at p,, to VA at
() a T G) - .
pi’ (P Pemva) = Pss,va is available
0, path is not available

5)
(4)

where p; ¢, is the detection probability of available single-
bounce path. Finally, the double-bounce detection probability
pg) (Prs Po.mvas Perma)» (5,87) € D]()J;L, can be obtained as

pfij) (prN ps,mva? ps’,mva)
p((f’is,’n, path from agent at p,, to PMVA at p(j )

ss’, va
£ is available
0, path is not available
(16)
where pgls,’n is again the detection probability of the available

double-bounce path.

IV. PROBLEM FORMULATION AND PROPOSED METHOD

In this section, we formulate the estimation problem of in-
terest and present the joint posterior PDF and factor graph
underlying the proposed SLAM method.

A. Pre-Estimation Stage

By applying at each time n a super-resolution channel
estimation algorithm [18], [19], [20], [21], [24] to the
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observed RF signal vector one obtains, for each anchor j,
a number of M,(Lj) measurements denoted by z%?n with
meMD 21 MY}, Bach 2 =) ) T
representing a potential MPC parameter estimate contains
a distance measurement zd%?n €10,dmax] and an AOA
measurement ngi)n € [-m,m). The channel estimator
decomposes the RF signal vector into individual, decorrelated
components, reducing the number of dimensions (as M,(f )
is usually much smaller than the number of signal samples).
It thus compresses the information contained in the RF

signal vector into z{) = [z&{f---zxj)(a |T. We also define
2 T]T.

£ (2T T and 2 2 [

Zn =

B. Confirmation of MVAs and State Estimation

We aim to estimate the agent state X,, using all available
measurements 2., from all PAs up to time n. In particular, we
calculate an estimate ,, by using the minimum mean-square
error (MMSE) estimator [49, Ch. 4]

:i:n = /wnf(wn|z1n)dwn

The map of the environment is represented by reflective sur-
faces described by PMVAs. Therefore, the positions P, v,
of the detected PMVAs se{1,...,S5,} must be estimated.
This relies on the marginal posterior existence probabilities
p(rs,n = 1|Z1;n) = ff(ps,mva’ Ts,;n = 1‘z11n)dps,mva and the
marginal posterior PDFs f(p, al7sn =1, 21:0) = f(Ps myar
Tsn = 1121:0)/P(Ts n = 1|21.n). A PMVA s is declared to ex-
ist p(rs,n = 1|21:n) > pe, Where per is a confirmation thresh-
old. The number S'n of PMVA states that are considered to
exist is the estimate of the total number S of MVAs. To
avoid that the number of PMVAs states grows indefinitely,
PMVAs states with p(rs ., = 1|21.n) < ppr are removed from
the state space (“pruned”). For existing PMVAs, an esti-
mate of it’s position p, ., can again be calculated by the
MMSE [49, Ch. 4]

a7

ﬁk,mva é/pk,mvaf(pk,mva|rsm:L’zlin)dpk,mva' (18)

The calculation of f(@yn|z1:1m), P(rsn=1|2), and f(DPs mval
Fem=1,21.,) from the joint posterior  f(Yg..,
L0y @1y, Q1:n|Z1:m) by direct marginalization is not
feasible. By performing sequential message passing using
the SPA rules [3], [43], [50], [51] on the factor graph in
Fig. 3, approximations (“beliefs”) f (a:n) and fs(ysyn) of
the marginal posterior PDFs f(x,|21.n), P(Tsn=1|Z1:n),
and  f(Pgs myalTs,;n = 1,21:n) can be obtained efficiently
for the agent state as well as all legacy and new PMVAs
states s € S,,.

C. The Factor Graph

By using common assumptions [3], [44], and for fixed
(observed) measurements z1.,,, the joint posterior PDF of y,.,,,
Xo:n, @y.,, and aj.,, conditioned on zi., is given by (19),
shown at the bottom of the next page, where we introduced
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the functions ¢, (mn/,ago)n,,z;])) (y(j) a0 20,
a,(y i“,yf)n,gii)n,wn,zg)), 7s ( %)n,aﬁi)mwn,zg%)
f(@,.,). and \I'(agjr)l,agn)n) that will be discussed next. A
detailed derivation of (19), shown on bottom of the page, is
provided in the supplementary material [37, Section II].

The pseudo likelihood functions of PA jq,, (2, a(()JO)n, z)

of legacy PMVAs related to single-bounce paths
05 (¥, aln, @ 2)) = g (09 1) alln, @ 2))
and to double-bounce paths [/ (y( 9) ,yi])n, ijs) P %
zglj)) ip (BgJI)nv (Jv)’ p.(sj)mva’ rij’)n’ a’i?’,n’ Ln; zglj) ) are,
respectlvely, given for (0,0) by
UNCITRE
o) o) .
p @) (29.]p.) () )
v , asy. =meE M,
= ep frp (Z‘E';‘]L)‘n) =00,n ™ ' (20)
L-p{ (). af,=0
for (s,s) € Déjfl by
(80280 L2 5)
) ) @) o) p
. Pg (Pwps,mva)f( mn PP mva)’ agé)nimeM;J)
= ) prffp (‘zm,n)
1_péj)(pn7pgj,r)nva )) a/gjs)n—o
2D
and ¢ (p(j) r) =0,d%,, 2 z(J)) £ ) aswellas for
g (\)za I'sn sy Ass,nyLn; Zn Qs']s,n
(s,8") € Dy, by
QD (pi]r)nva T(J) =1 pij)mva (])” =1 ag@) nsTns Z (J))
2 (®, P )
Mfp
2 1= \1; T“,lm)ei’?,m)’ a=memy @2
fp(Zmin
10 (P, Pa 2 ) 1) =0
and q ( (sjr)nva Tg]")l?p(g])]nvajz(gj)n?QE;]g) n7mn7z(J)) - 5 ( )
if any T(Ju)” =0 for s € {s,s'}.
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The pseudo  likelihood functlons related to new
PMVAS G (T s 8ns @ 200) = T (BD s Foh, @0,
T sz)) is given by

()
m,mva’
0,
tin fn (B valPR) F(25),,
tito Fip (25)0)

a)

7 mn7

7s(p 7 = z,;z{))

@i € DY
a () -
‘pn 7prn,mva) , agrjgn — O

(23)

and GS (pgn)mva, 0 av(vzb)nv T 2 £ fd (ﬁ%?mva)’ re-

spectively. Note that the first line in (23) is zero because per
definition, the new PMVA with index m exists (7, , = 1) if and
only if the measurement is not associated to a legacy PMVA.
For Eﬁ%)n =0, for each measurement zT(n)n a new PMVA is
introduced, implying that each measurement z(J ). is assumed
to originate from a s1ng1e -bounce path correspondmg to exactly
one PMVA s € ./\/l (not a pair of PMVAs).

Finally, the binary check functions that validates consistency
for any pair (a W) a0 ) of PMVA-oriented and measurement-

ss’ ,mrom,n
oriented association vanable at time n, read

=) _

Tsn

(J) )

©) =(7)

O’ st ,n =M, Gm,n (57 S/) or
() N\ A
\Ij( ss’\n? Srjl?n) - a’ss n 7é m, a%)n = (S,S/
1, otherwise.

In case the joint PMVA-oriented association vector @, and the
measurement-oriented association vector a,, do not describe
the same association event, at least one check function in (19)
is zero. Thus f(Yg.n» Toins @1y @1:n|Z1:m) 18 zero as well.
The factor graph representing factorization (19) is shown in
Fig. 3. A detailed derivation of related factorization structures
developed in the context of multitarget tracking and their rela-
tionship to the TOMB/P filter is presented in [44]. The problem
and resulting factorization structure considered in this paper
are more complicated than multisensor multitarget tracking
because (i) there is also an unknown agent state and (ii) mea-
surements can originate from two different types of propaga-
tion paths.

f(yO:na LO:ny, A7y a1:n|zl:n)

x (f(wo)f[lf(ys,o)> ﬁ fln |z 1)

J

. j=1
Agent state transition

ng(x'”, a‘()j[)n’7 ’57:7) H \IJLOOn” 'ri

M(J)

(i

H f@s’,n’ |ys’,n’1))

m/=1 s'=1

n’=1
Initial prior PDFs

Factors related to PAs Legacy PMVA state transition

J Sff//) ;. sW M)
-1) () ( ) ()

(I (T @) ) T (T st IT wtath )

j'=2 Ns'=1 =1 ‘s=1 m/=1

Factors related to legacy PMVA states

S:LJ/) M(]) Mw(;’)

< 11 ap@®Y),.99. a¥) ;29 H v .29 ) > (H 25@9,.39,, @ Zm)) (19)
s'=1,s'#s m’'=1 m=1

Factors related to legacy PMVA states

Prior PDFs and factors related to new PMVA states
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dependencies of the factors are neglected: @ £ ,,, M7 £ Mflj ), ng = gij

J <j)),

A i) a0 () . @) () i
gis’ 77D(ggr2ﬂg5’,n’gss’,n’w""zn )gD(Es’,n’yg'zﬂa

ag Tn;2Zn

's,n?

f(gsynlys,n—l)’ fgéf(j)(gg;}gg;l)), an = a(zn), ag=as(g§ji),

ngs/ = n(gi‘l)/,n) n(ggi,n)’ Vst m—rss’

—ss’,n

7 ozl A .
s Ym =Ym )n, QJD =4dp (‘13717200,”7 Zn

J :V(P) (a(j) )V(P) (a(j) ), J (7(J') )’

m—s’s

Factor graph representation of the joint posterior PDF (19). Short notations are used. In particular, the time index n and the functional

[€)) €] [€)) (j))

)s g]g £ g (gg{zlvﬁs;,na Tn; Zn
2 f(@nlzn_1), fre
Bl =B (@) ) Bus(al) ). vl =20 @)1 @n).

>

= (4) €)

g oAz (=) = .
dm = (g (ym,nvam,nywnyzm,n s

=c¢(a
Lors,n Sm =S\ Am')n

Pl = Post (ggj)) pszs(g(j)), and ¢, = qﬁ(ygj)). For the numbers of MVAs, the short notations reads S 2 S, _1, $7 2 S%), and (Ngii & (')S(j)s(j).
The dashed lines with arrows indicate messages representing the agent and PMVAs beliefs of time n — 1, n 4+ 1 or of anchors j — 1, j + 1. These m"éssa?ges
are either only sent to the next time step (e.g., from n — 1 to n) or only to the next anchor (e.g., from j — 1 to 7).

V. PROPOSED SUM-PRODUCT ALGORITHM

Since our factor graph in Fig. 3 has cycles, we have to decide
on a specific order of message computation [50], [52]. We
choose the order according to the following rules [3], [5], [24],
[25], [43], [44], [51]: (i) messages are only sent forward in time;
(i1) messages are only sent from PA j — 1 to PA j, i.e., the mea-
surements of PA are processed serial, thus, PA j — 1 establishes
new PMVAs that are acting as legacy PMVAs for PA j; (iii)
iterative message passing is only performed for data association
[3], [4], i.e., in particular, for the loops connecting different
PMVAs, we only perform a single message passing iteration;
and (iv) along an edge connecting an agent state variable node
and a new PMVA state variable node, messages are only sent
from the former to the latter. With these rules, the message
passing equations of the SPA [50] yield the following operations
at each time step. The corresponding messages are shown in
Fig. 3. Note that this message passing order has been developed
for real-time processing. Sending messages also backward in
time, referred to as “smoothing,” will improve post-processing
performance but lead to increased computational complexity.

We note that similarly to the “dummy PDFs” introduced in
Section III, we consider messages ¢ (¥, ,,) = ©(Ps mya> T'sin)

for non-existing PM VA states, i.e., for r ,, = 0. We define these
messages by <p(ps_ymva, O) = <p,(€] 21 (note that these messages are
not PDFs and thus are not required to integrate to 1). To keep the
notation concise, we also define the sets ./\/lgj ,)L 2 MP U {0}

and @é{; e DY U {0}.

A. Prediction Step

First, a prediction step is performed for the agent and all
legacy PMVAs s € S,,_1. Based on the SPA rule, the prediction
message for the agent state is given by

a(xn) = / F@nln1) F(n1)dzay

and the prediction message for the legacy PMVAs o (y ) is
given by ’

Qs (Bs,mva’fsvn) = Z /f(Bs,mva7£51n|p5)mva’Ts’nil)
rkwn,le{o,l}
X f(ps,mvmrs,n*l)dps,mva

s € {1,...,5,-1}, where the belief§ of the agent state,
f(®n_1), and of the PMVA states, f (P, v Ts,n—1), Were

24

(25)
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calculated at the preceding time n — 1. Inserting (8) and (9) for
f(£s7mva7£s,71,|ps,mva7 TSJL—l = 1) and f( s, mva’z"' n|ps mva’
7sn—1 =0), respectively, we obtain

Qs (Bs,mva’ 1) =Ds / 5(Bs,mva - ps,mva) f~8 (ps,mvav 1)dps,mva
(26)

and o (p

£ s,mva’ 0)

= as,ﬂfd (ps,mva) with

s n = (1_ ps) /fs (ps,mvav 1)dps,mva + fs,n—l- (27)

We note that fi -1 2 [ fs(Ps mvar 0)dPy mya approximates the
probability of non-existence of legacy PMVA s at the previous
time step n — 1.

B. Sequential PA Update

Atiteration j € {1,..., J}, the following operations are cal-
culated for all legacy and new PMVAs.

1) Transition of New and Legacy PMVA States Between
PAs: For j =1, the number of legacy PMVAs is S = Sn—1
with the corresponding state y(!) £ yT YL ] . Fur-

n—1,1

thermore, the state ") has no elements and the prediction
message of legacy PMVAs is a; (ngr)nva, 1) £ a, <Bs o 1)
as well as agj,)l £ a4 p. For j > 1, we have Sr(Lj) = Snj_l) +
MY ™Y legacy PMVAs with states gg) = @fj—mygg' ’I)T}T
and Mﬁj) new PMVAs with states ﬂ(j). For 1 <s< S,(Lj_l),
using (10), (11), and (25) the prediction message of former
legacy PMVAs o (QSD is given by

U4 (pl=D), 1)dpli= Y

s,mva s,mva’ —s,mva

(28)

o (@), 1) = [ 58,

,0) = a(j)fd(p(j) a) with agj,)l fygjn Y For

and o (Biquva
1§m§M,(i’1), the prediction message of former new

PMVAs is aSr5371)+m (B_(S’gjfl)+m,mva’ 1) 2 QS(p'En)mva, ) and
e 2 ()
S(J 1)+m n - ym,n-
2) Checking the Availability of Propagation Paths: The

proposed SPA algorithm performs an availability check for each
propagation path using RT [34], [35], [36] to determine whether
a VA can provide map information. First, the VA positions
pis) va are determined by applying (3) directly to PA j at po-

sition pp(,a) to get single-bounce-related VAs at positions p(gg)\,al
Next, (3) is also applied to this single-bounce-related VAs to get
double-bounce-related VAs at positions pgjs), va- RT is performed
as described in Section III-D. In case the path between the
agent position and a VA position or between two VA positions
(double-bounce path) intersects with a reflective surface (e.g., is
blocked), the corresponding path is not available at p,,. Hence,
the corresponding VA cannot be associated with measurements
at time n.
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3) Measurement Evaluation for the LOS Path: The

messages [go (aéjo)n) passed from the factor node qp (a:n,

a(()]o)n, 2 )) to the feature-oriented association variables a(()]())n

are calculated as

Boo(ah),) = / a(@)q, (0,05 i 20) A, (29)
4) Measurement Evaluation for Legacy PMVAs: For

the messages [ (agg)n) passed from the factor
rgj%, aﬁ?n, Ty zﬁf)) of single PMVAs to the
feature-oriented association variables agﬁ),n are given by

Bes(all),,)
[ e ot 5

L(afl,)al).

s=g,

node 4q (ng) )

a9, 29)

(30)

For s # s’, the message (s ( Sg) n) passed from the factor
@) @) o G) (4)

r5”7p5 mva’T‘; n’ass n’mmz”

) of pairs
(4)

SSTL

node g, (p(J)

of PMVAs to the feature-oriented association variables a
are obtained as

Bur(al),)= [[[ an0,  Das (62, Datan)
XqD(p(i) r0) p@ @) 0

s,mva,’ Sn’pg ,mva y Lgr n’ Qggr n)wna (7))
x diEnng r)rlvadgi’)mva (ng) )

() )

S n s’ n
(1)
5) Measurement Evaluatlon for New PMVAs: For
PA j, the messages & (am n) sent from the factor node
s (pgﬁmva,r,(jfm,a%)n,mn,zfn)n) to the variable nodes
corresponding to the measurement-oriented association

variables 55,%'?” are given by

S(ag?”) = Z (p'(m)mv"m Tgcjl)mva’ agrjl)n’ Ln; 2 (]) )
79, e{0,1}
x o(xy) A, dPY) v (32)

Using the expression of gg (pgn)mva, r,i] 3nv,“ 041(%)717 Tp; Z%)n)

Section IV-C in (23), Eq. (32) simplifies to §(am n) =1 for

51),1 S DSI ), and for a% » = 0 it becomes

g(a%)n) =14+ — // a\ Ty, fn pm mva’$")
prffp Zm n)

X f (200, P va) A0 AP - (33)
6) Iterative Data Association: Next, from /3 ( SS) n) and

Ss) ) and ¢ (a,(f@)n) are obtained using

§(a%)n) messages 17(
loopy (iterative) BP. First, for each measurement, mEM(j )

messages Vr(,f)_,s(gijs)m) and, then, for ss’ GD(J) messages

. (a%)n) are calculated iteratively according to [44], [47],
for each iteration index p € {1,..., P}. After the last iteration
p = P, the messages n( (jg) n) and g(ﬁ%?n) are calculated ac-

cording to [44], [47]. Details are provided in the supplementary
material [37, Section III].
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7) Measurement Update for the Agent: The message
v (@,,) sent from the factor node 4p (20, a((fo)n, 27 1o the

agent variable node is computed as

& Z n(aéj())n)qp(m”’aéo)n7z(j))'

Y00 ( ) = (34)
agy)  €EMG),

For s = ¢/, the messages %Si) (x,,) sent from the factor node

Qs (p(jl)nm 1 ags)n,mn, G )) to the agent variable node are
given by
D)= 3 n(ad),) / 4 (B9, 1,08, 20 29)
ass) GM(J)
xay(p9) 1) dpY) 4 n(al),=0)all). (35)

Furthermore, for s # s’, the messages passed from the fac-
tor node ¢, (p¥) .1 pgj)mva, 1,a)  @,;25) to the agent

=ss’,n?
variable node are obtained as

7)) = a2 [[an@ Deaw (B, 1)
g(J) EME]])
X qD (pgjgrlva pi‘J)mvaL7 1’ agjs) n? Ln; 2 (J))
(36)
8) Measurement Update for Legacy PMVAs: Similarly,

for s = &', the messages p. (y7)) sent to the legacy PMVAs
variable nodes are given by

D= Y [fuad)ate)

angs) n GME)J)ZL

Dss (p(J)

S mva

qu(p(j) .1 a) Tz ())dwn (37)

)=s58,n7

pss(BY) ,.0) £ pi) = 1(all), =0) (38)
and for s # s’ by
pss’ (B‘(s{r)nva’ 1) = Z // Ss) n CUn)
a2 EME,
X Qg (p(J,)de 1)
X qp (pial)nva i])mva7 &gs) Tz (J))
X da:ndpij )mva (39)
Pss’ ( EAt)nvw 0) = P(])/ - Oéi])nn( gjs) n_o) (40)

Based on these messages,
PA 'y(ggji) is computed as

the message sent to the next

V(P9 1) =as () 1) (pes (), 1)
s
+ I rw@f).1)) @
s'=1,s#s’
Sflj)
a ()
(@Y .0 &£l =al) (ﬂgi) + I ﬂsif) 42)

s'=1,s#s’
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9) Measurement Updatef for New PMVAs: Finally, the
messages qb(y%)n) £ ¢(ﬁ£ﬂl?mva, ?5,%)”) sent to the new PMVA
variable nodes are obtained as

O 1) = [ 050 s 1050 260,)

x a(zy)dz,s (@), =0) (43)
0P mar0) 200 = > <(@il,). (44)

@), eDy),

C. Belief Calculation

After the messages for all PAs, j € {1, ..., J} are computed,
the belief f(ax,,) of the agent state can be calculated as normal-
ized production of all incoming messages [50], i.e.,

IT % wn>H’v

(s,s’)GDﬁ{’)
with normalization constant C, = ( [ a(z,) H(&S,) D)

725)( )szl fyé'g))(scn)dmn)_l that guarantees that (45)
is a valid probability distribution. Similarly, the beliefs

f(x,)=Cha(z,) < ) (45)

s (y\)) = s () 7“(;2) of legacy PMVA s € S/, is given
by "

Fl)) =Conn(w)) (46)
with constant Qs’n:(fv(p(‘])va r{)=1 )dp(‘]) vaﬂﬁji?)‘l.
Similarly, the f, (yﬁ,{ )n) fm (pm nvas rgn)n) of new
PMVA m € M/, is obtained as

Fn(@50) = Crnind (G520, @7)
where =([ o@Dyl + &%) ' is  again
a constant.

A computationally feasible sequential particle-based mes-
sage passing implementation can be obtained following [3],
[43], [51]. In particular, we adopted the approach in [51] using
the “stacked state” comprising the agent state and the PMVA
states. To avoid that the number of PMVA states grows indefi-
nitely, PMVAs states with p(rgjy)l—1|z1m) below a threshold
ppr are removed from the state space (“pruned”) after pro-
cessing the measurements of each PA j. To limit computation
complexity, one might limit the maximum number of PMVA
states, i.e., in case S, > Spax, Where Sp.x is another pre-
defined threshold, only the S),.xPMVA states with the high-
est existence probability are considered when the measure-
ment of the next PA is processed. Pseudocode for the particle-
based implementation is provided in the supplementary material
[37, Section V].

D. Implementation Aspects and Computational Complexity

When beliefs of new PMVAs (cf. (47), (43), (44), and (23))
are introduced, contrary to [3], [43], we do not use the con-
ditional prior PDF of newly detected MVAs, f, (pgfl?mva|pn),
as a proposal PDF. We develop an alternative proposal PDF
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where first samples of péQva are obtained by using the inverse
transformation of (5) and (6). Based on the resulting samples of
pg),va, samples of p%?mva can then be computed by exploiting
the inverse transformation in (4).

New PMVA states are introduced based on the assumption
that the measurements come from a single-bounce path. How-
ever, if a measurement from a double-bounce path is used, the
corresponding PMVA will be pruned after a few time steps.
This is because, due to the assumption that the measurement
is from a single bounce path, the spatial distribution of the cor-
responding new PMVA has high probability mass at incorrect
locations. As a result, the probability of its existence will vanish.
Dropping this assumption would require the introduction of new
PMVAs-pairs for each measurement, significantly complicating
the data association.

The computational complexity of the jth processing block
that performs probabilistic data association can be analyzed as
follows. As discussed in [3], [44], the computational complexity
of such a processing block scales as O(LY) M), where LU) is
the number of PMVA-oriented association variables, and M is
the number of measurement-oriented association variables. It
can easily be verified that in the proposed model, LU) is upper
bounded by SU)2. The computational complexity of the jth
processing block thus scales as O(SU)2M). If conventional
probabilistic data association [53] would be used, i.e., if the
graph structure related to PMVA-oriented association variables
and measurement-oriented association variables were not
exploited, the computational complexity would scale
exponentially in the number of PMVAs and the number
of measurements. It is straightforward to see that after
appropriate pruning, as discussed in the previous Section V-C,
the computation complexity is linear in the number of
processing blocks and, thus, in the number of PAs. Note that
even a moderate number of PMVAs leads to a large number
of corresponding VAs. A key feature of the proposed method
that makes this possible is that probabilistic data association
can be solved in a scalable way.

VI. EVALUATION

The performance of the proposed MVA-based SLAM al-
gorithm is validated and compared with the multipath-based
SLAM algorithm from [3] that has been extended to use AOA
measurements described here and in [4], the channel SLAM
algorithm from [2], and the multipath assisted positioning al-
gorithm from [40] using synthetic measurements as well as real
RF measurements. Additional simulation results can be found
in the supplementary material [37, Section IV].

A. Common Setup and Performance Metrics

The agent’s state-transition pdf f(x,|®,—1), with x, =
[pT vI]T, is defined by a linear, near constant-velocity mo-
tion model [54, Sec. 6.3.2], i.e., ,, = Ax,,_1 + Bw,,. Here,
A cR*¥* and B € R**2 are as defined in [54, Sec. 6.3.2]
(with sampling period AT = 1s), and the driving process w,,
is iid across n, zero-mean, and Gaussian with covariance ma-

trix 0312, where I, denotes the 2 x 2 identity matrix and o,
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denotes the acceleration noise standard deviation. For the sake
of numerical stability, we introduced a small regularization
noise to the PMVA state p; ,,,,, at each time n, i.e., p =

—s,mva

Py mva T Ws, Where wj is iid across s, zero-mean, and Gaussian
with covariance matrix o2I,. The particles for the initial agent
state are drawn from a 4-D uniform distribution with center

zo = [pf 0 0]T, where p,, is the starting position of the actual
agent trajectory, and the support of each position component
about the respective center is given by [—0.5m, 0.5 m] and of
each velocity component is given by [—0.1m/s, 0.1 m/s]. At
time n =0, the number of PMVAs is Sy =0, i.e., no prior
map information is available. The prior distribution for new
PMVA states f,(¥,, ) is uniform on the square region given by
[-15m, 15 m] x [~15m, 15 m] around the center of the floor
plan shown in Fig. 4(a) and the mean number of new PMVA
is pt, = 0.05. The probability of survival is ps = 0.999, the
confirmation and pruning thresholds are respectively p.s = 0.5
and p,, = 1073. We performed 500 simulation runs. The per-
formance of the different methods discussed is measured in
terms of the root mean-square error (RMSE) of the agent posi-
tion, as well as the optimal subpattern assignment (OSPA) error
[55] of VAs and MVAs. Since the proposed method estimates
MVAs, we first map MVA estimates to VA estimates following
equation (3), before we compute OSPA errors of VAs. OSPA
is a multi-object tracking metric that combines a localization
error and a cardinality error into a single scalar score. As a re-
sult, it penalizes both state estimation inaccuracy and incorrect
numbers of estimated features. We calculate the OSPA errors
based on the Euclidean metric with cutoff parameter ¢ = 5m
and order p = 1. The mean OSPA (MOSPA) errors, RMSEs
of each unknown variable are obtained by averaging over all
converged simulation runs. We declare a simulation run to be
converged if {Vn: ||, — x,|| < 5m}.

For synthetic measurements (Experiment 1-3), we use the
following common parameters. The detection probability of
all paths is pfjj’lsyn :pg’is,’n = pa = 0.95 for (s,s) € Ds and
(s,8') € Dp, respectively. In addition, a mean number pep =1
of false positive measurements z%)n were generated according
to the pdf fg, (z%)n) that is uniformly distributed on [0 m, 30 m]
for distance measurements and uniformly distributed on [—7, 7]
for AOA measurements. In each simulation run, we generated
noisy distance and AOA measurements according to (5) and (6)

stacked into the vector z%)n

B. Reference Methods

In the following sections, we compare the proposed MVA-
based SLAM algorithm (PROP) to four different reference
methods as described in the following:

1. MP-SLAM: The multipath-based SLAM algorithm from
[3]. The method considered here is a combination of [3]
and [4] since in [4] statistical model of [3] is extended
to AOA measurements of MPCs. However, in contrast
to [4], we do not use the component SNRs estimates of
MPCs. Contrary to the method proposed in this paper, the
reference method does rely on a much simpler statistical
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Scenarios used for numerical evaluation: (a) shows the scenario for Experiments 1 and 2 in Sections VI-C and VI-D. This scenario consists of a

rectangular room with two PAs, i.e., there are four reflective surfaces. MVAs and VAs corresponding to single-bounce paths are shown. (b) Shows the scenario

for Experiment 3 in Section VI-E which consists of two PAs, two reflective

surfaces and an obstructing wall segment. MVAs and VAs corresponding to

single-bounce paths are shown. (c) Shows the scenario for Experiment 4 in Section VI-F. This scenario consists of a classroom with two PAs and four main
reflective surfaces. Particle representations of the beliefs of MVA positions are shown as blue crosses. A line representing a reflecting surface is computed
and shown as a dashed blue line for each particle. The geometric relations used to calculate a line from an MVA position have been presented in Section II.

model without MVAs and ray-tracing. It thus cannot fuse
data across propagation paths and VAs.

CH-SLAM: The channel SLAM algorithm from [2]. We
only implemented the channel SLAM algorithm proposed
in [2], not the full two-stage method that includes a
channel estimator/tracker. Since the measurement-feature
association is unknown, we perform Monte-Carlo data
association for each particle separately, as it is commonly
done in classical Rao-Blackwellized SLAM [56, Section
13], [10], [12].

3. MINT: The multipath-based positioning algorithm from
[40], which assumes known map features (i.e., the VA
positions are known).

LOS-MINT: A reduced version of MINT, where we only
consider the PAs (i.e., no VAs).

We used 50000 particles for PROP, MP-SLAM, MINT, and
LOS-MINT. For CH-SLAM, we used 2000 particles for the
agent and 1000 for the VAs. To analyze the performance gain
due to exploiting double-bounce reflections, we generate two
different datasets: (Setup-I) the full setup considering all VAs
corresponding to single-bounce and double-bounce paths and
(Setup-II) a reduced setup considering only VAs corresponding
to single-bounce paths. If not stated differently, measurements
are generated according to Setup-I.

4.

C. Experiment 1: Comparison With Reference Methods

In this experiment, we compare PROP to MP-SLAM and
CH-SLAM. Furthermore, we compare PROP with measure-
ments generated without false positive measurements and
missed detections termed ground-truth (GT) for Setup-I and
Setup-II. We consider the indoor scenario shown in Fig.
4(a). We chose the scenario to be identical to [3] for easy

comparison. The scenario consists of four reflective surfaces,
ie., K =4MVAs and two PAs. The noise standard devia-
tions for the LOS path are ad%?n =0.05m and US"%)n =10°,

() U) =150,

m, m,n

and for double-bounce path are oq 0.15m and 0,)) =
25°. The acceleration noise standard deviation is oy, =9.
1072 m/s?. As an example, Fig. 4(a) depicts for one simulation
run the posterior PDFs represented by particles of the MVA
positions and corresponding reflective surfaces as well as es-
timated agent tracks. Fig. 5(a) shows the MOSPA error for the
two PAs and all associated VAs, Fig. 5(b) shows the MOSPA
error for all MVAs, and Fig. 5(c) shows the RMSE of the agent’s
position all versus time n. Finally, Fig. 5(d) shows the cumu-
lative frequency of the agent errors (not excluding the diverged
runs). Note that for all algorithms, none of the 500 simulation
runs diverged.

The MOSPA error of PROP related to VAs and PAs is de-
picted in Fig. 5(a). It can be seen that the MOSPA drops signif-
icantly after only a few time steps. In contrast, MP-SLAM only
converges rather slowly to a small mapping error. Furthermore,
the MOSPA error of PROP converges along the agent track to
a smaller value, i.e., to a smaller mapping error. This shows
that PROP efficiently exploits all measurements for the map
features provided by the PAs. Fig. 5(b) shows the MOSPA
error of the MVA positions, which confirms the results seen in
Fig. 5(a). The RMSE of the agent position in Fig. 5(c) of PROP
is considerably smaller than that of MP-SLAM along the whole
agent track. Moreover, the RMSE of the agent position of PROP
consistently decreases over time n, while that of MP-SLAM
increases slightly during changes in the agent’s direction. PROP
consistently demonstrates a statistically significant improve-
ment in accuracy across all metrics, as illustrated in Fig. 5(d),

for single-bounce path are o4/, = 0.10m and o,

() _

m,n —
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Fig. 5. Performance results for Experiment 1 in Section VI-C: (a) MOSPA
errors of the VAs of each PA, (b) MOSPA errors versus time of the MVAs,
(c) RMSEs of the agent position versus time, and (d) cumulative frequency
of the RMSEs of the agent position.

facilitating the statistical dependencies across multiple paths
and PAs. Furthermore, the results comparing Setup I and II us-
ing GT measurements illustrate that leveraging double-bounce
paths systematically improves the performance of PROP. The
average runtimes per time step for MATLAB implementations
on a single core of Intel i7 CPUs (computer cluster with dif-
ferent versions of CPUs) were measured 4 s for PROP, 1.2 s for
MP-SLAM, and 11 s for CH-SLAM Rao-Blackwellized SLAM
explicitly considers dependencies of map features and agent
state in its posterior representation. For this reason, CH-SLAM
[2] is computationally demanding.

D. Experiment 2: Varying Measurement Uncertainties

In this experiment, we analyze the performance of PROP
with varying measurement noise standard deviations and com-
pare it to MP-SLAM. In particular, we introduce factors fyq. an
and fia10s. Both factors equally increase the base Values of
all measurement standard deviations in distance ad%?n and
AOA 0,00 for all me My |jeJ ne{l, .., N} in a
multiplicative way. Base values are set as the measurement
standard deviations of Experiment 1. While fyq .1 affects mea-
surements corresponding to PAs and MVAs, fd.10s affects only
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Fig. 6. Performance results for Experiment 2 in Section VI-D for different
noise standard deviations. Errors are averaged across time steps. Different
noise standard deviations are used for all VAs and PAs: (a) MOSPA errors of
VAs of each PA, (c) MOSPA errors of MVAs, and (¢) RMSEs of the agent
positions. Different noise standard deviations are used for all PAs: (b) MOSPA
errors of VAs of each PA, (d) MOSPA errors of MVAs, and (f) RMSEs of
the agent position.

measurement standard deviations corresponding to PAs (i.e.,
LOS measurements). The scenario is identical to experiment
1 of Section VI-C. Note that for all algorithms none of the 500
simulation runs diverged.

Fig. 6(a)—(f) shows the mean MOSPA of VAs and PAs, the
mean MOSPA of MVAs or the mean agent RMSE, respec-
tively, over all time steps n as a function of fiqan O fsidos-
In particular, in Fig. 6(a), 6(c) and 6(e) we varied fgq.n and
kept fqdlos = 1 fixed, while in Fig. 6(b), 6(d) and 6(f) we
varied fydos and kept fid.an £ 4 fixed. The VAs MOSPA errors
in Fig. 6(a)-(d) emphasize the observations of Experiment 1
(Section VI-C). All error values increase with increasing fgg an-
However, the MOSPA errors of the proposed method increases
much slower. This is because the proposed method can fuse
information provided by different PAs and different propagation
paths. In contrast, the agent RMSE in Fig. 6(e) remains constant
for both methods as there is still enough information available
for proper localization, mainly provided by the PAs. Thus, when
additionally increasing fgq10s in Fig. 6(f), the RMSE of MP-
SLAM significantly increases. In contrast, the agent RMSE
of PROP remains approximately constant due to the increased
map stability.

E. Experiment 3: Low Information and Obstructed LOS

In this experiment, we analyze the performance of PROP in
the scenario shown in Fig. 4(b). It contains only two reflective
walls (K = 2) while one short wall obstructs the LOS path,
i.e., the path between PAs and the agent as well as the paths
between VAs and agent [57]. The obstructing wall does not
cause any VAs due to the geometric constellation. We compare
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Fig. 7.  Performance results for Experiment 3 in Section VI-E: (a) MOSPA
errors versus time of MVAs, (b) RMSEs versus time of the agent position, and
(c) cumulative frequency of the RMSEs of the agent position (with outliers).

MP-SLAM, MINT, and LOS-MINT. The scenario contains two
PAs. We generate the distance and the AOA of the individual
MPC parameters according to a RF signal model [24]. We
assume the agent has a 3 x 3 uniform rectangular array (H =9)
with an inter-element spacing of 2 cm. The transmit signal
spectrum has a root-raised-cosine shape, with a roll-off factor of
0.6 and a 3-dB bandwidth of B = 500 MHz centered at 6 GHz
resulting in a sampling time of Ty = 1/(1.6 B). The amplitude
of each MPC is assumed to follow free-space path loss and
is attenuated by 3 dB after each reflection. The SNR output
at 1 m distance to the agent is assumed to be 38 dB. The
measurement noise standard deviations are calculated based on
the Fisher information [4], [7], [24]. The acceleration noise
standard deviation is o, = 0.02m/s.

Fig. 7(a) shows the MOSPA error for all MVAs, Fig. 7(b)
shows the RMSE of the agent’s position for converged sim-
ulation runs, all versus time n. Finally, Fig. 7(c) shows the
cumulative frequency of all agent’s position errors (not ex-
cluding the diverged runs). We show results for all investi-
gated algorithms, where solid lines correspond to Setup-I and
dashed lines correspond to Setup-II as described above. For
PROP and MP-SLAM, none of the 500 simulation runs di-
verged, but 30 % of the simulation runs diverged for LOS-
MINT. LOS-MINT performs poorly, as in the central part
of the track (n =93 to n=107), the LOS to all anchors
is obstructed. This leads to LOS-MINT tending to choose
an MPC as the LOS hypothesis as the agent state gradually
becomes more uncertain. Fig. 7(b) illustrates the benefits of
PROP with respect to MP-SLAM, as it systematically leverages
both PAs as well as both single-bounce and double-bounce
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Fig. 8.

Picture of the classroom used for data collection.

propagation paths to infer the map features leading to a re-
duction in the RMSE of the agent’s position. Furthermore,
Fig. 7(c) statistically shows that this fusion results in fewer
instances of large agent errors and that PROP consistent out-
performs MP-SLAM. A possible explanation is the increased
presence of MVAs and their corresponding reflective surfaces,
which are more likely to exist due to the additional double-
bounce measurement update. Although the single-bounce paths
may not be visible, their absence is compensated by the fact
that the proposed method performs data fusion across multiple
propagation paths, as observed in Fig. 7(a). In contrast, MP-
SLAM independently estimates each VA, thus lacking this ad-
vantageous feature. MINT has perfect (prior) knowledge of the
VA positions and, thus, provides a lower bound for VA-based
SLAM algorithms. PROP, which exploits double-bounce prop-
agation paths, comes close to approaching this lower bound.
Note that, in Fig. 7(b), between n = 0 and n = 80, LOS-MINT
shows a slightly higher positioning accuracy compared to the
proposed method. This difference is due to the uncertainty in
MVA positions. A theoretical analysis on how uncertainty of
map information affects the positioning accuracy of the agent is
provided in [8], [9].

E Experiment 4: Validation Using Measured Radio Signals

To validate the applicability of the proposed MVA-based
SLAM algorithm to real RF measurements, we use data col-
lected in a classroom shown in Fig. 8 at TU Graz, Austria.
More details on measurement environment and VA calculations
can be found in [3], [6], [58]. On the PA side, a dipole-like
antenna with an approximately uniform radiation pattern in the
azimuth plane and zeros in the floor and ceiling directions was
used. At each agent position, the same antenna was deployed
multiple times on a 3 x 3, 2-D grid to yield a virtual uniform
rectangular array with an inter-element spacing of 2 cm. The
UWB signals are measured at 180 agent positions along a
trajectory with position spacing of approx. 5 cm as shown in
Fig. 4(c) using an M-sequence correlative channel sounder with
frequency range 3.1-10.6 GHz. Within the measured frequency-
band, the actual signal spectrum was selected by a filter with
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Fig. 9. Performance results for Experiment 4 in Section VI-F: (a) RMSEs
versus time of the agent position and (b) RMSEs versus time of the agent
orientation.

root-raised-cosine shape, with a roll-off factor of 0.6 and a 3-
dB bandwidth of B =1 GHz centered at 6 GHz. The received
signal is critically sampled with Ty = 1/(1.6 B) and artificial
AWGN is added such that the output signal-to-noise-ratio is
SNR =30 dB. We apply a variational sparse Bayesian para-
metric channel estimation algorithm [18] to acquire the M,SJ )
distance estimates zd%)n and AOA estimates z,) of MPCs.
The corresponding noise standard deviations are calculated
based on the Fisher information [4], [7], [24]. Compared to the
synthetic setup, we changed the mean number of false alarm
measurements to g, = 3, the detection probability to pq = 0.7,
regularization noise standard deviation to o, = 2 - 10~2 m, and
the acceleration noise standard deviation to o, = 0.0114m/s?.
Note that for all algorithms, none of the 500 simulation
runs diverged.

Fig. 4(c) depicts for one simulation run the posterior PDFs
represented by particles of the MVA positions and correspond-
ing reflective surfaces as well as estimated agent tracks. PROP
can identify the main reflective surfaces of the room (The lower
wall is only visible at the beginning of the agent track since
the reflection coefficient is very low). Although the walls have
a rich geometric structure (windows, doors, etc.) and gener-
ate many MPCs estimates, i.e., measurements, PROP robustly
estimates the main walls.’ Fig. 9 compares PROP and MP-
SLAM in terms of the agent RMSE. Fig. 9(a) shows the RMSE
of the agent’s position, and Fig. 9(b) shows the RMSE of the
agent’s orientation for simulation runs, all versus time n. The
comparison of the position RMSEs shows a similar behavior
as for synthetic measurements (see Fig. 5), i.e., PROP out-
performs MP-SLAM. The mapping capability and low agent
RMSEs of PROP, when applied to real RF signals, demonstrate
the high potential of PROP for accurate and robust RF-based
localization.

SNote that [3, Figure 7] shows results using real measured radio signals
in the same environment. This figure shows the presence of single-bounce
and multiple-bounce propagation paths. For instance, in the case of the PA
indicated in blue, the double-bounce path related to left and top VA is clearly
visible. It is particularly noteworthy that single-bounce and double-bounce
paths are consistently observable along a significant portion of the agent track.
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VII. CONCLUSION

In this paper, we introduced data fusion for multipath-based
SLAM. A key novelty of our approach is to represent each
reflective surface in the propagation environment by a sin-
gle MVA. In this way, we address a key limitation of exist-
ing multipath-based SLAM methods, which represent every
propagation path by a VA and thus ignore inherent geomet-
rical constraints across different paths that interact with the
same reflective surface. As a result, the accuracy and speed
of existing multipath-based SLAM methods are limited. A key
aspect in leveraging the advantages of the introduced MVA-
based model was to check the availability of single-bounce and
double-bounce propagation paths at potential agent positions
by means of ray-tracing (RT). Availability checks were directly
integrated into the statistical model as detection probabilities of
paths. Our numerical simulation results demonstrated signifi-
cant improvements in estimation accuracy and mapping speed
compared to state-of-the-art multipath-based SLAM methods.
Looking forward, we expect to extend our approach to large-
scale scenarios and more realistic 3-D environments. We expect
such an extension to yield significantly increased computational
complexity due to an increased dimensionality of the states to
be estimated and an increased number of MVAs due to floor
and ceiling surfaces. Promising directions for future research
also include an extension to multiple-measurement-to-feature
data association [25], [59] and an advanced MVA model, where
the length and shape of reflective surfaces [16] are also taken
into account. Another future research venue aims at incorporat-
ing amplitude information to make detection probabilities and
measurement variances adaptive [4], [24], [57].
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