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Abstract—This paper considers the problem of cooperative
lidar sensing in vehicular networks. We focus on the task of
associating the vehicle-generated measurements by lidars to
enable a cooperative detection of vulnerable road users. The
considered measurements are the three-dimensional bounding
boxes extracted from the lidar point cloud. Focusing on a
centralized architecture which aggregates and processes all the
sensing information, we design a graph formulation of the
association problem and we propose a novel solution based
on Message Passing Neural Networks (MPNNs). The method
has the advantage of accurately learning the associations and
the measurement statistics directly from data. We validate the
proposed approach on a cooperative sensing scenario simulated
by CARLA, an open-source high-fidelity simulator for automated
driving scenarios. For the generation of bounding boxes related to
pedestrian detections, we consider both artificially-generated and
realistic measurements obtained by employing the PointPillars
model. We validate the performance by comparing the proposed
MPNN model with the Sum-Product Algorithm for Data Asso-
ciation (SPADA), a common approach for data association in
multisensor systems. The proposed data-driven MPNN model
achieves an association accuracy above 99% and outperforms
SPADA in case of moderate sensing errors, as foreseen by
automated driving scenarios. We also assess the efficacy of data
association in case of mis-modeling between training and testing
datasets, observing good generalization capabilities when dealing
with untrained conditions.

Index Terms—Cooperative lidar, pedestrian detection, data
association, MPNN, SPADA, CARLA simulator.
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I. INTRODUCTION

A. Contextualization and Background

IN the last two decades, driving automation functionalities
have advanced at an incredible rate, allowing an accurate

perception of the environment for enhancing vehicle safety [1],
[2]. At the same time, the development of cellular communica-
tions for the automotive vertical (e.g., 5G and beyond) is driving
a new connectivity paradigm for mobility [3], [4], [5]. Vehicle-
to-Everything (V2X) communications enable a seamless infor-
mation sharing among vehicles, road infrastructures and any
other road entity over Vehicle-to-Vehicle (V2V) or Vehicle-
to-Infrastructure (V2I) links. Examples of exchanged informa-
tion in V2X networks include sensor data, driving intents and
planned trajectories, or safety-related messages [6]. Moreover,
V2X communications allow to extend the ego-sensing capabil-
ities beyond the immediate field of view of on-board sensors,
enabling the cooperation across sensing systems of different
vehicles. The aggregation of data from spatially distributed
sensors (both on vehicles and road infrastructure) through V2X
links fosters the deployment of the so called Cooperative Local-
ization (CL) systems [7], [8], [9], [10], [11], [12]. A relevant use
case for CL in V2X networks is related to Vulnerable Road User
(VRU) detection [13], [14], where cooperation can significantly
improve the detection capability.

Regardless of whether these sensors are located in the same
vehicle [15], [16] or across different units [17], [18], [19],
CL heavily relies on the correct association of sensor mea-
surements, i.e., data association [20], [21], [22]. While data
association may appear as a simple task, numerous studies have
emphasized the importance of addressing this problem due to
the limitations of naive solutions that simply associate closely
detected objects [23], [24], [25], [26]. These solutions only
yield meaningful results if all vehicles detect an identical num-
ber of objects, which is an unrealistic assumption due to varying
sensor hardware and fields of view, and do not have false alarms
due to clutter. Consequently, it is essential to associate multiple
sets of measurements related to distinct detected objects that are
only partially in common among vehicles.

In the literature, classical approaches for data association
were developed for solving the Multiple Object Tracking
(MOT) problem, with the ultimate goal of estimating the
trajectories of unknown and time-varyingobjects. Differently
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from the localization of active devices, passive targets pro-
duce unknown measurement-to-target connections, which have
to be associated before running any CL algorithm. The fu-
sion of multiple sensors’ measurements can take place under
centralized [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], distributed [37], [38], [39], [40], [41], [42] or hybrid
network architectures [43], [44].

In this paper, we focus on a centralized solution in V2X
networks where a central processing unit is in charge of
combining the raw data (or derived characteristics) from all
connected vehicles. Specifically, the aggregated measurements
refer to bounding boxes extracted from lidar sensors at the
vehicles. Centralized solutions in the literature mainly rely on
probability-based methods such as Belief Propagation (BP),
also known as Sum-Product Algorithm (SPA), which gives a
systematic approximation of optimal Bayesian inference with
an appealing performance-complexity trade-off [45]. BP uses
an iterative message passing exchange of information over a
suitable graph characterizing the specific problem. BP-based
techniques are optimal in case of linear and Gaussian models,
but provide only an approximation in case of loopy graphs
or statistical distributions arising from real systems [21], [22].
Differently from BP-based solutions, we here propose to use
Message Passing Neural Networks (MPNNs), that allow to im-
prove performances upon SPA by directly learning the correct
associations and noise distributions from data.

B. Related Works

First works of MOT task were developed in the domain of
radar and sonar tracking [30], [31], [32], [33], [34]. Traditional
MOT methods, such as Joint Probabilistic Data Association
(JPDA) [46], Linear Joint Integrated PDA (LJIPDA) [47] and
Multiple Hypothesis Tracker (MHT) [48], assume that the
number of targets is known and jointly estimate the target
states and association variables. These approaches have been
later extended to consider also multi-sensor scenarios [49],
[50] as in Linear Multitarget IPDA (LMIPDA) [51]. Recent
studies, including probability hypothesis density (PHD) filters
[52], [53], adopt finite set statistics to predict the number
of targets and target states without directly estimating the
association variables. Other studies addressing probabilistic
data association can be found in [54], [55], [56], [57], [58],
[59]. However, most MOT approaches have limited scalability
as the number of sensors and targets grows. Improvements
from this point of view have been introduced by BP techniques
that are able to achieve high scalability [45]. BP approaches
have been investigated for both centralized [27], [28], [29],
[36] and distributed [37], [38] solutions.

As far as the data association is concerned, one of the most
prevalent approach is to use a graph formulation, which fa-
cilitates the description of relationships among multiple mea-
surements on a same set of detected targets. Many solutions
that use graphs to solve data association take into account all
feasible assignments at the same time, yielding to an NP-hard
combinatorial problem [60], [61]. To reduce the complexity,
sub-optimal (greedy) methods have been proposed, casting the
problem as a linear one and addressing it through minimum-
cost [62] and maximum-flow algorithms [63]. These methods,

however, do not guarantee satisfying performance, especially in
cluttered and occluded environments [64], [65].

Another possibility to successfully manage data associa-
tion is to build Machine Learning (ML) models that directly
learn from data. ML, and in particular Deep Neural Networks
(DNNs), have been embedded inside graphs thanks to the rise
in popularity of Graph Neural Networks (GNNs) [66], [67].
GNNs, and more specifically MPNNs, inherit the message pass-
ing structure of SPA to produce the desired output from a set
of inputs. Indeed, they have been jointly used with the SPA to
improve the overall performances by correcting errors created
by cycles and model mismatch [68], [69]. Compared to DNNs,
MPNNs have fewer parameters but they can still catch the linear
and non-linear relationships between input data and output,
being at the same time scalable [70]. Moreover, MPNNs have
been shown to outperform BP on loopy graphs, provided that
enough training data is available [71].

C. Contribution

To the best of our knowledge, GNNs have never been ex-
plored for cooperative sensing nor for vehicular networks.
Drawing inspiration from [72], where the detections obtained
by a single camera system were associated over consecutive
time frames, we here modify and extend the approach to a coop-
erative (i.e., multi-vehicle) scenario. We consider a centralized
network of vehicles, each with a single lidar sensor, with over-
lapped Field-of-Views (FOVs) allowing a cooperative detection
(at the same time instant) of pedestrians through the associa-
tion of multiple bounding boxes extracted from the lidar point
cloud. We selected pedestrians as they are passive elements of
the environment and are extremely relevant for safety-related
applications (e.g., vulnerable road user protection) as well as
they are popularly present in urban areas. Alternatively, vehicles
could also be used, but they are typically equipped with active
devices in Cooperative Intelligent Transport Systems (C-ITS)
(following V2X paradigms), thus notifying their presence in
the near surroundings. On the other hand, passive targets, such
as pedestrians, traffic signals or poles [73], are not univocally
identified and, therefore, data association is needed for their
recognition and cooperative detection by multiple sensors.

We assume that the lidar detection system does not incur false
detections (i.e., incorrect bounding boxes), which would require
a tracking over time to resolve the ambiguity; here we focus
on a snapshot-based data association. This assumption may not
always hold in real-world scenarios, especially when objects
are partially occluded. However, we employ a filtering strategy
that is widely adopted in deep learning object tracking and
discards unlikely bounding boxes with low detection confidence
(see e.g., [74] for a more complete discussion). This helps
limiting the false positives as very unlikely bounding boxes are
automatically removed by the detector1. We also assume the
noise statistics as invariant across all sensors, a condition which
in practice might not be fulfilled due todifferent hardware and

1Complete removal of false positives may be accomplished by not only tak-
ing into account the detection confidence but also the temporal dependencies
of detections across adjacent time instants. This extension, not considered
here, requires solving the data association problem over multiple graphs
relating to adjacent time instants.
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lidar processing techniques. Including the variation over time of
uncertainties and designing an MPNN-based tracker with data
association are non-trivial issues that require deeper research
relying on this first activity as a starting point.

We propose an ML approach based on GNNs that exploits
the availability of training data, today largely accessible in
most applications. In particular, we address the data association
problem through MPNNs in a V2X network where vehicles
share the detections of lidar sensors in a common infrastructure
(e.g., cloud-based). We choose to focus on data association
using MPNNs for two main reasons. First, data association
is a crucial component in cooperative sensing algorithms, as
accurate assignment of detections to tracks significantly im-
pacts the tracking performance: our goal is to provide a solid
foundation for more robust tracking solutions. Second, using
MPNNs for data association is an innovative approach with
great potentials for learning complex relationships in graph-
structured data, providing valuable insights and future research
opportunities.

A preliminary version of the proposed method has been
presented in [75], where we developed a unique graph represen-
tation of the data association problem which is handled by an
MPNN model that captures the measurements’ characteristics
and produces a compact and effective feature representation.
While in [75] we focused on a simple proof-of-work imple-
mentation and stand-alone validation in a vehicular scenario,
in this paper we extend the work with the main following
contributions:

• proposal of MPNNs models for the cooperative association
of 3D bounding boxes from lidar sensing in vehicular
networks;

• analysis of the generalization capabilities of the MPNN
association model over a number of different and realistic
measurement statistics;

• validation of the suggested approach in a realistic cooper-
ative vehicular environment simulated with CARLA [76]
where a central unit fuses the bounding boxes obtained
by multiple vehicles from on-board lidar data using the
PointPillars [77] model;

• comparison with the conventional Sum-Product Algorithm
for Data Association (SPADA) [21], [22], with particu-
lar focus on association performances and generalization
properties.

Note that the assessment on a synthetic cooperative dataset
considers the use of an efficient 3D object detector, which has
been demonstrated to provide accurate performances in chal-
lenging real-world datasets [77]. Since the primary focus of this
work is on the fusion over the V2X networks of bounding boxes
from multiple vehicles and not on the processing of raw lidar
point clouds, any signal losses or adverse weather conditions
are not affecting the proposed MPNN as they only reduce the
performance of the 3D object detector operating over the lidar
point cloud.

Numerical results show that the proposed method is able
to efficiently address the data association issue in coopera-
tive connected multi-vehicle systems, and to correctly learn
extremely complex (e.g., multi-modal) distributions, such as

the realistic PointPillars outputs. Moreover, with respect to
SPADA, the proposed MPNN model can achieve higher perfor-
mances across different noise statistics and intensities in several
circumstances.

D. Paper Organization

This paper is organized as follows: Section II introduces the
system model of the cooperative sensing scenario and its graph
representation. Section III firstly provides an introduction on
the working principle of GNNs, and then defines the proposed
MPNN solution. Section IV is devoted to performance analysis
in a cooperative vehicular scenario with lidar-based pedestrian
detection and to the comparison with SPADA. Finally, Sec-
tion V draws the conclusion.

II. SYSTEM MODEL

Let us denote with Sn = {1, ..., Sn} a set of connected ve-
hicles at time n. A vehicle s ∈ Sn is described by the state
vector xs,n, which can include kinematic (e.g., position, veloc-
ity, etc.) and non-kinematic (e.g., identification number, cate-
gory, dimension, etc.) parameters. All vehicles are connected
to a central processing unit (e.g., a road side unit or a mobile
edge cloud) in charge of aggregating the vehicle-generated in-
formation and providing a cooperative detection system. We
assume an always-available connectivity: model and effects of
the communication protocol are out of the scopes of this paper.
Each vehicle has a lidar sensing system embedding an ML algo-
rithm for detecting non-cooperative vulnerable road users, here
pedestrians, referred to as targets. The k-th target is described
by the state vector yk,n, while the set Ys,n includes all the
pedestrians detectable by vehicle s (i.e., within its FOV) at time
n. By processing the lidar point clouds gathered at the vehicles
via 3D object detection methods, such as [78], [79], each target
falling within the lidar sensing range can be recognized and
represented by a bounding box encoding its location, extension
and rotation. Each target is assumed to generate at most one
bounding box at a vehicle per each time step. This assumption,
known as “data association assumption” [80], is common in ob-
ject detection models for lidar point clouds, and more in general
in MOT algorithms, as it helps to simplify the detection and
tracking process, reduce ambiguities, and improve the overall
tracking performance. The m-th bounding box at vehicle s at
time n is zsm,n and the associated target is unknown. As such,
at time n, a sensor has a set of unpaired (to the originating
target) bounding boxes zsn = {zs1,n · · · zsM,n}. Note that the set
zsn could even be empty. The union set of all bounding boxes
of all vehicles at time n is Zn =

⋃Sn

s=1 z
s
n.

To visualize the considered vehicular scenario, in Fig. 1(a) we
report the case of two vehicles, x1,n and x2,n, jointly detecting
two pedestrians, y1,n and y2,n, through the bounding boxes
z1n = {z11,n z12,n} and z2n = {z21,n z22,n} for vehicles s= 1 and
s= 2, respectively. The measurement zsm,n is described by the

3D coordinates of its eight corners, i.e., zsm,n =
[
zsi,m,n

]8
i=1

, as
shown in Fig. 1(b), which take into account the overall footprint
and orientation of the target. To correctly associate the bounding
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Fig. 1. (a) Cooperative scenario with two vehicles x1 and x2 detecting
pedestrians y1 and y2 by means of lidar technology. (b) Bounding boxes
extracted from the lidar point cloud with corner definition. The subscript n
is removed for visualization purposes.

boxes, an absolute (fixed) Cartesian spatial reference system has
to be used for the identification of the corners. In this case, we
choose to label as zs1,m,n the bottom-north-est corner and zs8,m,n

the top-south-west one.
In the proposed GNN solution, the union set Zn is mod-

eled as a direct graph G = (V, E), where each node i ∈ V
corresponds to a single measurement, while the edge (i, j), with
i �= j, indicates a candidate association. To univocally map the
node i ∈ V with the measurement m of vehicle s at time
n, we define the mapping function Φn : V →Zn × Sn. The
function Φn(i) = {m, s} cannot inherently prevent the asso-
ciation of two distinct measurements of a same vehicle. For
this reason, we also introduce the association-related variable
yi→j ∈ {0, 1} which denotes the presence/absence of the edge
(i, j), i.e., the two bounding boxes embodied in nodes i and j
refer to a same target. The goal of the data association algorithm
(here addressed with MPNN) is to estimate the association
variable ŷi→j ∈ {0, 1} by considering all possible pairings of
bounding boxes, with the constraint of ŷi→j = 0 if the mappings
Φn(i) and Φn(j) refer to a same vehicle s.

TABLE I
SUMMARY TABLE OF NOTATION

Description Symbol

Set of vehicles at time n Sn

State of vehicle s at time n xs,n

Set of detectable targets by vehicle s at time
n

Ys,n

State of target k at time n yk,n

Set of bounding boxes of all vehicles at time
n

Zn

Set of bounding boxes of vehicle s at time n zsn
m-th bounding box of vehicle s at time n

described by the coordinates of its corners zsm,n =
[
zsi,m,n

]8
i=1

GNN directed graph with vertex and edges G = (V, E)
Mapping function from node i ∈ V to
measurement m of vehicle s at time n Φn : V →Zn × Sn

Association-related variable yi→j ∈ {0, 1}

As an example of graph construction, we refer to the ve-
hicular scenario shown in Fig. 2(a) where vehicle x2,n detects
only y1,n through measurement z21,n, while the other two ve-
hicles x1,n and x3,n can detect both targets y1,n and y2,n,
respectively. It follows that the graph with true measurements
association for such scenario is the one indicated in Fig. 2(b),
which has to be reconstructed from the fully-connected graph
in Fig. 2(c) that includes all possible pairings. In next section,
we detail the proposed algorithm for estimating the connections
from all possible associations, i.e., how to get the graph in Fig.
2(b) from the one in Fig. 2(c).

A summary of the main notation variables introduced in this
section and their description is provided in Table I.

III. ADDRESSING DATA ASSOCIATION WITH MPNN

In this section, we first introduce the general concept of GNN
and more specifically MPNN (Section III-A), which is the base
for the proposed model. Then, we define the proposed MPNN
model with an insight on possible classification strategies. Fi-
nally, we describe the loss function used to train the model, as
well as the performance metrics.

A. Introduction to GNNs

Neural networks acting on graphs have been investigated
for more than a decade, being originally referred to as GNNs
[66], [67] and successively extended to many variants such
as MPNNs [81]. A complete generalization of GNNs is for-
mulated in [82] under the name of Graph Networks (GNs).
Models in this ML family have been studied in supervised,
semi-supervised, unsupervised, and reinforcement learning
contexts across a wide range of problem domains. They have
been used to learn the dynamics of physical systems [83],
predict the chemical properties of molecules [84], optimize the
communication in multi-agent networks [85], or even employed
in machine translation [86]. A further domain of applications
includes vehicular environments, where GNN are used to pre-
dict road traffic [87], [88] or classify and segment 3D meshes
and point clouds [89].

We here consider an MPNN that iteratively performs a mes-
sage passing procedure over a graph G. Iterations are indexed
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Fig. 2. (a) Top view of an exemplary cooperative localization scenario with three vehicles detecting one or two pedestrians each. (b) Virtual graph representing
the pairings measurement at multiple vehicles. Each subgraph includes all measurements of a same target. (c) Graph with unknown associations among all
measurements. Each edge embodies a potential association, which has to be probabilistically computed to get the result in (b). The color of nodes refers to
the color of originating vehicle, while colors of edge indicate the two detected pedestrians.

with t, the maximum number of message passing steps (a design
parameter) as T , while Ni = {j ∈ V|(i, j) ∈ E} is the set
of neighbors of node i ∈ V . We also identify the so called
embeddings, i.e., attributes, of node i and edge (i, j) with
variables h

(t)
i and m

(t)
i→j , respectively.

The purpose of the MPNN is to train a function that prop-
agates information from node and edge embeddings/attributes
throughout G. The more message passing steps are performed,
the more the node and edge embeddings contain elaborated
information, just like the receptive field of a Convolutional
Neural Network (CNN). To this extent, a Neural Network (NN)
is present at each node and edge of the graph. The NN at
node is indicated with gn(·), while the one over the edge by
ge(·). Considering that gn(·) and ge(·) have the same parameters,
respectively across each node and each edge, they may be
trained on small-scale graphs before being applied to large-scale
problems.

For each iteration t= 1, . . . , T , each node i ∈ V sends the
following message to its neighbors Ni

m
(t)
i→j = ge

(
h
(t−1)
i ,h

(t−1)
j ,m

(t−1)
i→j

)
, ∀j ∈ Ni , (1)

with

h
(t)
i = gn

(
h
(t−1)
i ,Φ({m(t)

j→i}j ∈ Ni
)
)
. (2)

Function Φ(·) is called aggregation function and it is invariant
to permutations of its inputs (e.g., element-wise summation,
mean, maximum). Concisely, and referring to Fig. 3, the mes-
sage m

(t)
i→j sent from node i over an edge (i, j) updates the

previously sent message m
(t−1)
i→j over the same edge with the

available attributes h(t−1)
i and h

(t−1)
j of the involved nodes, re-

spectively. The attribute h(t)
i is obtained by combining together

all the incoming messages at the node i, i.e., m(t)
j→i∀j ∈ Ni

(through function Φ) and the previously available information
h
(t−1)
i (computed at previous iteration).

Fig. 3. MPNN working principle: (a) update of edge embeddings, (b) update
of node embeddings. The updated elements are in red. For each MPNN step
t, first compute the edge embeddings from node i over all edges (i.e., toward
all neighbors Ni) according to (1). Then, compute the node embeddings
depending on the previously updated edge embeddings as in (2).

B. MPNN Model for Data Association

The proposed model consists of two parts: an MPNN and an
edge classifier. The role of the MPNN is to process the input
graph G derived from the measurements of all vehicles at a
given time n, i.e., Zn. On the other hand, the edge classifier
is a binary classifier with the role of determining the pairings
of all the measurements referring to the same target, i.e., finding
the association variable ŷi→j based on association probabilities.
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As a consequence, at the output of the classifier we have a
set of multiple disjoint subgraphs (as in Fig. 2(b)), each of
them grouping all the measurements that are hypothesized to
be originated from the same target.

The MPNN model is composed of four multi-layer percep-
trons (MLPs): ge(·) at each edge and gin

n (·), gout
n (·), gn(·) at

each node. The role of MLPs ge(·) and gn(·) is to update the
edge and node embeddings, respectively, in a similar way as the
conventional MPNN in (1) and (2). On the other side, gin

n (·) and
gout

n (·) are introduced to better encode the structure of incoming
and outgoing edges. In this way, we can split the problem into
two parts and individually manage the incoming and outgoing
edges in each node.

The message passing over the graph works as follows. First,
we update the edges embeddings as in (1), while the node
embeddings are updated taking into account both the incoming
m

in,(t)
j→i and outgoing m

out,(t)
i→j edge embeddings as

h
(t)
i = gn

⎛

⎝
∑

j ∈ Ni

m
in,(t)
j→i ,

∑

j ∈ Ni

m
out,(t)
i→j

⎞

⎠ , (3)

where m
in,(t)
j→i and m

out,(t)
i→j are defined as

m
in,(t)
j→i = gin

n

(
h
(t−1)
i ,m

(t)
j→i

)
, ∀j ∈ Ni, (4)

m
out,(t)
i→j = gout

n

(
h
(t−1)
i ,m

(t)
i→j

)
, ∀j ∈ Ni. (5)

We remark that this is done to divide the problem into two parts,
as the constructed graph for solving the data association is bi-
directed (i.e., undirected), which is common in most graphs
used by MPNNs. However, our approach also needs to ensure
the unique constraints of our data association problem, i.e., that
the association-edge between two measurements is conceptu-
ally the same in both directions.

After T message passing steps, the edge embeddings m(T )
i→j

are fed into an MLP edge classifier gclass
e (·) which evaluates the

association probabilities ŷ
(T )
i→j as

ŷ
(T )
i→j = gclass

e

(
m

(T )
i→j

)
,∀(i, j) ∈ E . (6)

The association variables ŷi→j are then obtained with a thresh-
olding operation, with threshold Γ, to pair nodes i and j. Two
nodes are associated (i.e., two bounding boxes at distinct vehi-
cles refer to a same pedestrian) if

ŷ
(T )
i→j ≥ Γ , (7)

which implies ŷi→j � 1. However, it may happen that one mea-
surement of a vehicle is associated to multiple measurements
of another vehicle. To avoid this issue, a constraint is enforced
such that a bounding box of a vehicle can be associated to at
most one bounding box of another vehicle.

C. Loss and Performance Metrics

For computing the training loss and performing back-
propagation, we employ the weighted binary cross-entropy that

is estimated at the end of each message passing iteration t after
the edge classifier’s prediction ŷ

(t)
i→j as

L=− 1

|E|

T∑

t=1

∑

(i,j)∈E

{

(1−yi→j)log
(
1− ŷ

(t)
i→j

)

+ w yi→j log
(
ŷ
(t)
i→j

)
}

, (8)

where w is a weight given to the positive class in order to
compensate the class unbalances and it is computed as

w =

∑
(i,j) ∈ E 1(yi→j = 0)

∑
(i,j) ∈ E 1(yi→j = 1)

, (9)

where 1(·) is an indicator function that returns 1 if the condition
is true and 0 otherwise. Concerning the performance metrics,
we adopt the accuracy measure defined as

Accuracy =
TP + TN

TP + FP + TN + FN
, (10)

where the terms TP, TN, FP and FN indicate the number of True
Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN), respectively.

IV. SIMULATION EXPERIMENTS

To evaluate the proposed MPNN model for data associa-
tion we consider a network of vehicles localizing pedestrians
through lidar sensing. We dedicate Section IV-A to the simula-
tion scenario and dataset, while Section IV-B reports the results
of performed simulations.

A. Simulation Scenario

Due to the unavailability of real-world cooperative percep-
tion datasets, i.e., collected by multiple and synchronous lidar-
equipped vehicles, we here employ a simulator of automated
driving systems that allows us to generate lidar readings at
multiple vehicles moving in a synthetic, yet realistic, mobility
environment. Similarly to [90], we use the CARLA simulator
[76], an extremely advanced software that integrates trajectory
planning and sensing. The considered scenario is referred to
as Town02 in the simulator, which spans over an area of
roughly 200 m × 200 m. Twenty vehicles with lidar and fifty
pedestrians populate the scene, unless otherwise specified. The
state xs,n of each vehicle refers to its 3D position. A snapshot
restricted to seven vehicles with associated point clouds of the
simulator is show in Fig. 4, where we represent the effect of co-
operative sensing by merging seven lidar point clouds. Specifi-
cally, for visualization purposes we group the vehicles into three
subgroups and we show the partial point cloud in Figs. 4(a),
4(b) and 4(c), respectively, while the cooperative perception
obtained by merging all the seven point clouds is in Fig. 4(d).

The duration of simulation is 300 s, with sampling time of
0.2 s. This results in 1500 snapshots of the scene, each one
described by vehicles and pedestrians’ positions and lidar de-
tections. A top-view image of the simulation in a fixed time
instant is shown in Fig. 5, where we include both vehicles (red
squares) and detected pedestrians (blue triangles) as well as the
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Fig. 4. Snapshot of lidar sensing simulated by CARLA: seven vehicles (red bounding boxes) detect pedestrians (green bounding boxes). (a) Partial lidar
sensing from the two vehicles in the left. (b) Partial lidar sensing from the two vehicles in the center. (c) Partial lidar sensing from three vehicles at the
bottom. (d) Cooperative sensing as a combination of seven lidar point clouds.

Fig. 5. Top-view of the simulation scenario with twenty vehicles (red
squares), detected pedestrians (blue triangles) and detections (black lines).

associated detections (black link). A vehicle s ∈ S can detect
a pedestrian k ∈ Fv,n if it falls in its field of view. All lidar
sensors are configured to run at a 5 Hz update frequency, with
an FOV of 360 deg in azimuth and [−30,+10] deg in elevation.
The number of channels supported is 64, corresponding to a
spatial resolution of 0.625 deg. The sensing range is limited
to 70 m and the number of points of the cloud cannot exceed 1
million per second. The single point has an accuracy of ±2 cm.
To simulate realistic operating conditions, 20% of the points are
randomly dropped during every simulation frame.

The ground truth information provided by the simulator in-
cludes the true positions of vehicles, i.e., xs,n, ∀s ∈ Sn, and the
true bounding boxes around the pedestrians, defined by its eight
corners, i.e., yk,n = [yi,k,n]

8
i=1. Localization errors are intro-

duced as an additive measurement error ws
i,m,n, which directly

translates over the 3D corners of the measured bounding boxes.
The resulting noisy measurement of a bounding box corner is
thus defined as:

zsi,m,n = yi,k,n +ws
i,m,n , ∀k ∈ Ys,n, ∀i ∈ {1, . . . , 8} .

(11)

Note that the measurement error distribution is the same for all
corners, for all time instants and across all vehicles. Unless oth-
erwise specified, the artificial noise ws

i,m,n follows an isotropic
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Gaussian distribution with standard deviation σ = 10 cm. Note
that the additive noise is absent in case of using a ML model
for the automatic extraction of bounding boxes, as in the case
of PointPillars [77], since the error is embedded in the model
itself.

In the simulations, we validate the systems for a variety of
noise intensities ranging from extremely accurate detections
up to inefficient systems (errors in the order of meters) for
the considered vehicular context targeting the automation of
mobility. The former case can be considered as a condition in
which the vehicle position is assumed to be perfectly known
and the only source of error is attributed to lidar sensing and
bounding boxes extraction algorithm. The latter case, instead,
embeds both vehicle uncertainty and the errors in the generation
of bounding boxes. We do not consider separate effects as we
aim to assess the aggregated model robustness.

We divide the overall dataset into training (700 samples) and
validation (800 samples) parts, with dimensions optimized as
discussed in Section IV.B.2. Moreover, in order to assess the
generalization of the method, we increase the number of valida-
tion samples by applying a random flip along the x and y axes
of the bounding box positions, thus obtaining a total of 1600
validation samples. We remark that a sample is a snapshot of the
scene at a given time instant n and it is fully represented by the
graph of unknown measurement-pairings (Fig. 2(c)). To avoid
the computational burden of dealing with too many edges, we
introduce a gating which a-priori discards unlikely associations,
i.e., ignoring edges related to centroids whose distance is greater
than 10 m. As optimizer, we use the Adam optimizer with
tuned learning rate of 10−3 and hyper-parameters β1 = 0.9 and
β2 = 0.999 [91]. The performance metrics are computed using
the thresholding in (7) with Γ = 0.5.

B. Simulation Results

1) Initialization of Node and Edge Embeddings: To ini-
tialize the node and edge embeddings, we adopt a strategy
that learns how to extract feature embeddings directly from
measurements. This is done by using an MLP at each node
and edge, called genc

n (·) and genc
e (·), respectively. For the consid-

ered cooperative lidar sensing scenario, we use the geometric
characteristics of the bounding boxes as input to the two neural
networks to obtain m

(0)
i→j and h

(0)
i as

m
(0)
i→j = genc

e

(
zs1,m,n − zs

′

1,m′,n, z
s
8,m,n − zs

′

8,m′,n

)
,

∀(i, j) ∈ E : Φn(i)={m, s}∧Φn(j)={m′, s′}, s �= s′ ,
(12)

h
(0)
i = genc

n

(
zsm,n

)
∀i ∈ V : Φn(i) = {m, s} . (13)

This allows the MPNN to discriminate not only the position
of the detected object, but also its dimension and rotation. We
find this approach to be highly effective and efficient, as it uses
a minimal amount of information for data association, limiting
the data exchange among vehicles.

Incorporating additional features, such as individual point
cloud positions, into the current feature encoding could be

TABLE II
IMPACT OF TRAINING DATASET SIZE (NUMBER OF

SAMPLES) ON ACCURACY, PRECISION

AND RECALL METRICS

# of samples Accuracy Precision Recall

16 0.869 0.852 0.859
32 0.919 0.891 0.912
64 0.972 0.953 0.980
128 0.993 0.989 0.992
300 0.999 0.998 0.998
700 0.999 0.999 0.999

beneficial and would require only modifying the encoding neu-
ral networks genc

n (·) and genc
e (·). While this could potentially

enhance performance, there are two primary drawbacks to con-
sider. First, the volume of information that would need to be
exchanged with the central entity responsible for data associa-
tion via MPNN could become unmanageable and unsustainable,
given that a lidar sensor typically outputs more than 1 million
point clouds per second. Second, increasing the number of input
features might inadvertently introduce unrelated or redundant
features that may not be beneficial or could even negatively
impact the inference process due to the multi-dimensionality
problem in machine learning.

2) Impact of Training Dataset Dimension: We first an-
alyze the impact of the training dataset size on the model’s
performance. This is crucial in determining whether the model
exhibits high or low bias. In essence, expanding the dataset size
decreases the model’s variance, meaning the residual error is
predominantly due to bias. In Table II, we present the validation
accuracy, precision, and recall after 100 epochs for varying
training dataset size. We note that by increasing the number
of samples, the model improves the performance metrics and
reaches an upper bound on the accuracy after 700 samples,
representing the best accuracy reachable by the model, i.e.,
its bias. It is noteworthy that the recall typically overcomes
the precision, implying a larger number of false positives than
false negatives. This is because the ground-truth graph retains
a predominant number of zeroed edges, thus the model is more
prone to mistake on edges that are labeled as zeros, despite the
loss function employed (8) for unbalanced classes.

3) Impact of MPNN Iterations: This assessment aims to
verify the role of the number of message passing iterations T ,
a fundamental parameter to tune the amount of information
extracted and elaborated from the data. In Fig. 6, we show
the accuracy (and associated confidence) metric in the valida-
tion dataset over the number of epochs for T = {1, 2, 4, 8, 12}.
We notice that increasing T leads to a higher accuracy and
a faster convergence, at the cost of increasing computational
complexity. However, a saturation condition occurs for T > 4,
leading us to select T = 4 as a good trade-off between accuracy,
convergence and complexity. This value will be used for the
following analyses.

4) Impact of the Measurement Statistics: This assessment
has the goal of verifying how the MPNN model handles
unobserved noises (for which it has never been trained on).
This is extremely useful in case the model is trained in a
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Fig. 6. Accuracy of the MPNN for different values of message passing
iterations T = [1, 2, 4, 8, 12] over the epochs for the validation dataset. The
mean value (solid line) is plotted together with the associated uncertainty
(shaded area) computed using the maximum and minimum values of accuracy
as boundaries.

TABLE III
DEFINITION OF MEASUREMENT NOISE DISTRIBUTIONS

Distribution fw(w)

Isotropic Gaussian (
√
2πσ2)−1exp(−0.5σ−2w2)

Non-isotropic Gaussian (
√

det(2πΣ))−1exp(−0.5wTΣ−1w)

Laplace (
√
2σ2)−1 exp(−

√
2σ−1|w|)

Uniform

{
0.75 (πσ3)−1, if ‖w‖2 < σ,

0, otherwise.

Discrete

⎧
⎪⎨
⎪⎩

0.4, if w = 03,

0.1, if w = {w1,w2,w3},
0, otherwise.

simulated and controlled environment, and then deployed in
real systems typically characterized by different measurement
statistics. Since there is almost no literature detailing the
error characteristics of real ML-based 3D object detectors, we
investigate the types of noise that are currently considered in
point cloud denoising algorithms. As suggested in [92], we
explore five different noise statistics: the already introduced
isotropic Gaussian, the non-isotropic Gaussian, the Laplace,
the uniform, and the discrete one, which are defined by
the distributions fw(w) � fw(ws

i,m,n) as reported in
Table III, where σ denotes the standard deviation, Σ=
σ2

[
[1,−0.5,−0.25]T, [−0.5, 1,−0.25]T, [−0.25,−0.25, 1]T

]T
,

while w1 = (±σ, 0, 0), w2 = (0,±σ, 0) and w3 = (0, 0,±σ).
We also implement the ML model PointPillars [77] to process

the lidar point clouds and derive the associated bounding boxes.
This method allows us to assess the performance of the MPNN
without resorting to artificially generated measurements in (11),
leading to a detection system that closely resembles practical
scenarios. By using the detections produced by PointPillars
as inputs to our data association system, we maintain a noise
distribution that mirrors realistic conditions, which is essential
for evaluating the effectiveness of the proposed MPNN-based
data association strategy in various real-world situations. The

Fig. 7. PointPillars localization error on the corners of bounding boxes
along x, y and z components. The three histograms are approximated with a
Gaussian distribution whose standard deviation is highlighted in red.

Fig. 8. Accuracy of the MPNN model (after 25 epochs) for train-
ing/validation mismatch on measurement noise.

statistics of the 3D localization error (computed as the differ-
ence between the true and estimated bounding boxes over x,
y and z axes) of PointPillars are reported in Fig. 7, showing
that they can be well approximated by a zero-mean Gaussian
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Fig. 9. Comparison on data association accuracy between (a) MPNN and (b) SPADA. For MPNN we show the accuracy (after 25 epochs) for
training/validation mismatch on measurement noise, whereas for SPADA we validate each standard deviation of the likelihood with different noise intensities.

distribution over the horizontal (x, y) space. On the other hand,
for the vertical dimension z, the model is more likely to predict
boxes in higher positions (i.e., above the road) instead of the op-
posite, so the error distribution is slightly biased. Furthermore,
we notice that the error statistics do not vary significantly over
the three axes, suggesting that they (almost) follow an isotropic
Gaussian distribution with standard deviation σ = 10 cm.

In Fig. 8 we analyze the mixed impact of training and testing
with different noise statistics. The value of σ for each noise
distribution has been set to 10 cm as closely matching the
standard deviation used for fitting the error statistics of Point-
Pillars. Analyzing the results, it is apparent that training and
validating the MPNN model on the same noise distributions
lead to optimal performances. This shows that the model is
able to obtain good accuracy regardless of the noise type, pro-
vided that the same noise is experienced for both training and
validation phases. Focusing now on the different combinations
of training/validation noises, results detail that training under
the isotropic Gaussian or Laplace noise allows the model to
generalize well over all noise types, suggesting that these distri-
butions may be employed in real-life applications where noise
statistics are not known beforehand. On the other hand, training
considering discrete and/or uniform leads to poor generalization
results during validation, most probably due to the simplistic
noise distributions compared to all other noise types. Finally,
training on realistic data, i.e., over the noise generated by
PointPillars, does not allow the MPNN to generalize well over
other distributions, particularly for Laplace and isotropic/non-
isotropic Gaussian noises.

5) Impact of the Different Scenarios and False Positives:
This experiment aims at verifying the validation performances
of the proposed model in a brand new scenario where false
positives, i.e., false alarms, are present. This allows us to
assess the robustness and adaptability of the model in more

realistic conditions, demonstrating its potential for practical
implementation.

To this purpose, in Fig. 10, we report the results of perfor-
mance validation in Town10 scenario of CARLA simulator,
where we vary the number of cooperating vehicles from 5
to 20. The proposed MPNN association strategy is evaluated
considering both the absence (Fig. 10(a)) and presence (Fig.
10(b)) of false alarms, which are obtained from the Pointpillars
detector. We would like to highlight that the model has been
trained in the map Town2 illustrated in Fig. 5 neglecting any
false positive, thus Town10 and the presence of false alarms
are unseen conditions. Starting from the scenario without false
alarms in Fig. 10(a), we note that increasing the number of
vehicles leads to better accuracy, up to a plateau around 97%,
which is just 2% below the results in the original scenario with
Pointpillars (see Fig. 8). Accounting for the false positives, we
notice in Fig. 10(b) a decrease of the accuracy to 93%. Even
more relevant is the precision which falls to 78% due to the fact
that each false positive introduces new nodes and edges in the
graph which will be associated with real detections, leading to
lower performances.

6) MPNN vs SPADA - Generalization Capabilities: This
experiment compares the performance of the proposed MPNN
association model against a conventional SPADA over different
combinations of Gaussian noise intensities used in the training
and validation datasets. For the SPADA, a training phase is not
needed, but we can embed prior knowledge on the noise inten-
sity by calibrating the standard deviation used for computing
the measurement likelihood function. To do so, we process the
training dataset and extract a single standard deviation value
that characterizes the considered noise intensity.

The comparison is reported in Fig. 9. Regarding the MPNN,
we show, for different training and validation datasets, the
validation accuracy reached after 25 epochs, while for the
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Fig. 10. Analysis of validation accuracy, precision and recall in an unseen scenario, for different number of cooperative vehicles: (a) absence of false
alarms, (b) presence of false alarms.

SPADA we represent the validation accuracy after convergence
using different a-priori noise statistics (in terms of standard
deviation). First, we can clearly observe that, in both algorithms,
the bottom-left part of the matrix has higher values of accuracy
if compared with the top-right part. This is due to the fact that,
generally, overestimating the noise (i.e., bottom-left part) leads
to a more robust model that can handle noises with lower inten-
sity. On the contrary, underestimating the noise (i.e., top-right
part) can incur into problematic situations, especially in the case
of MPNN (Fig. 9(a)). From this point of view, SPADA (Fig.
9(b)) is more solid and can better handle different noise values.
Under overestimating conditions, on the other hand, the MPNN
is able to achieve superior performances compared to SPADA,
reaching an accuracy of 99% against 97%, respectively.

7) MPNN vs SPADA - Performances on Different Noise
Statistics: This experiment has the aim of comparing the peak
or absolute performances of MPNN and SPADA in case we
have a training dataset with same statistics of the validation
dataset. Understanding the maximum performances is funda-
mental to have an upper-bound on a real deployment and to
know the learning capabilities of the algorithm/model.

In Fig. 11 we report the validation accuracy reached by
MPNN and SPADA varying the adopted dataset and for dif-
ferent standard deviations of the noise. For the MPNN we use
training and validation datasets with the same value of σ, while
the standard deviation of the likelihood in the SPADA is the
same as in the validation dataset. We notice that the absolute
performances of MPNN outperform the classic SPADA for
both σ = 0.1 m and σ = 0.5 m and for all datasets. Therefore,
the proposed method is able to fully solve the problem and
learn synthetic or realistic noise representations. Clearly, for the
dataset obtained with PointPillars, we cannot tune the quantity
of noise introduced by the ML model and consequently the red
and blue circles for the dataset PointPillars coincide. Lastly,
we can observe that the degradation of performances passing
from σ = 0.1 m to σ = 0.5 m are worst for the MPNN. This
behaviour is further investigated in the next experiment.

Fig. 11. Comparison of reached accuracy using MPNN (circles) and SPADA
(triangles) in different validation datasets. Red markers represent an artificial
measurement noise in the validation dataset with standard deviation 0.1 m,
while the blue markers describe a standard deviation of 0.5 m. For the MPNN,
the noise statistics of the training match those of the validation, whereas for
SPADA the standard deviation of the likelihood matches the standard deviation
of the noise in the validation dataset.

8) MPNN vs SPADA - Performances on Different Noise
Intensity: In this last assessment, we study how the MPNN and
SPADA perform over different levels of detection accuracies.
This is useful to understand if there are conditions in which
one method outperforms the other.

To this aim, we consider different standard deviations of
the Gaussian measurement error. The results of this analysis
are in Fig. 12, where we report the validation accuracy of the
MPNN and SPADA in a scenario with 100 (Fig. 12(a)) or 50
(Fig. 12(b)) pedestrians to be detected. First, we observe that
the performances for the scenario in Fig. 12(b) are generally
higher than for the scenario in Fig. 12(a). This is due to the
fact that with a higher number of pedestrians, the uncertainty on
the data association increases and the data association becomes
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Fig. 12. Comparison of the impact of measurement error in terms of accuracy between MPNN and SPADA for a scenario with (a) 100 pedestrians or (b)
50 pedestrians. An isotropic Gaussian distribution with standard deviation σ is considered for the additive noise statistics.

more challenging. Second, comparing the two methods across
different noise intensities, we note that the MPNN is preferable
when the standard deviation of the noise is below 1.8 m in both
scenarios. We believe that this behaviour is caused by the fact
that the MPNN has difficulties in learning a noise with high
variance with respect to a low power noise. On the contrary,
the SPADA depends on the standard deviation of the likelihood
that in this case is known a-priori and equal to the standard
deviation of the validation dataset. Therefore, with high noise
intensities, it is preferable to use SPADA as we would need too
many samples to learn the noise directly from data.

V. CONCLUSION

This paper addressed the problem of data association in a
cooperative vehicular sensing scenario with multiple vehicles
detecting pedestrians through lidar sensors. To solve the prob-
lem, we proposed an MPNN model based on a novel graph
representation encoding node and edge feature attributes to
express the detection knowledge. The validation was carried
out in a vehicular environment simulated by CARLA software,
which allows to reproduce realistic cooperative lidar sensing
scenarios. We considered the PointPillars model for the extrac-
tion of bounding boxes from the lidar point cloud, obtaining
realistic statistics of bounding boxes measurements. Further-
more, we compared the proposed method with the conventional
SPADA to investigate the generalization capabilities and peak
performances.

Results showed that the proposed MPNN model is able to
learn the correct associations under several realistic measure-
ment statistics and handles good generalization capabilities
when it comes to dealing with untrained conditions, such as
different measurement error statistics, noise intensities, num-
ber of vehicles and new scenarios. The lidar detection er-
ror introduced by PointPillars has been found to be well
approximated by a Gaussian distribution with standard devia-
tion equal to 10 cm. Under this condition, very high accuracy
can be reached by training the model on artificial noises, e.g.,
Laplace or Gaussian, and then validate the model on the field

with realistic noise distribution produced by PointPillars. Con-
cerning the comparison with the classic SPADA, we found that,
under overestimation of noise intensity, the proposed method
achieved higher performances. Moreover, regarding peak per-
formances, MPNN completely outperforms SPADA up to a
noise standard deviation of 1.8 m.

In the incoming years, the relevance of cooperative percep-
tion is expected to grow rapidly, particularly in the context of
automated and connected mobility, where the new-generation
V2X communication technologies bring opportunities for the
development of new services. It follows that an efficient man-
agement of data association is a fundamental and crucial step for
enabling cooperative sensing. As a result, we expect our work
to be extended and applied to different contexts. By enhancing
the data association performance, our method provides a solid
foundation for more accurate and robust object tracking when
combined with existing tracking algorithms which exploit the
information shared by the vehicles to perform cooperative po-
sitioning or sensing of the surrounding environment.

A natural extension of the work would be to manage and
account for possible false and/or missed detections through
intra-temporal association and non fully-connected vehicular
networks. Future developments could also embrace the area of
distributed sensor networks in which the flood of information
over sensors demands fast interactions of locally-available data
but guarantees higher resilience compared to centralized archi-
tecture, overcoming the problem of single point of failure. On
the other hand, hop-by-hop transport might introduce a non-
negligible time delay before the same full information is avail-
able at all nodes. In addition, we plan to evaluate our method on
real-world cooperative data which would help further validate
and refine our approach, ensuring its effectiveness in addressing
real-world object detection and tracking challenges.
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