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Phase Retrieval of Quaternion Signal
via Wirtinger Flow

Junren Chen and Michael K. Ng , Senior Member, IEEE

Abstract—The main aim of this paper is to study quaternion
phase retrieval (QPR), i.e., the recovery of quaternion signal from
the magnitude of quaternion linear measurements. We show that
all d-dimensional quaternion signals can be reconstructed up
to a global right quaternion phase factor from O(d) phaseless
measurements. We also develop the scalable algorithm quaternion
Wirtinger flow (QWF) for solving QPR, and establish its linear
convergence guarantee. Compared with the analysis of complex
Wirtinger flow, a series of different treatments are employed to
overcome the difficulties of the non-commutativity of quaternion
multiplication. Moreover, we develop a variant of QWF that can
effectively utilize a pure quaternion priori (e.g., for color images)
by incorporating a quaternion phase factor estimate into QWF
iterations. The estimate can be computed efficiently as it amounts
to finding a singular vector of a 4× 4 real matrix. Motivated
by the variants of Wirtinger flow in prior work, we further
propose quaternion truncated Wirtinger flow (QTWF), quater-
nion truncated amplitude flow (QTAF) and their pure quaternion
versions. Experimental results on synthetic data and color images
are presented to validate our theoretical results. In particular, for
pure quaternion signal recovery, our quaternion method often
succeeds with notably fewer measurements compared to real-
valued methods based on monochromatic model or concatenation
model.

Index Terms—Phase retrieval, quaternion signal process-
ing, nonconvex optimization, color image restoration, spectral
method.

I. INTRODUCTION

AS an expansion of the complex field C, an element in
the non-commutative field Q= {q0 + q1 i+ q2 j+ q3 k :

q0, q1, q2, q3 ∈ R} is called a quaternion number, which con-
tains one real part (q0) and three imaginary parts (q1, q2, q3).
Although signals or images are traditionally processed in R or
C, the quaternion algebra has been noted to be a suitable plat-
form for certain signal processing tasks. Consequently, many
signal processing tools have been developed for quaternion
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setting over the past decades, including Fourier transform [1],
[2], wavelet transform [3], [4], principal component analysis
[5], moment analysis [6], [7], compressed sensing [8], matrix
completion [9], [10], deep neural network [11], [12], adaptive
filtering [13], [14], [15], quaternion derivative [16], [17], [18],
[19], and many others.

Color image processing is an important application of quater-
nion. To process color images in R, one may use the monochro-
matic model that deals with each channel separately, or the
concatenation model that concatenates three channels as a real
matrix of triple size, whereas these two methods often fail to
utilize the high correlations among channels. To fully utilize
these correlations and process the color image as a whole,
it was proposed to use tensor, quaternion or their integration
for color image processing, see [20], [21], [22], [23] for in-
stance. The quaternion-based approach encodes three channels
(i.e., Red, Green and Blue in the RGB color space) into three
imaginary parts of pure quaternion, with the real part set to
zero, hence the color image is modeled as pure quaternion
signal. The advantage of quaternion-based approach is that the
correlations among the three channels can be well preserved,
and color images can be processed in a holistic manner. This
approach was proposed in [1], [2], [24], and now has been
extensively developed in various color imaging problems or
methods, including denoising [23], [25], [26], inpainting [9],
[10], [27], segmentation [28], [29], convolution neural network
[30], watermarking [31], [32], sparse representation of color
image [33], [34]. By taking advantage of holistic processing of
color images, quaternion-based approach usually outperforms
processing methods in R (e.g., the aforementioned monochro-
matic model and concatenation model), see for instance [9],
[23], [25], [26], [27].

Departing momentarily from the quaternion methods in sig-
nal processing, phase retrieval concerning signal reconstruc-
tion from phaseless measurements has attracted considerable
research interest. It is motivated by a frequently encountered
setting where it would be expensive, difficult, or even impos-
sible to capture the measurement phase, to name a few, X-ray
crystallography [35], quantum mechanics [36], speech recogni-
tion [37]. We further emphasize the crucial role played by phase
retrieval in many imaging problems like diffraction imaging
[38], astronomical imaging [39], optics and microscopy [40],
[41]. For detailed discussion, we refer to the survey paper [42].

Mathematically, the goal of phase retrieval is to recover
a signal x ∈ R

d/Cd based on the given knowledge of
measurement matrix A ∈ R

n×d/Cn×d and the corresponding
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phaseless measurements |Ax|2 (| · |2 here applies element-
wisely). From the theoretical side, it is possible to reconstruct
all signals up to a global phase factor (i.e., a sign ±1 in R

or a unit complex scalar exp( iθ) in C) under optimal sample
complexity O(d), see [43], [44], [45], [46] for instance. While
most early algorithms for phase retrieval lack theoretical sup-
port [47], [48], [49], a series of guaranteed algorithms have been
developed in the past decade, which can be divided into a con-
vex optimization approach [50] and a non-convex optimization
approach [51], [52], [53], [54]. Among them, the seminal work
Wirtinger flow (WF) [51] provides a framework for algorith-
mic design under a non-convex optimization setting, i.e., via
a careful initialization that can well approximate the solution,
followed by gradient descent refinement. In many cases, this
is essentially more practical and scalable than a convex lifting
approach [50].

Although quaternion is widely used to represent and process
color images, and phase retrieval is a crucial technique in imag-
ing science problems, quaternion phase retrieval (QPR) has not
yet been studied before. More precisely, given a quaternion
measurement matrix A ∈Q

n×d, QPR is concerned with the
recovery of x ∈Q

d from the phaseless measurements |Ax|2.
To our best knowledge, the only related result is presented in
[55], but it is restricted to A ∈ R

n×d. Under such real mea-
surement matrix, the model fails to utilize the quaternion mul-
tiplication but simply identifies Q as R

4, thereby reducing to
a special case of phase retrieval of real vector-valued signal.
More prominently, compared with A ∈Q

n×d studied in this
work, A ∈ R

n×d leads to essentially more trivial ambiguities
that can probably limit applications of QPR in signal processing
(Remark 1).

The main aim of this paper is to close the research gap
between phase retrieval and quaternion signal processing. We
initiate the study of QPR, by first identifying the unavoidable
trivial ambiguity, and then proposing and studying a practical
algorithm of quaternion Wirtinger flow (QWF) with a linear
convergence guarantee. This work is built upon many previ-
ous developments of quaternion, for instance, the HR calculus
of quaternion derivative [16], [19], and results for quaternion
matrices [56]. As color image processing is to deal with pure
quaternion, we also develop an algorithm that can incorporate
the priori of a pure quaternion signal (i.e., �(x) = 0) into QWF.
Our main contributions are summarized as follows:

• (Trivial Ambiguity). We show that all signals in Q
d can be

reconstructed up to a global right quaternion phase factor
from magnitude of O(d) quaternion linear measurements
(Theorem 1). Moreover, in QPR of pure quaternion signals
satisfying an extremely minor condition (three imaginary
parts are real linearly independent), one can expect a re-
construction up to a sign of ±1 (Lemma 6).

• (Quaternion Wirtinger Flow). For solving QPR, we
propose the QWF algorithm (Algorithm 2) consisting of
spectral initialization and QWF refinement. Our main
result (Theorem 2) guarantees that using the magnitude
of O(d log n) quaternion Gaussian measurements and
under an error metric dist(x,y) = minq∈TQ

‖x− yq‖,
the QWF sequence linearly converges to the

underlying signal with high probability. Moreover, we
propose a variant of QWF called pure quaternion Wirtinger
flow (PQWF, Algorithm 3) for pure quaternion signal
recovery. To utilize the pure quaternion priori, PQWF
embeds an efficient quaternion phase factor estimate
into the iteration and enjoys similar theoretical guarantee
(Theorem 3). The earlier phase transition is presented to
confirm the efficacy of PQWF (Fig. 2).

• (Refinements and Experiments). Motivated by existing
Wirtinger flow refinements for real/complex phase re-
trieval, we propose their counterparts in QPR (Algorithms
4–5) and numerically show their improvements over QWF
(Fig. 3). We further specialize them to pure quaternion
signal (Algorithms 6–7) and then use them in color image
recovery. Compared to real-valued phase retrieval based
on monochromatic model or concatenation model, the
proposed quaternion method succeeds with notably fewer
phaseless measurements (Figs. 4–6).

As part of our technical contributions, many essentially dif-
ferent treatments take place in the proof of Theorem 2 to over-
come the challenges arising in quaternion setting. An evident
example is the concentration of 1

n

∑n
k=1

[
�(x∗αkα

∗
kh)
]2

,
where α∗

k is the k-th row of A. In the proof, we avoid
the Hessian matrix employed in [51], and instead calculate
1
n

∑n
k=1

[
�(x∗αkα

∗
kh)
]2

by using a real matrix representa-
tion T (·) of a quaternion (Remark 3). The formal definition
of T (·) can be found in Section II. In our analysis, such real
matrix representations are recurring, e.g., (16), (27). Actually,
with a great deal of quaternion-based ingredients involved in
the theoretical analysis, we believe this work can technically
provide an example for quaternion study and hence of some
pedagogical value.

This paper is organized as follows. In Section II we state
the notation and provide the preliminaries. Several useful tech-
niques for quaternion study are included. In Section III we
first identify the trivial ambiguity in QPR, then propose QWF,
and present the proof for its linear convergence. In Section IV,
we propose PQWF for QPR of pure quaternion signal. Experi-
mental results on both synthetic data and color image data are
presented in Section VI. We give some remarks to conclude the
paper in Section VII. To improve the readability, some auxiliary
results for the main proof are provided in Appendix A.

II. NOTATIONS AND PRELIMINARIES

Some notations are needed for mathematical analysis. We de-
note probability and expectation respectively by P(·) and E(·),
note that E(·) separately operates on one real part and three
imaginary parts of a quaternion random variable. Besides, C, c,
Ci, ci represent absolute constants whose value may vary from
line to line. Both T1 � T2 and T1 =O(T2) mean T1 ≤ CT2 for
some absolute constant C. Conversely, T1 ≥ CT2 is denoted
by T1 � T2 or T1 =Ω(T2). We use capital boldface letters,
lowercase boldface letters to denote matrix, vector, respectively.
We denote real or complex scalar by regular letter (e.g., a, b),
while quaternion scalar by the typewriter style letter (e.g., a, b).
We conventionally write [m] = {1, · · · ,m}.
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A. Basics of Quaternions and Quaternion Matrices

Let Q= {q= q0 + q1i+ q2 j+ q3 k : q0, q1, q2, q3 ∈ R} be
the set of quaternion numbers, then Q

d (resp. Q
d1×d2 ) de-

notes the set of d-dimensional quaternion vectors (resp. n1 ×
n2 quaternion matrices). The addition and subtraction of two
quaternion numbers are defined component-wisely, e.g., (a i+
bk)− (c j+ d i) = (a− d) i− c j+ bk. Under the rules i2 =
j2 = k2 =−1, i j=− j i= k, j k=−k j= i, k i=− i k= j
and with distributive law, associative law imposed, the multi-
plication between quaternion numbers is defined.

Given q= q0 + q1 i+ q2 j+ q3 k, besides the real part
�(q) = q0 and the vector part�(q) = q1 i+ q2 j+ q3 k, we fur-
ther usePϑ(ϑ= i, j, k) to extract three imaginary components,
i.e., P i(q) = q1, P j(q) = q2, P k(q) = q3. Note that q= q0 −
q1 i− q2 j− q3 k is the conjugate of q, |q|= (

∑3
k=0 q

2
k)

1/2 is
the absolute value. We allow these operations for quaternion
number element-wisely apply to quaternion vectors and matri-
ces. For nonzero q, q−1 = q/|q|2 is its inverse. As pure quater-
nions with zero real part is of particular interest, we collect
them in Qp = {q ∈Q : �(q) = 0}. The phase of a non-zero
quaternion q is defined as sign(q) = q

|q| . As the phase belongs
to TQ = {q ∈Q : |q|= 1}, we sometimes call quaternion in TQ

the quaternion phase factor, e.g., when we describe the trivial
ambiguity.

Given the vector x= [xk] ∈Q
d or the matrix A=

[aij ] ∈Q
d1×d2 , we introduce the (vector) �2 norm

‖x‖= (
∑

k |xk|2)1/2, the matrix operator norm
‖A‖= supw∈Qd1\{0} ‖Aw‖/‖w‖, the matrix Frobenius
norm ‖A‖F = (

∑
i,j |aij |2)1/2. The rank of A, denoted

rank(A), is defined to be the maximum number of right
linearly independent columns of A. Note that quaternion
vectors α1, · · · ,αN are said to be right linearly independent
if
∑N

k=1 αkqk = 0 (qk ∈Q) can imply qk = 0 for all k. Let
Id be the identity matrix, the matrix A ∈Q

d×d is invertible
if there exists B such that AB =BA= Id. Parallel to
complex matrices, A is invertible if and only if it is full
rank (rank(A) = d) [56]. We say A ∈Q

d×d is Hermitian if
A∗ =A, or is unitary if AA∗ =A∗A= Id. We use HQ

d,r

to denote the set of all d× d Hermitian matrices with rank
not exceeding r. The standard inner product for quaternion
vector or matrix is given by

〈
A,B

〉
=Tr(A∗B), where Tr(.)

returns the sum of diagonal entries for a square matrix, or
simply the scalar itself. Evidently, �

〈
A,B

〉
= �
〈
B,A

〉
.

Note that quaternion multiplication is non-commutative (e.g.,
i j=− j i), which is often a key technical challenge in the ex-
tension from R/C to quaternion setting. We note that, taking the
real part is an effective technique to circumvent this issue, since
we have �(ab) = �(ba) for any a, b ∈Q, or more generally, for
A ∈Q

d1×d2 ,B ∈Q
d2×d1 it holds that

�
(
Tr(AB)

)
= �
(
Tr(BA)

)
. (1)

B. Real Representation and Quaternion SVD

We further introduce two key techniques to study quaternion
matrices. The first one is the complex or real representation of
quaternion matrices based on the maps TC(·), T (·). Note that

any A ∈Q
d1×d2 can be uniquely written as A=B +C j for

someB,C ∈ C
d1×d1 , then TC(·) maps A to its complex adjoint

matrix belonging to C
2d1×2d2

TC(A) :=

[
B C
−C B

]

.

For quaternion matrices A,A1,A2, several useful relations
are in order: TC(A1A2) = TC(A1)TC(A2); TC(A1 +A2) =
TC(A1) + TC(A2); TC(A∗) =

(
TC(A)

)∗
; see Theorem 4.2 of

[56]. Furthermore, A ∈ C
d1×d2 can be written as A=B +C i

for some B,C ∈ R
d1×d2 , which can then be reduced to real

matrix by TR:

TR(A) :=

[
B C
−C B

]

,

and for complex matricesA,A1,A2 one also has TR(A1A2) =
TR(A1)TR(A2); TR(A1 +A2) = TR(A1) + TR(A2); TR (A∗)

=
(
TR(A)

)�
. Naturally, a composition of these two maps, i.e.,

T := TR ◦ TC, can reduce A ∈Q
d1×d2 to T (A) ∈ R

4d1×4d2 .
More precisely,

T (A) =

⎡

⎢
⎢
⎣

�(A) P j(A) P i(A) P k(A)
−P j(A) �(A) P k(A) −P i(A)
−P i(A) −P k(A) �(A) Pj(A)
−P k(A) P i(A) −P j(A) �(A)

⎤

⎥
⎥
⎦.

The following relations hold due to the properties of TC and
TR: T (A1A2) = T (A1)T (A2); T (A1 +A2) = T (A1) +

T (A2); T (A∗) =
(
T (A)

)�
. We would also define Ti(A)

(i= 1, 2, 3, 4) to be the i-th column of blocks in
T (A). For instance, T1(A) := [�(A)�,−P j(A)�,
−P i(A)�,−P k(A)�]� ∈ R

4d1×d2 . Also note the relation
Ti(A1A2) = T (A1)Ti(A2).

In addition, quaternion singular value decomposition
(QSVD) is another powerful tool. For A ∈Q

d1×d2 , there
exist unitary matrices U ∈Q

d1×d1 , V ∈Q
d2×d2 , diagonal

matrix Σ ∈ R
d1×d2 with non-negative diagonal entries

σ1, · · · , σmin{d1,d2}, such that A=UΣV ∗. We refer
readers to [56, Theorem 7.2] for its derivation. In QSVD,
{σk : 1≤ k ≤min{d1, d2}} are the singular values of A.
It is straightforward to show several facts coincident with
R

d1×d2 or C
d1×d2 , e.g., the maximum singular value equals

‖A‖, and ‖A‖F = (
∑

k σ
2
k)

1/2. Moreover, the SVD for T (A)
is given by T (A) = T (U)T (Σ)T (V )�, which leads to
‖T (A)‖= ‖A‖, ‖T (A)‖F = 2‖A‖F . We will also work with
the matrix nuclear norm defined to be the sum of singular
values, i.e., ‖A‖nu =

∑
k σk.

C. (Standard) Eigenvalue and Eigenvector

For simplicity, in this paper we restrict the eigenvalue to
be the right one.1 In particular, given A ∈Q

d×d, if Ax= xλ
for some nonzero x ∈Q

d, we refer λ, x to as the eigen-
value, eigenvector of A. Since Ax= xλ is equal to A(xv∗) =
(xv∗)(vλv∗) for any v ∈ TQ, A with eigenvalue λ indeed
possesses a set of eigenvalues {vλv∗ : v ∈ TQ}, among which

1However, in a complete theory, left eigenvalue and right eigenvalue for
quaternion matrices should be distinguished [56].
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we can pick a unique “standard eigenvalue” in the form of
a+ b i (a ∈ R, b≥ 0), see [56, Lemma 2.1]. Any A ∈Q

d×d

has exactly d standard eigenvalues, and particularly, all standard
eigenvalues of Hermitian A are real. Akin to the eigenvalue de-
composition for complex Hermitian matrices, quaternion Her-
mitian matrix A can be decomposed as A=UΣU∗ for some
unitary U and diagonal matrix Σ, with standard eigenvalues of
A arranged in the diagonal of Σ [56, Corollary 6.2].

D. Derivative of Real Function With Quaternion Variable

We need to calculate the derivative of real function with
quaternion variable. The framework that best meets such op-
timization need is the HR calculus, see [16] and the more com-
plete theory in [17], [18], [19]. More precisely, given a function
f(q) with quaternion variable q = qa + qb i+ qc j+ qd k ∈
Q

N , we define

∂f

∂q
:=

1

4

( ∂f

∂qa

− ∂f

∂qb

i− ∂f

∂qc

j− ∂f

∂qd

k
)
∈Q

N . (2)

Generally, this is called left derivative and is different from the
right derivative ∂f

∂q = 1
4

(
∂f
∂qa

− i ∂f
∂qb

− j ∂f
∂qc

− k ∂f
∂qd

)
. Con-

sidering only the derivative of real function f (f ∈ R) will be
involved in this work, we simply adopt the left one (2). For
f ∈ R with quaternion variable q, the gradient

∇f(q) =
(∂f

∂q

)∗
=

1

4

( ∂f

∂qa

+
∂f

∂qb

i+
∂f

∂qc

j+
∂f

∂qd

k
)

(3)

represents the direction in which f changes in a maximum rate
[16], [19]. Some calculation rules in [19] would also be used
later.

III. QUATERNION WIRTINGER FLOW

A. The Trivial Ambiguity

Given a quaternion signal x ∈Q
d and a measurement matrix

A ∈Q
n×d, in QPR we aim to reconstruct x from {|α∗

kx|2 :
k ∈ [n]}, where α∗

k is the k-th row of A. Observe that for any
unit quaternion q (i.e., q ∈ TQ), |A(xq)|2 = |Ax|2, so one can
never distinguish two signals only differentiated by a global
right quaternion phase factor.2 However, a global left quaternion
phase factor q is not necessarily an ambiguity since q and A
may not be commutative, hence |A(qx)|2 
= |Ax|2 is possible,
see more discussions below Theorem 1.3 This is in stark contrast
to the real or complex phase retrieval.

Throughout this paper we consider the Gaussian measure-
ment ensemble where the entries of A are i.i.d. drawn from

NQ :=
1

2
N (0, 1) +

1

2
N (0, 1) i+

1

2
N (0, 1) j+

1

2
N (0, 1)k,

denoted by A∼Nn×d
Q

. Evidently, E(αkα
∗
k) = Id.

2For nonzero quaternion q we call q
|q| its phase. Hence, we will refer to

q ∈ TQ as a quaternion phase factor.
3However, when a real measurement matrix is used (as in [55]), this

becomes a trivial ambiguity due to |A(qx)|2 = |qAx|2 = |Ax|2 when
A ∈ Rn×d. This is the essential difference between this work and the QPR
result in [55].

Generally speaking, the goal in any signal reconstruction
task is to recover the signal up to trivial ambiguity. Thus, a
question of fundamental importance is whether there exist other
unavoidable ambiguities in QPR (besides the aforementioned
right phase factor). In the next theorem, we show that the global
right quaternion phase factor is the only trivial ambiguity by
proving a stronger uniform recovery guarantee: all signals in Q

d

can be reconstructed up to right quaternion phase factor from
O(d) phaseless measurements.

Theorem 1: Assume A= [α1, · · · ,αn]
∗ ∼Nn×d

Q
. When

n≥ Cd for some absolute constant C, with probability at least
1− exp(−C1n), all signals x in Q

d can be reconstructed from
{|α∗

kx|2 : k ∈ [n]} up to a global right quaternion phase factor.
Proof: The proof can be found in supplementary material.
In the proof of Theorem 1, we use Mendelson’s small

ball method to show that, with high probability, |α∗
kx|2 =

|α∗
ky|2 (∀k ∈ [n]) implies xx∗ = yy∗ (while the converse

statement is evidently true). As shown in Lemma 1, xx∗ = yy∗

is equivalent to x= yq for some q ∈ TQ.
Note that a global left phase factor is not trivial ambiguity,

as for q ∈ TQ, (qx)(qx)∗ = qxx∗q̄ does not equal to xx∗ in
general. Indeed, even it happens that (qx)(qx)∗ = xx∗, by
Lemma 1, such ambiguity can be expressed via a right quater-
nion phase factor (i.e., qx= xq1 for some q1 ∈ TQ).

Lemma 1: Let x,y ∈Q
d, then xx∗ = yy∗ is equivalent to

x= yq for some q ∈ TQ.
Proof: If x= yq for some unit quaternion q, then xx∗ =

yqq̄y∗ = yy∗. Thus, it remains to prove x= yq (∃q ∈ TQ)
from xx∗ = yy∗. We let x= [xi],y = [yi], then we have
xixj = yiyj for any i, j ∈ [d]. Let i= j, we obtain |xi|= |yi|,
so we can assume xi = yiqi for some qi ∈ TQ. For i 
= j, we
thus have yiqiqjyj = yiyj . Assuming yi, yj are both non-zero,
this implies qi = qj = q for some common q. When yi = 0,
then xi = 0, we also have xi = yiq. Therefore, there exists a
common q ∈ TQ such that x= yq.

Note that using Mendelson’s small ball method with a little
bit more work one can prove uniform stable recovery guaran-
tee [57].

We further give a remark comparing our model and QPR with
real measurement matrix studied in [55].

Remark 1: Some results on recovering x ∈Q
d from |Ax|2

with A ∈ R
n×d were presented in [55]. Using a real measure-

ment matrix, such model does not really utilize the special
quaternion multiplication because for α ∈ R

d,x ∈Q
d we have

|α�x|= ‖α�x′‖, where x′ = [�x,P ix,P jx,P kx] ∈ R
d×4

can be viewed as a d-dimensional R4-valued vector. Thus, it
simply identifies Q with R

4. Compared to our QPR model, the
downside of such model is that it suffers from much more trivial
ambiguities, e.g., the left quaternion phase factor as |Aqx|2 =
|Ax|2 holds for q ∈ TQ, the conjugate as |Ax̄|2 = |Ax|2, and
moreover a 4× 4 orthogonal matrix operating on the real part
and three imaginary parts because ‖α�x′‖= ‖α�x′O‖ holds
for any 4× 4 orthogonal matrix O (interested readers can ver-
ify that this ambiguity is already more severe than the right
quaternion phase factor in our model). Indeed, we will show
that using our QPR model, most pure quaternion signals can be
reconstructed up to a sign (Lemma 6), but this is not possible
under real measurement matrix because of the trivial ambiguity
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Algorithm 1 Spectral Initialization

Input: data (αk, yk)
n
k=1

1: Construct the Hermitian data matrix

Sin =
1

n

n∑

k=1

ykαkα
∗
k (5)

and find its normalized eigenvector regarding the largest
standard eigenvalue νin.

2: We compute λ0 :=
(
1
n

∑n
k=1 yk

)1/2
and obtain the spectral

initialization z0 = λ0 · νin.
Output: z0

of a 3× 3 orthogonal matrix operating on three imaginary parts
(as an example, let a, b ∈ R

d we cannot distinguish a i+ b j
and b i+ a j using the phaseless measurements produced by a
real measurement matrix).

B. The Quaternion Wirtinger Flow Algorithm

Recall that WF for solving real/complex phase retrieval prob-
lem contains spectral initialization and WF update as two steps
[51], and we will first present the QWF algorithm in analogy.
We will exclusively use x to denote the underlying quaternion
signal and assume ‖x‖= 1. For succinctness we focus on noise-
less case where the k-th measurement is yk = |α∗

kx|2.
The QWF algorithm is based on minimizing the �2 loss

min
z∈Qd

f(z) :=
1

n

n∑

k=1

(
|α∗

kz|2 − yk
)2
. (4)

We first describe the careful initialization by spectral method in
Algorithm 1. Intuitively, νin can well approximate the direc-
tion of x due to ESin = Id +

1
2xx

∗ (Lemma 8(d)). Because
Eyk = ‖x‖2, it is natural to estimate the signal norm ‖x‖ as
λ0 =

(
1
n

∑n
k=1 yk

)1/2
.

Then, QWF refines z0 by a quaternion kind of gradient
descent. Here, the gradient is calculated under the framework of
(generalized) HR calculus [16], [19], but we still follow the con-
vention in [51] and term the algorithm as (quaternion) Wirtinger
flow. Given f(z) with quaternion variable z, it would be cum-
bersome to rewrite it as f(�(z),P i(z),P j(z),P k(z)) and
then follow the definition (2). Instead, we apply some rules de-
rived in [19], specifically the product rule ∂(fg)

∂q = f ∂g
∂q + ∂f

∂q g
for real functions f, g with quaternion variable q [19, Corollary
3.1] and ∂|α∗

kz|2
∂z = 1

2z
∗αkα

∗
k [19, Table IV]. Therefore, the

quaternion derivative can be calculated as

∂f(z)

∂z
=

1

n

n∑

k=1

∂

∂z

(
|α∗

kz|2 · |α∗
kz|2 − 2yk · |α∗

kz|2
)

=
2

n

n∑

k=1

(
|α∗

kz|2 − yk
)
· ∂|α

∗
kz|2
∂z

=
1

n

n∑

k=1

(
|α∗

kz|2 − |α∗
kx|2

)
z∗αkα

∗
k. (6)

Hence, taking a suitable step size η, the update rule is

zt+1 = zt − η · ∇f(zt), (7)

Algorithm 2 Quaternion Wirtinger Flow (QWF)

Input: (αk, yk)
n
k=1, step size η, iteration number T

1: for i= 0, 1, ..., T − 1:
Compute ∇f(zi) as in (8), then update zi to zi+1 as

in (7).
end for
Output: zT

where we let ∇f(z) :=
(∂f(z)

∂z

)∗
to keep notation light, i.e.,

∇f(z) =
1

n

n∑

k=1

(
|α∗

kz|2 − yk
)
αkα

∗
kz (8)

Overall, we summarize the QWF update in Algorithm 2.

C. Linear Convergence

For z,x ∈Q
d, due to the trivial ambiguity of right quaternion

phase factor, we characterize the distance between z and x by

dist(z,x) = min
w∈TQ

‖z − xw‖. (9)

Define the phase of nonzero w ∈Q to be sign(w) = w
|w| , and

let sign(0) = 1, some algebra shows that the minimum of (9)
is attained at w= sign(x∗z), and hence dist(z,x) = ‖z −
x sign(x∗z)‖. In our setting, x is the fixed underlying sig-
nal, hence we write dist(z,x) = ‖z − x · φ(z)‖ with φ(z) :=
sign(x∗z) to denote the reconstruction error of z. Naturally, a
small neighborhood of x should be given as Eε(x) = {z ∈Q

d :
dist(z,x)≤ ε}. We present our first main result that guarantees
the linear convergence of QWF.

Theorem 2: We consider a fixed signal x satisfying ‖x‖= 1,
a measurement matrix A∼Nn×d

Q
, and the observations yk =

|α∗
kx|2 where αk is the k-th row of A. Suppose that we run

Algorithm 2 with the step size η in (7) satisfying η =O( 1d ).
Then under the sample size n≥ C1d log n for some ab-
solute constant C1, with probability at least 1− C2n

−9 −
C3n exp(−C4d), the sequence {zt} produced by QWF satisfies

dist2(zt+1,x)≤
(
1− c1

d

)
dist2(zt,x) (10)

for some c1.
Remark 2: We assume ‖x‖= 1 to facilitate theoretical anal-

ysis with no loss of generality. To be adaptive to an unknown
signal norm, as in [51] we suggest a step size η = η1

‖z0‖2 where
z0 is the spectral initialization from Algorithm 1. In this case,
the linear convergence still holds as long as η1 =O( 1d ).

The proof of Theorem 2 can be divided into several ingredi-
ents below, specifically Lemmas 2–5, and then we will arrive
at the desired linear convergence in the end of this section. The
theoretical analysis will be provided in a reverse order. We first
show that as long as z0 ∈ Eε(x) for some sufficiently small ε,
the sequence produced by QWF update (7) linearly converges
to x. Then, we complete the proof by showing z0 ∈ Eε(x)
holds with high probability. To analyze the behaviour of {zt}
in Eε(x), we define several conditions to characterize the land-
scape of f(z) when z ∈ Eε(x).
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Condition 1: (Regularity Condition) The regularity con-
dition holds with positive parameters τ, β, ε, abbreviated as
RC(τ, β, ε), if

�
〈
∇f(z), z − x · φ(z)

〉
≥ 1

τ
dist2(z,x)

+
1

β
‖∇f(z)‖2, ∀ z ∈ Eε(x). (11)

With sufficiently small step size, linear convergence of {zt}
can be implied by RC(τ, β, ε) of f(z). This observation bears
resemblance to a classical result in convex optimization (see
[58, Theorem 2.1.15]), but its proof requires proper modifica-
tion (see [51, Lemma 7.10]). Fortunately, it remains true in the
quaternion setting without essential technical changes.

Lemma 2: Under Condition 1, if z0 ∈ Eε(x) and the
step size 0< η ≤ 2

β , then the sequence {zt} produced by (7)
satisfies

dist2(zt+1,x)≤
(
1− 2η

τ

)
dist2(zt,x). (12)

Proof: The proof can be found in supplementary material.
Therefore, it suffices to establish the regularity condition, and

similar to [51] we divide it into two properties.
Condition 2: (Local Curvature Condition) The local curva-

ture condition holds with positive parameters τ, β, ε, abbrevi-
ated as LCC(τ, β, ε), if

�
〈
∇f(z), z − xφ(z)

〉
≥ 1

τ
dist2(z,x)

+
1

β

1

n

n∑

k=1

|α∗
k(z − xφ(z))|4, ∀ z ∈ Eε(x). (13)

Condition 3: (Local Smoothness Condition) The Local
Smoothness Condition holds with positive parameters τ, β, ε,
abbreviated as LSC(τ, β, ε), if

‖∇f(z)‖2 ≤ 1

τ
dist2(z,x)

+
1

β

n∑

k=1

1

n
|α∗

k(z − xφ(z))|4, ∀ z ∈ Eε(x).

(14)

1) Local Curvature Condition:
Lemma 3: (Proving LCC) Assume x ∈Q

d is a fixed under-
lying signal. Given ε ∈ [0, 1] and sufficiently small 1

τ , 1
β , when

n=Ω(d log n) for sufficiently large hidden constant, with prob-
ability at least 1− 32n−9 − C1n exp(−C2d), LCC(τ, β, ε) in
Condition 2 is satisfied.

Proof: We aim to show (13) for some τ, β specified later.
We define h0 = zφ(z)− x, then z ∈ Eε(x) translates into
‖h0‖ ≤ ε, also φ(z) = sign(x∗z) implies �(h∗

0x) = 0. Then
we deal with (13) by using ∇f(z) = 1

n

∑n
k=1

(
|α∗

kz|2 −
|α∗

kx|2
)
αkα

∗
kz and z = (h0 + x)φ(z), it gives a sufficient

condition for (13) as ∀ ‖h0‖ ≤ ε,�(h∗
0x) = 0,

2

n

n∑

k=1

[
�(x∗αkα

∗
kh0)

]2
+

3

n

n∑

k=1

|α∗
kh0|2�(x∗αkα

∗
kh0)

+

(

1− 1

β

)
1

n

n∑

k=1

|α∗
kh0|4 ≥

1

τ
‖h0‖2.

We only need to consider nonzero h0 and we further let h0 =
s · h with s= ‖h0‖ ∈ [0, ε], ‖h‖= 1, �(h∗x) = 0. Hence, the
above sufficient condition can be implied by ∀ ‖h‖= 1, s ∈
[0, ε],�(h∗x) = 0,

2

n

n∑

k=1

[
�(x∗αkα

∗
kh)
]2

+
3s

n

n∑

k=1

|α∗
kh|2�(x∗αkα

∗
kh)

+

(

1− 1

β

)
s2

n

n∑

k=1

|α∗
kh|4 ≥

1

τ
. (15)

We define tβ := 9
8(1− 1

β )
, completing the square, (15) is equal

to ∀ ‖h‖= 1, s ∈ [0, ε], �(h∗x) = 0,

1

n

n∑

k=1

(√
2tβ�(x∗αkα

∗
kh) +

3s
√

8tβ
|α∗

kh|2
)2

≥ 1

τ
+

2(tβ − 1)

n

n∑

k=1

[
�(x∗αkα

∗
kh)
]2
. (16)

We define Yk(h, s)=
(√

2tβ�(x∗αkα
∗
kh)+

3s√
8tβ

|α∗
kh|2

)2
,

and
〈
Yk(h, s)

〉
= 1

n

∑n
k=1 Yk(h, s). By Lemma 8(c) we

have E
[
�(x∗αkα

∗
kh)
]2

= 1
4 + 5

4

[
�(x∗h)

]2
, and we

need to work out the concentration of 1
n

∑n
k=1

[
�(x∗αk

α∗
kh)
]2

around its mean. Note that �(x∗αkα
∗
kh) is

just the (1, 1)-th entry of T (x∗αkα
∗
kh) = T (x)�T (αk)

T (αk)
�T (h), we have �(x∗αkα

∗
kh) = T1(αk)

�T (x)
T (h)�T1(αk)=

∑4
i=1T1(αk)

�Ti(x)Ti(h)�T1(αk), and hence

[
�(x∗αkα

∗
kh)
]2

=

4∑

i=1

4∑

j=1

Ti(h)�
[(

T1(αk)
�Ti(x)

T1(αk)
�Tj(x)

)
· T1(αk)T1(αk)

�
]
Tj(h). (17)

Letting Zk(i, j) =
(
T1(αk)

�Ti(x)T1(αk)
�Tj(x)

)
· T1(αk)

T1(αk)
�, some algebra gives

∣
∣
∣
1

n

n∑

k=1

[
�(x∗αkα

∗
kh)
]2 − E

[
�(x∗αkα

∗
kh)
]2
∣
∣
∣

≤
4∑

i=1

4∑

j=1

∥
∥
∥
1

n

n∑

k=1

Zk(i, j)− EZk(i, j)
∥
∥
∥ (18)

Note that entries of T1(αk) are independent copies of
1
2N (0, 1), by rotational invariance, without changing dis-
tribution we can assume Ti(x) = Tj(x) = e1 if i= j, or
Ti(x) = e1, Tj(x) = e2 if i 
= j. Hence, we can invoke
Lemma 9 and obtain that when n=Ω(δ−2d log n), the
right-hand side of (18) is bounded by δ with probabil-
ity at least 1− 32n−9 − 32 exp(−Ω(d)). This gives rise to
1
n

∑n
k=1

[
�(x∗αkα

∗
kh)
]2 ≤ 1

4 + 5
4

[
�(x∗h)

]2
+ δ, hence for

showing (16), w.h.p it suffices to show

〈
Yk(h, s)

〉
≥ 1

τ
+ 2(tβ − 1)

(

δ +
1

4
+

5

4

[
�(x∗h)

]2
)

,

∀ ‖h‖= 1,�(h∗x) = 0, s ∈ [0, ε]. (19)
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Our strategy is to first consider fixed (h, s) and then apply a
covering argument. Note that

μk(h, s) := EYk(h, s)=
9s

2
�(h∗x)+

27s2

16tβ
+
tβ
2

+
5tβ
2

[
�(x∗h)

]2≤ 9

2
+3tβ+

27

16tβ
≤C1, (20)

where we use Lemma 8(b)–(d). Assuming s≤ ε≤ 1, the
last inequality follows as long as tβ = 9

8(1− 1
β )

=O(1). We

define Xk(h, s) = μk(h, s)− Yk(h, s), then EXk(h, s) = 0,
Xk(h, s)≤ μk(h, s)≤ C1. Assuming tβ =O(1), we further
estimate the variance

E
[
Xk(h, s)

2
]
≤ E
[
Yk(h, s)

2
]

= E

(√
2tβ�(x∗αkα

∗
kh) +

3s
√
8tβ

|α∗
kh|2

)4

≤ 16
(
4t2βE

[
�(x∗αkα

∗
kh)
]4

+
81

64t2β
E|α∗

kh|8
)
≤ C2.

Now we can invoke [51, Lemma 7.13] (or the original derivation
[59]) and obtain ∀ t > 0

P

(
μk(h, s)−

〈
Yk(h, s)

〉
≥ t
)
≤ exp(−C3nt

2). (21)

On the other hand, we can use the first line of (20), then for
fixed h, s, (19) becomes
〈
Yk(h, s)

〉
− μk(h, s)≥

1

τ
+ (2tβ − 2)δ − 1

2

− 5

2

[
�(x∗h)

]2 − 9s

2
�(h∗x)− 27s2

16tβ
. (22)

Setting ε (hence |s|), δ, and 1
τ to be sufficiently small, tβ =

O(1), then the right-hand side of (22) can be upper bounded
by − 1

4 , hence (22) is implied by μk(h, s)−
〈
Yk(h, s)

〉
≤ 1

4 . So
it remains to show suph,s

(
μk(h, s)−

〈
Yk(h, s)

〉)
≤ 1

4 , where
the supremum is taken over s ∈ [0, ε], ‖h‖= 1. For fixed h, s,
by (21), P

(
μk(h, s)−

〈
Yk(h, s)

〉
≥ 1

8

)
≤ exp(−C3

64 n) holds.
We then apply a covering argument, specifically we construct a
δs-net Ns of [0, ε], a δh-net Nh of {h : ‖h‖= 1}, then a union
bound delivers

P

(
max
s∈Ns

max
h∈Nh

[
μk(h, s)−

〈
Yk(h, s)

〉]
≥ 1

8

)

≤ |Ns||Nh| exp
(

−C3

64
n

)

. (23)

We can assume sups∈[0,ε] sup‖h‖=1

[
μk(h, s)−

〈
Yk(h, s)

〉]

= μk(h0, s0)−
〈
Yk(h0, s0)

〉
for some s0 ∈ [0, ε], ‖h0‖= 1.

We can further pick h1 ∈ Nh, s1 ∈ Ns such that ‖h1 −
h0‖ ≤ δh, |s1 − s0| ≤ δs. Similar to [51], for some C4,
maxk∈[n] ‖αk‖ ≤ C4

√
d holds with probability at least 1−

n exp(−C5d) (One may also see this by a direction application
of Theorem 3.1.1, [60]). We proceed on this assumption, and
start from
∣
∣
[
μk(h0, s0)−

〈
Yk(h0, s0)

〉]
−
[
μk(h1, s1)−

〈
Yk(h1, s1)

〉]∣
∣

≤
∣
∣μk(h0, s0)− μk(h1, s1)

∣
∣

+
∣
∣
∣
1

n

n∑

k=1

(
Yk(h0, s0)− Yk(h1, s1)

)∣∣
∣ :=R1 +R2. (24)

We use the first line in (20), it is direct to show
R1 ≤ C6(δh + δs). For estimate of R2, we let
Pk(h, s) =

√
2tβ�(x∗αkα

∗
kh) +

3s√
8tβ

|α∗
kh|2, and note

that Yk(h, s) = Pk(h, s)
2, Pk(h, s) � d due to tβ =O(1),

maxk ‖αk‖ ≤ C4

√
d. Then R2 =

∣
∣
∣
1

n

n∑

k=1

(Pk(h0, s0)− Pk(h1, s1))·(Pk(h0, s0) + Pk(h1, s1))
∣
∣
∣

� d

n

n∑

k=1

(
|�(x∗αkα

∗
k(h0 − h1))|+ |s0 − s1||α∗

kh0|2

+ s1
(
|α∗

kh0|2 − |α∗
kh1|2

))
� d2(δh + δs).

Thus, we can take δh, δs =
1

C7d2 with sufficiently large
C7 so that R1 +R2 ≤ 1

8 holds. In this case we can
assume |Ns| ≤ ε

1/C7d2 ≤ C7d
2, |Nh| ≤ (1 + 2C7d

2)4d.
Plug these into (23), when n=Ω(d log d) for sufficiently large
hidden constant, with probability at least 1− exp

(
− C3n

128

)
,

maxs∈Ns
maxh∈Nh

[
μk(h, s)−

〈
Yk(h, s)

〉]
≤ 1

8 , which
together with (24) yields

μk(h0, s0)−
〈
Yk(h0, s0)

〉
≤R1 +R2+

max
s∈Ns

max
h∈Nh

[
μk(h, s)−

〈
Yk(h, s)

〉]
≤ 1

4
.

Recall that the only additional scaling we assume in the proof
is tβ =O(1), while this can be guaranteed by sufficiently small
1
β . Hence, the proof is concluded. �

Remark 3: Compared to the proof in complex case (Sec-
tion VII of [51]), we need new machinery to deal with
some technical issues. For instance, the concentration of R̂ :=
1
n

∑n
k=1

[
�(x∗αkα

∗
kh)
]2

in (18). Specifically, [51] used the
concentration of the Hessian matrix ∇2f(x) to govern the
whole proof, which could yield the concentration of R̂ by
a clever observation R̂= 1

4 ĥ
∗∇2f(x)ĥ where ĥ∗ = [h,h]

(Corollary 7.5, [51]). However, this becomes infeasible in
quaternion setting: Firstly, the Hessian matrix now contains 16
blocks and can be exhausting in calculations (see [18], Equation
(33)]); Perhaps more prominently, the relation between R̂ and
ĥ∗∇f(x)ĥ heavily relies on commutativity and hence is likely
to fail due to non-commutativity of quaternion. Instead, we cal-
culate

[
�(x∗αkα

∗
kh)
]2

via the map T (·) (17). Having reduced
to the real case, we directly work on the desired concentration
ingredient in Lemma 9.

2) Local Smoothness Condition:
Lemma 4: (LSC) Assume x ∈Q

d is the fixed under-
lying signal. Given ε ∈ [0, 1] and τ = C0, β = C1/d with
sufficiently small C0, C1. If n=Ω(d log n) with sufficiently
large hidden constant, with probability at least 1− C2n

−9 −
C3n exp(−Ω(d)), LSC(τ, β, ε) in Condition 3 is satisfied.

Proof: Writing ‖∇f(z)‖= sup‖u‖=1 �(u∗∇f(z)), the de-
sired LSC(τ, β, ε) is equivalent to (τ, β will be specified later)
∣
∣�(u∗∇f(z))

∣
∣2 ≤ 1

τ
‖z − xφ(z)‖2

+
1

β

1

n

n∑

k=1

∣
∣α∗

k(z − xφ(z))
∣
∣4, ∀z ∈ Eε(x), ‖u‖= 1.

(25)
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We let h := zφ(z)− x, then ‖h‖ ≤ ε, �(h∗x) = 0, and z =
(h+ x)φ(z). Substituting z with h, the right-hand side of (25)
becomes 1

τ ‖h‖2 +
1
β

1
n

∑n
k=1 |α∗

kh|4. We further define w =

uφ(z), and plug in ∇f(z), some algebra gives

�(u∗∇f(z)) =
1

n

n∑

k=1

(
|α∗

kh|2�(w∗αkα
∗
kh)

+ |α∗
kh|2�(w∗αkα

∗
kx) + 2�(h∗αkα

∗
kx)�(w∗αkα

∗
kh)

+ 2�(h∗αkα
∗
kx)�(w∗αkα

∗
kx)
)
.

Thus we can further estimate the left-hand side of (25)

|�(u∗∇f(z))|2 ≤ 1

n2

∣
∣
∣

n∑

k=1

(
|α∗

kh|3|α∗
kw|

+ 3|α∗
kh|2|α∗

kx||α∗
kw|+ 2|α∗

kh||α∗
kx|2|α∗

kw|
)∣
∣
∣
2

≤ 3

⎛

⎝

[
1

n

n∑

k=1

|α∗
kh|3|α∗

kw|
]2

+ 9

[
1

n

n∑

k=1

|α∗
kh|2|α∗

kx||α∗
kw|
]2

+4

[
1

n

n∑

k=1

|α∗
kh||α∗

kx|2|α∗
kw|
]2
⎞

⎠:= 3
(
I1 + 9I2 + 4I3

)
.

Similar to the proof of Lemma 3, we can assume
maxk∈[n] ‖αk‖ ≤ C1

√
d with probability at least 1− n

exp(−cd). Since ‖h‖ ≤ ε≤ 1, by Cauchy-Schwarz we have

I1 =

[
1

n

n∑

k=1

|α∗
kh|3|α∗

kw|
]2

� d ·
[

n∑

k=1

(
1√
n
|α∗

kh|2
)
·
( 1√

n
|α∗

kh|
)]2

≤ d
( n∑

k=1

1

n
|α∗

kh|4
)( n∑

k=1

1

n
|α∗

kh|2
)

� d
( n∑

k=1

1

n
|α∗

kh|4
)∥
∥ 1

n
A∗A

∥
∥� d

( n∑

k=1

1

n
|α∗

kh|4
)
, (26)

where in the last inequality we use ‖A∗A‖ ≤ ‖A‖2 and a stan-
dard estimate for operator norm of (sub-)Gaussian matrix that
holds with probability at least 1− 2 exp(−n) (e.g., Theorem
4.4.5, [60]). We similarly use Cauchy-Schwarz to deal with I2,
it yields

I2 =

[
n∑

k=1

(
1√
n
|α∗

kh|2
)(

1√
n
|α∗

kx||α∗
kw|
)]2

≤
( 1

n

n∑

k=1

|α∗
kh|4

)( 1

n

n∑

k=1

|α∗
kx|2|α∗

kw|2
)

≤
( 1

n

n∑

k=1

|α∗
kh|4

)
·
∥
∥ 1

n

n∑

k=1

|α∗
kx|2αkα

∗
k

∥
∥

� 1

n

n∑

k=1

|α∗
kh|4.

Note that in the last inequality, we can assume x= e1 by
rotational invariance, then write αk = [αki] and calculate

∥
∥ 1

n

n∑

k=1

|αk1|2αkα
∗
k

∥
∥=

∥
∥ 1

n

n∑

k=1

|αk1|2T (αkα
∗
k)
∥
∥

≤
4∑

i=1

∥
∥ 1

n

n∑

k=1

|αk1|2Ti(αk)Ti(αk)
�∥∥

≤
4∑

i=1

∥
∥ 1

n

n∑

k=1

|�(αk1)|2Ti(αk)Ti(αk)
�∥∥

+

4∑

i=1

∑

ϑ= i, j,k

∥
∥ 1

n

n∑

k=1

|Pϑ(αk1)|2Ti(αk)Ti(αk)
�∥∥.

(27)

Note that �(αk1),Pϑ(αk1) is just one entry of Ti(αk),
we can invoke Lemma 9 to establish the concentration of
each summand in (27) around its mean with δ = 1, while
evidently for the mean of each summand is O(1). This
leads to

∥
∥ 1
n

∑n
k=1 |α∗

kx|2αkα
∗
k

∥
∥=O(1) with probability at

least 1− C2n
−9 − C3 exp(−Ω(d)). We use this again to deal

with I3

I3 =

[
n∑

k=1

(
1√
n
|α∗

kh||α∗
kx|
)

·
(

1√
n
|α∗

kw||α∗
kx|
)]2

≤
( 1

n

n∑

k=1

|α∗
kx|2|α∗

kh|2
)
·
( 1

n

n∑

k=1

|α∗
kx|2|α∗

kw|2
)

� ‖h‖2.

Putting pieces together, we have shown that for all ‖w‖= 1,
‖h‖ ≤ ε, |�(u∗∇f(z))|2 ≤ C‖h‖2 + Cd

(
1
n

∑n
k=1 |α∗

kh|4
)
.

Thus, LSC(τ, β, ε) holds with sufficiently small τ , and β = c1
d

with sufficiently small c1. The result follows. �
3) Spectral Initialization: Now it is clear that, for

some sufficiently small 1
β1
, β2, LCC(β1, β1, ε) and

LSC(β2, β2/d, ε) hold simultaneously, which directly leads
to RSC(2β1d,

β1

β2
d, ε). By Lemma 2, the QWF sequence

with η ≤ 2
d linearly converges to x if some iteration point is

sufficiently close to x. Thus, the proof can be concluded by
showing z0 ∈ Eε(x), which is presented in Lemma 5.

Lemma 5: Assume x is the fixed underlying signal.
Given δ ∈ (0, 1]. If n≥ C0δ

−2d log n for sufficiently large
hidden constant, then with probability at least 1− C1n

−9 −
C2 exp(−C3d), z0 ∈ E2δ(x).

Proof: The proof can be found in supplementary material.
In Lemma 5 we take δ = 1

16 , then under the assumptions of
Theorem 2 z0 ∈ E1/8(x) with high probability. Then, applying
Lemma 3, 4 shows RSC(c, dc, 1

8 ) (where c is sufficiently large).
Thus, if η =O( 1d ), Lemma 2 delivers the linear convergence
claimed in Theorem 2.

IV. PURE QUATERNION WIRTINGER FLOW

Recall that Qp is the set of pure quaternions, and naturally,
Q

d
p represents the space of d-dimensional pure quaternion sig-

nals. This section is intended to propose a variant of QWF called
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pure quaternion Wirtinger flow (PQWF) that can effectively
utilize the priori of x ∈Q

d
p. This is motivated, for example, by

quaternion methods in color image processing where the color
channels are encoded in three imaginary components, and hence
the desired signal is pure quaternion [9], [23]. While many
works choose to remove the real part of the quaternion signal
after the reconstruction (e.g., [9], [23], [61]), it is obviously
more sensible to incorporate the pure quaternion priori into the
recovery procedure and gain some benefits [10], [62].

For a ∈Q
d we define the real counterpart V(a) :=

[�(a),P i(a),P j(a),P k(a)] ∈ R
d×4. For instance, we

have V(x) = [0,P i(x),P j(x),P k(x)] if x ∈Q
d
p. The next

lemma shows that, if the pure quaternion signal x satisfies
rank

(
V(x)

)
= 3, then the trivial ambiguity in phase retrieval

reduces to a sign.
Lemma 6: Assume x ∈Q

d
p. In the phase-less measurement

setting described in Theorem 1, all x satisfying rank
(
V(x)

)
=

3 can be reconstructed from {|α∗
kx|2 : k ∈ [n]} up to a sign ±1.

Proof: By Theorem 1, one can exactly reconstruct Ax :=
{xq : q ∈ TQ}. Due to the assumption of x ∈Q

d
p, we choose

x0 ∈ Ax and can further pick q= q0 + q1 i+ q2 j+ q3 k ∈
TQ such that �(x0q) = (�x0)q0 − (P ix0)q1 − (P jx0)q2 −
(Pkx0)q3 = 0. It is not hard to verify that rank

(
V(x0)

)
=

rank
(
V(x)

)
= 3, for example, one can identify V(x0) with the

first row of T (x0) up to permutation and then use T (x0q) =
T (x0)T (q). Thus, [q0, q1, q2, q3]� lives in a one-dimensional
subspace of R

4. Combining with q ∈ TQ, there are only two
feasible q in the form of {q̂,−q̂}, and ±x0q̂ obviously corre-
sponds to ±x. �

Remark 4: We remark that for color images with red, green,
blue channels, each pixel has non-negative imaginary parts in
its pure quaternion representation. Thus, the ambiguity of the
sign (±1) can be further removed, meaning that the image can
be exactly reconstructed.

Note that rank
(
V(x)

)
= 3 is often very minor in application,

we thus impose this assumption and define

distp(z,x) = min{‖z + x‖, ‖z − x‖} (28)

to measure the reconstruction error. Note that the convergence
guarantee for QWF is under the error metric dist(zt,x) =
‖zt − xφ(zt)‖, or equivalently, {ztφ(zt)} linearly converges
to x, but the issue is that φ(zt) = sign(z∗

tx) can never be de-
termined (as it involves the unknown signal x). Thus, additional
efforts are needed to design an algorithm for phase retrieval of
x ∈Q

d
p with convergence guarantee regarding distp(zt,x).

Our idea here is to estimate it up to a sign based on the pure
quaternion priori. More precisely, for some z our strategy is to
find a quaternion phase factor q ∈ TQ such that zq is closest to
pure quaternion signal, i.e.,

q̂= arg min
q∈TQ

‖�(zq)‖, (29)

and then we map z to �(zq̂). Specialized to the current iteration
point zt, we find qt as follows

qt = arg min
q∈TQ

‖�(ztq)‖ (30)

and then map zt to �(ztqt). A simple observation is
‖�(ztq)‖= ‖V(zt)V�(q)‖, thus (30) is equal to finding

the eigenvector with respect to the smallest eigenvalue of
V(zt)

�V(zt) ∈ R
4×4, which can be implemented efficiently

without incurring computational complexity higher than QWF.
The following condition on x assumes a scaling slightly

stronger than rank
(
V(x)

)
= 3, i.e., the third singular value of

V(x) is bounded away from 0. We restrict our algorithmic
analysis to the set of pure quaternion signals with Condition
4 for some absolute constant κ0.

Condition 4: The pure quaternion signal x has unit �2 norm,
and V(x) has three positive singular values bounded below by
(i.e., larger than) some absolute constant κ0 (κ0 > 0).
The following Lemma shows qt found by (30) can transfer the
error metric from dist(zt,x) to distp(ztqt,x), with the error
preserved up to a multiplicative constant only related to κ0 in
Condition 4.

Lemma 7: Under Condition 4 we assume dist(zt,x)≤ δ for
δ ∈ (0, 1

2 ). If the quaternion phase factor qt is found by (30), it
holds that distp(ztqt,x)≤ ( 6

κ0
+ 1) dist(zt,x).

Proof: We let ẑt = ztφ(zt), then dist(zt,x) = ‖ẑt − x‖=
‖V(ẑt)− V(x)‖F . Hence, ‖ẑt‖ ≤ ‖ẑt − x‖+ ‖x‖ ≤
1 + δ ≤ 3

2 . Evidently, wt = φ(zt)qt is the solution of
minw∈TQ

‖�(ẑtw)‖. Note that |wt|= 1, we have

distp(ztqt,x) = distp(ẑtwt,x)

= min{‖ẑtwt − x‖, ‖ẑtwt + x‖}
≤min{‖ẑtwt − ẑt‖, ‖ẑtwt + ẑt‖}+ ‖ẑt − x‖

≤ 3

2
min{|wt − 1|, |wt + 1|}+ dist(zt,x)

≤ 3

2
|�(wt)|+

3

2
min{1−�(wt), 1 + �(wt)}

+ dist(zt,x)

≤ 3

2
|�(wt)|+

3

2
|�(wt)|2 + dist(zt,x)

≤ 3|�(wt)|+ dist(zt,x). (31)

Moreover, we have

‖�(xwt)‖ ≤ ‖�((x− ẑt)wt)‖+ ‖�(ẑtwt)‖ ≤ dist(zt,x)

+ ‖�(ẑt)‖ ≤ dist(zt,x) + ‖�(ẑt − x)‖ ≤ 2 dist(zt,x),

where we use the optimality of wt in the second inequality. On
the other hand, by Condition 4 ‖�(xwt)‖= ‖V(x)V1(wt)‖ ≥
κ0|�(wt)|. Combining these two relations, we obtain |�(wt)| ≤
2
κ0

dist(zt,x). Substitute this into (31) completes the proof. �
Now we are at a position to propose the PQWF algorithm.

The core spirit is to pick some positive integer Tp and then
invoke the pure quaternion prior every Tp QWF iterations.

The next Theorem presents similar linear convergence for
PQWF.

Theorem 3: We consider a fixed signal x satisfying Con-
dition 4. Suppose x satisfies Condition 4, and by using A∼
Nn×d

Q
and yk = |α∗

kx|2 we run Algorithm 3 with step size

η =O( 1d ). If n≥ C0d log n for some C0, Tp ≥ −2 log(c2)
log(1− c1/d)

,
then with high probability as in Theorem 2, for any k ≥ 0 we
have

dist2p(z̃(k+1)Tp
,x)≤

(
1− c1

4d

)Tp

dist2p(z̃kTp
,x). (34)
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Algorithm 3 Pure Quaternion Wirtinger Flow (PQWF)

Input: data (αk, yk)
n
k=1, step size η, parameter Tp, itera-

tion number T
1: We compute z0 as in Algorithm 1.
2: for i= 0, 1, ..., T − 1:

for j = 0, 1, ..., Tp − 1:
compute ∇f(ziTp+j) as in (8), then update

ziTp+j+1 = ziTp+j − η∇f(ziTp+j). (32)

end for
compute q(i+1)Tp

as the solution of (29) with z =
z(i+1)Tp

, then we replace z(i+1)Tp
as follows:

z(i+1)Tp
← z̃(i+1)Tp

:= �(z(i+1)Tp
· q(i+1)Tp

). (33)

end for
Output: zTTp

Proof: By assumption we can assume (10) in Theorem 2
holds for some c1. Based on this, we start from z̃kTp

, Tp QWF
updates give z(k+1)Tp

, since (10) holds for some c1, we have

dist2(z(k+1)Tp
,x)≤

(
1− c1

d

)Tp

dist2(z̃kTp
,x).

Moreover, further using Lemma 7, there exists some c2 > 1
such that

dist2p(z̃(k+1)Tp
,x)≤ dist2p(z(k+1)Tp

· q(k+1)Tp
,x)

≤ c2 dist
2(z(k+1)Tp

,x).

Combining them, we obtain

dist2p(z̃(k+1)Tp
,x)≤ c2

(
1− c1

d

)Tp

dist2(z̃kTp
,x)

≤
(
1− c1

d

)Tp/2

dist2(z̃kTp
,x), (35)

where we use Tp ≥ −2 log(c2)
log(1−c1/d)

in the last inequality. Further
use
√
1− c1

d ≤ 1− c1
4d and dist(a, b)≤ distp(a, b), the result

follows. �

V. VARIANTS OF QUATERNION WIRTINGER FLOW

Since the seminal work of Wirtinger flow [51], there appeared
some variants that refine WF from different respects, among
which representatives include truncated Wirtinger flow (TWF)
[53], truncated amplitude flow (TAF) [54]. For example, by a
truncation technique, in TWF both spectral initialization and
WF update are conducted in a more selective manner. Moti-
vated by these developments, we also propose their quaternion
versions that we abbreviate as QTWF, QTAF. We will numeri-
cally test their efficacy. We do not pursue a theoretical analysis
(indeed, even in the original works of [53], [54], the authors
only analysed the algorithms in the real case).

A. Quaternion Truncated Wirtinger Flow (QTWF)

We first propose QTWF. Following [53], we consider the
maximum likelihood estimate under Possion noise:

max
z∈Qd

L(z) := 1

n

n∑

k=1

yk log(|a∗
kz|2)− |a∗

kz|2.

Algorithm 4 Quaternion Truncated Wirtinger Flow (QTWF)

Input: data (αk, yk)
n
k=1, step size η, iteration number T ,

selection parameters (θlbz , θ
ub
z , θh, θy)

1: Let λ0 = (
∑n

k=1 yk/n)
1/2. Compute the normalized eigen-

vector corresponding to the largest standard eigenvalue of
(37) and denote it by ν̃in (‖ν̃in‖= 1). We use z0 = λ0 ·
ν̃in as initialization.

2: for i= 0, 1, ..., T − 1:
We compute ∇t�(zi) as in (39) and update zi to

zi+1 = zi + η∇tL(zi).
end for
Output: zT

By Chain rule and Table IV in [19], we obtain4

∇L(z) =
(∂L
∂z

)∗
=

1

2n

n∑

k=1

( yk
|α∗

kz|2
− 1
)
αkα

∗
kz. (36)

We need some pre-specified selection parameters θlbz , θubz ,
θh, θy . Note that the spectral initialization is constructed simi-
larly to QWF, except that the data matrix is constructed more
selectively as (λ0 = (

∑n
k=1 yk/n)

1/2):

S̃in =
1

n

n∑

k=1

ykαkα
∗
k1{|yk|≤θ2

yλ
2
0}. (37)

The QWF update is also modified to be more selective by trun-
cation. Specifically, to update current iteration point zt, we let
Kt =

1
n

∑n
k=1 |yk − |α∗

kzt|2| and will only use measurements
in E1 ∩ E2 to construct the gradient, where

E1(z) :=
{

k : θlbz ≤ |α∗
kz|

‖z‖ ≤ θubz

}

,

E2(z) :=
{

k :
∣
∣yk − |α∗

kz|2
∣
∣≤ θhKt

|α∗
kz|

‖z‖

}

. (38)

Compared with (36), we define the trimmed gradient as

∇tL(z) =
1

2n

∑

k∈E1(z)∩E2(z)

( yk
|α∗

kz|2
− 1
)
αkα

∗
kz. (39)

B. Quaternion Truncated Amplitude Flow (QTAF)

As in [54], QTAF is based on the amplitude-based model
y′k = |α∗

kx| (hence y′k =
√
yk), and the goal is to minimize the

corresponding �2 loss

min
z∈Qd

�(z) :=
1

n

n∑

k=1

(
|α∗

kz| − y′k
)2
.

By chain rule and Table IV in [19] we obtain

∇�(z) =
( ∂�

∂z

)∗
=

1

2n

n∑

k=1

αk

(

α∗
kz − y′k

α∗
kz

|α∗
kz|

)

. (40)

QTAF involves two tuning parameters γ, ρ ∈ (0, 1). It adopts
the totally different orthogonality-promoting initialization.
Specifically, we define I0 ⊂ [n] as the indices corresponding

4Here, we can assume |α∗
kz|> 0 for all k since the gradient would be

trimmed by E1 below. This is also true for the QTAF algorithm below.
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Algorithm 5 Quaternion Truncated Amplitude Flow (QTAF)

Input: data (αk, y
′
k := |α∗

kx|)nk=1, step size η, iteration
number T , selection parameters (γ, ρ).

1: Let λ0 = (
∑n

k=1(y
′
k)

2/n)1/2. Compute the normalized
eigenvector corresponding to the largest standard eigen-
value of (41) and denote it by ν̂in (‖ν̂in‖= 1). Then we
obtain z0 = λ0 · ν̂in as initialization.

2: for i= 0, 1, ..., T − 1 :
We compute ∇t�(zi) as in (42) and then update zi to

zi+1 = zi − η∇t�(zi).
end for
Output: zT

Algorithm 6 Pure Quaternion Truncated Wirtinger Flow
(PQTWF)

Input: data (αk, yk)
n
k=1, step size η, parameter Tp, itera-

tion T , selection parameters (θlbz , θ
ub
z , θh, θy)

1: The initialization is the same as step 1 in Algorithm 4.
2: for i= 0, 1, ..., T − 1:

for j = 0, 1, ..., Tp − 1 :
Compute ∇t�(ziTp+j) as in (39) and update zi to

ziTp+j+1 = ziTp+j + η∇tL(ziTp+j).
end for
compute q(i+1)Tp

as the solution of (29) with z =
z(i+1)Tp

, then we replace z(i+1)Tp
as follows:

z(i+1)Tp
← z̃(i+1)Tp

:= �(z(i+1)Tp
· q(i+1)Tp

). (43)

end for
Output: zTTp

to the �ρn� largest values of y′k/‖αk‖, and for initialization it
uses the data matrix as

Ŝin =
1

|I0|
∑

k∈I0

αkα
∗
k

‖αk‖2
. (41)

The parameter γ is used to trim the gradient. Specifically,
we define Iz := {k ∈ [n] : |α∗

kz| ≥ y′k/(1 + γ)} and further the
trimmed gradient

∇t�(z) =
1

2n

∑

k∈Iz

(
1− y′k

|α∗
kz|
)
αkα

∗
kz. (42)

C. The Pure Quaternion Versions

The developed techniques for utilizing a pure quaternion
priori can be similarly incorporated into QTWF, QTAF — by
mapping zt to �(ztqt) (qt is defined in (30)) every Tp itera-
tions. For clarity, we present Pure QTWF (PQTWF) and Pure
QTAF (PQTAF) in the following.

VI. EXPERIMENTAL RESULTS

We present experimental results in this section, specifically
Sections VI-A, VI-B, and VI-C for synthetic data, and Section
VI-D for color images.5

5Our implementation is based on the quaternion toolbox for Matlab
developed by S. J. Sangwine and N. Le Bihan available in https://sourceforge.
net/projects/qtfm/.

Algorithm 7 Pure Quaternion Truncated Amplitude Flow
(PQTAF)

Input: data (αk, y
′
k := |α∗

kx|)nk=1, step size η, parameter
Tp, iteration T , selection parameters (γ, ρ)

1: The initialization is the same as step 1 in Algorithm 5.
2: for i= 0, 1, ..., T − 1:

for j = 0, 1, ..., Tp − 1 :
Compute ∇t�(ziTp+j) as in (42) and update zi to

ziTp+j+1 = ziTp+j + η∇tL(ziTp+j).
end for
compute q(i+1)Tp

as the solution of (29) with z =
z(i+1)Tp

, then we replace z(i+1)Tp
as follows:

z(i+1)Tp
← z̃(i+1)Tp

:= �(z(i+1)Tp
· q(i+1)Tp

). (44)

end for
Output: zTTp

Fig. 1. (a) Success rate of QWF; (b) linear convergence.

A. Synthetic Data

In each single trial of QWF, we use Gaussian measure-
ment ensemble A∼Nn×d

Q
. The entries of quaternion signal

x ∈Q
d (resp. pure quaternion signal x ∈Q

d
p) are i.i.d. copies

of N (0, 1) +
∑

ϑ= i, j,k N (0, 1)ϑ (resp.
∑

ϑ= i, j,k N (0, 1)ϑ),
then x will be normalized so that ‖x‖= 1. We apply 100
power iterations to approximately find the νin as the leading
eigenvector of the Hermitian Sin. Here, the power method for
quaternion Hermitian matrix is parallel to the complex case
[63]. By default, we set η = 0.2n∑n

k=1 yk
and run 1500 QWF up-

dates to obtain the reconstructed signal ẑ.
We first report the success rate of QWF under different sam-

ple sizes (Fig. 1a). Specifically, we test d= 100 and the sample
sizes n

d = 3 : 0.5 : 13. For each n we conduct 100 independent
trials, with a trial claimed to be success if dist(ẑ,x)< 10−5

[51], [53]. One can see that the phase transition starts from
n/d= 6.5, and the success rate reaches 1 at n/d= 9. Under
n≥ 9d the success rate remains 1. In Fig. 1(b), we also plot
the curve of log( dist(zt,x)) versus t in a single trial with
m/n= 10 and 3500 QWF updates. The curve decreases and
shapes like a straight line, and then reaches a plateau, which is
consistent with our linear convergence guarantee in Theorem 2.

Then we go into pure quaternion signal reconstruction via
PQWF, and we test x ∈Q

50
p . Recall that the error metric be-

comes distp(z,x) = min{‖z + x‖, ‖z − x‖} since the syn-
thetic signal admits Condition 4. Our main goal is to show the

https://sourceforge.net/projects/qtfm/.
https://sourceforge.net/projects/qtfm/.
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Fig. 2. (a, b) Success rate of PQWF and Alg. I–III with Tp = 5 or Tp = 10 (if applicable); (c) linear convergence.

proposed PQWF in Section IV can effectively incorporate the
pure quaternion priori and gain notable benefits from it, e.g.,
earlier phase transition. We also try to reveal the significant role
played by the phase factor estimate (30). For this purpose, we
invite the following algorithms to compete with PQWF:

• Algorithm I (Alg. I): We run QWF and finally turn its
output to pure quaternion via phase factor estimate. That is,
it first runs Algorithm 2 to get zT , and then takes �(zT qT )
as solution, where qT is the solution to (30) with zt = zT .

• Algorithm II (Alg. II): This algorithm is a variant of
PQWF — it incorporates the pure quaternion prior every
Tp iterations by directly removing the real part without
phase factor estimate. That is, it runs Algorithm 3 but with
(33) substituted by z(i+1)Tp

= �(z(i+1)Tp
).

• Algorithm III (Alg. III): We run QWF and finally turn
its output to pure quaternion by directly removing the real
part without phase factor estimate. That is, it first runs
Algorithm 2 to get zT and takes �(zT ) as solution.

The experimental results are reported in Fig. 2.
We provide the success rate of PQWF and Alg. I–III under

m
n = 3 : 0.5 : 13 in Fig. 2(a) (for Tp = 5) and Fig. 2(b) (for
Tp = 10). Clearly, the proposed PQWF outperforms Alg. I–III.
For instance, it embraces a phase transition earlier than Alg I,
thus confirming the advantage of PQWF in utilizing the pure
quaternion priori to reduce the measurement number. In stark
contrast, imposing the pure quaternion constraint by removing
the real part, Alg. II and Alg. III have worse performances,
which demonstrates the crucial role played by the phase factor
estimate (30). Since ẑ returned by QWF only recovers x up
to the unknown right quaternion phase factor, �(ẑ) obviously
does not approximate x up to a sign. This explains why the
success rate of Alg. III remains zero. On the other hand, it would
be more interesting to take a closer look at the curve of Alg.
II. In particular, Alg. II also enjoys an phase transition earlier
than Alg. I (6≤ n

d ≤ 7). However, under relatively sufficient
measurements (e.g., 8.5≤ n

d ≤ 10, Fig. 2b), it can be even
worse than Alg. I. For illustration, we comment that the QWF
update is based on the data, while removing the real part is
based on the priori, so their effects on the iteration are likely to
somehow neutralize, which possibly explains the unsatisfactory
performance of Alg. II. Therefore, removing the real part is
not a sensible strategy for utilizing the pure quaternion priori.
Beyond that, we also track log( distp(z̃5k,x)) in a single trial

Fig. 3. Success rate of QWF, QTWF, QTAF.

of PQWF (with Tp = 5, m/n= 8) and plot the error decreasing
curve in Fig. 2(c). This corroborates our linear convergence
guarantee.

B. Variants of Quaternion Wirtinger Flow

Recall that we have proposed the more refined algorithms
QTWF and QTAF. To see their efficacy, we compare the suc-
cess rate of QWF, QTWF, QTAF under n

d = 3 : 0.5 : 13, and
the underlying x ∈Q

50 is randomly drawn as previous experi-
ments. Each success rate is based on 100 independent trials. We
use η = 0.2 for QWF, (θlbz , θ

ub
z , θh, θy, η) = (0.3, 4.5, 5, 3, 0.8)

for QTWF, (γ, ρ, η) = (0.8, 1
6 , 1.2) for QTAF. The results are

shown in Fig. 3. Evidently, at the cost of more parameters
and more complicated algorithms, QTWF and QTAF perform
notably better than QWF.

C. Reduced Measurement Number in Pure Quaternion Signal
Recovery

In this part, we compare QPR with the real-valued methods of
monochromatic model and concatenation model in the regime
of pure quaternion signal recovery. It will be shown that our
quaternion model can succeed using notably fewer phaseless
measurements.

Recall that for x ∈Q
50
p satisfying Condition 4, in QPR we

propose PQWF (Algorithm 3) and the more refined PQTWF
(Algorithm 6), PQTAF (Algorithm 7) for recovering x up to
a sign. To achieve this, alternatively one can use the phase
retrieval of real-valued signal based on monochromatic model
or concatenation model. In this part, we numerically compare
QPR with these two real-valued models:
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Fig. 4. QPR”: the model in this work; “MONO”: the monochromatic model; “CON”: the concatenation model. (a): PQWF (Algorithm 3) for “QPR”, WF
[51] for “MONO” and “CON”; (b): PQTWF (Algorithm 6) for “QPR”, TWF [53] for “MONO” and “CON”; (c): PQTAF (Algorithm 7) for “QPR”, TAF [54]
for “MONO” and “CON”.

• The monochromatic model conducts phase retrieval for
P i(x),P j(x),P k(x) ∈ R

50 separately. Let x̂ i, x̂ j, x̂k

be the corresponding reconstructed signals, the error
metric is

(
distp(P i(x), x̂ i)

2 + distp(P j(x), x̂ j)
2 +

distp(P k(x), x̂k)
2
)1/2

.
• The concatenation model conducts phase retrieval for

xcon := [(P i(x))�, (P j(x))�, (P k(x))�]� ∈ R
150. Let

x̂ be the reconstructed signal, the error metric is
distp(xcon, x̂).

For the above two real-valued models, we use measurement
matrix with i.i.d. standard Gaussian entries and test WF, TWF
and TAF using parameters recommended by the original papers
[51], [53], [54]. Accordingly, we test QPR under PQWF (step
size η = 0.15, other parameters remain the same), PQTWF
(same parameters as QTWF in Section VI-B, Tp = 5), PQTAF
(same parameters as QTAF in Section VI-B, Tp = 5). The pure
quaternion signal is drawn as before.

We test the success rate of QPR under our PQWF, PQTWF,
PQTAF (Algorithms 3, 6, 7), and then compare with the above
two real-valued models under WF [51], TWF [53], TAF [54].
The results are displayed in Fig. 4(a)–(c) (to be fair, each
subfigure compares the considered models under comparable
algorithms, see the caption of Fig. 4 for details). Observe that
QPR enjoys a full success rate when m≥ 8d under PQWF,
when m≥ 7.5d under PQTWF, or when m≥ 6d under PQTAF.
By contrast, the real-valued models require at least m= 9d to
achieve full success rate, i.e., the concatenation model under
TAF, whereas all other cases require much larger sample size.
These results unveil an advantage of our QPR model over the
two real-valued models — while each measurement (in the
three models) is commonly a positive scalar, when compara-
ble algorithms are used, QPR can succeed with notably fewer
measurements.

D. Color Image

We test our algorithms in the real data of color image. The
tested 256× 256 images “Female” and “Mandrill” are avail-
able online.6 To implement phase retrieval with Gaussian mea-
surement matrix, the image is divided into 256 blocks of size

6https://sipi.usc.edu/database/database.php?volume=misc#top

16× 16.7 In our QPR model, each block is modeled as pure
quaternion signal in Q

256
p , and we will test algorithms PQWF,

PQTWF and PQTAF with parameters as before. For compar-
ison, we also test the real-valued methods of monochromatic
model and concatenation model using TAF (from Fig. 4, TAF
performs better than TWF and WF for the real-valued models).
Recall that a color image can be exactly reconstructed without
any ambiguity (Remark 4). Using the same measurement num-
ber of m= 7.5× 256 to deal with each block separately, we
show the original image and reconstructed images (with PSNR)
using different models/algorithms in Figs. 5 and 6. Clearly,
using our quaternion model and an oversampling rate of 7.5,
PQWF only fails in one block, while the more refined algo-
rithms PQTWF and PQTAF exactly recover the whole image.
By contrast, the two real-valued based methods fail in much
more blocks and deliver much lower PSNR. These results agree
with the conclusion of Section VI-C.

Additionally, we further test QPR (using PQTAF) and the
real-valued methods of monochromatic model and concatena-
tion model (both using TAF) over 24 color images from the Ko-
dak24 image dataset.8 Specifically, we downsample the images
to “192× 128”/”128× 192” and divide them into 96 blocks of
size 16× 16, then we perform (quaternion) phase retrieval in
each block using m= 7.5× 256 measurements independently.
The results are reported as follows: (1) The monochromatic
method does not exactly recover any image, with the mean
and standard deviation of the 24 PSNR values being 23.54 and
2.10, respectively; (2) The concatenation model achieves exact
reconstruction over 12 images, with the mean and standard de-
viation of the remaining 12 PSNR values being 27.20 and 3.45,
respectively; (3) Our quaternion method delivers exact recovery
over 22 images, while the PSNR values of the remaining two
images are 26.32 and 13.34. Note that QPR exactly recovers
most images, which again validates our advantage that QPR
succeeds with fewer measurements. However, QPR does not
perform well in two images. Taking a closer look at these two
images, we find that the blocks where QPR fails, do not satisfy

7To handle the whole image without dividing into blocks (as in [51], [53],
[54]), we need to develop more practical measurement matrix for QPR, e.g.,
coded diffraction pattern. See more discussions in Section VII.

8https://www.kaggle.com/datasets/sherylmehta/kodak-dataset

https://sipi.usc.edu/database/database.php?volume=misc#top
https://www.kaggle.com/datasets/sherylmehta/kodak-dataset
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Fig. 5. All simulations use 7.5× 256 = 1920 phaseless measurements for each block. Original image “Female”, reconstructed images of QPR using PQWF,
PQTWF, PQTAF, and the monochromatic model, concatenation model using TAF. Note that PSNR =∞ appears because the signals returned by the algorithms
have relative error (i.e., ‖Î − I‖F /‖I‖F with Î, I being the reconstructed image, original image (resp.)) less than 10−9, then after changing to the “uint8”
format the reconstructed image exactly equals to the original image.

Fig. 6. This is an experiment parallel to Fig. 5. All simulations use 1920 phaseless measurements for each block with size 16× 16. QPR using PQTWF
or PQTAF achieves exact reconstruction, QPR using PQWF fails in two blocks, the two real-valued based models using TAF fail in more blocks.

Condition 4,9 in the sense that their three channels are (nearly
or exactly) real linearly dependent. Note that Lemma 6 no
longer stands for pure quaternion signal whose three imaginary
parts are (real) linearly dependent, and in general we cannot
identify such signal up to a sign, so QPR unavoidably fails in
these blocks due to identifiability issue. Thus, extra cautious-
ness is needed to ensure Condition 4 when one applies QPR
to pure quaternion signal recovery. Furthermore, we conduct
the experiment again with the measurement number for each
block reduced to m= 6.5× 256 (i.e., under the oversampling
rate 6.5), then the performances of the two real-valued based
methods deteriorate significantly, while QPR using PQTAF still
exactly recovers 22 color images and fails in the remaining two
due to the signal nature. Detailed results are reported in the
supplementary material.

VII. CONCLUDING REMARKS

In this paper, we initiate the study of quaternion phase
retrieval (QPR) problem, which is formulated as the

9See supplementary material for the two images in which QPR fails.

reconstruction of x ∈Q
d from |Ax|2 with known A ∈Q

n×d.
As the theoretical foundation, we first confirm that the global
right quaternion phase factor is the only trivial ambiguity. Then,
we propose quaternion Wirtinger flow (QWF) as a scalable and
practical algorithm for solving QPR. The linear convergence
of QWF has been proved and presented as a major theoretical
result. The technical ingredients involve the HR calculus and
some techniques for handling quaternion matrices. While our
proof strategy is adjusted from the complex Wirtinger flow
[51], a series of different treatments are employed with some
new machinery (Remark 3 and other remarks in supplementary
material).

Special attention is paid to QPR of pure quaternion signal.
With an additional minor assumption, one can reconstruct the
signal up to the trivial ambiguity of a sign (Lemma 6), which
can be further removed in color image recovery (Remark 4).
By using a crucial phase factor estimate, we develop the PQWF
algorithm that can effectively utilize the pure quaternion priori.
Note that PQWF enjoys guaranteed linear convergence. Moti-
vated by existing refinements of WF, specifically TWF and TAF,
we further propose QTWF, QTAF and their pure quaternion
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versions PQTWF, PQTAF. Their advantages are numerically
demonstrated. We provide experimental results on synthetic
data and color images that corroborate our theories. A surprising
finding is that, for pure quaternion signal recovery, our quater-
nion method often succeeds with measurements notably fewer
than real-valued methods based on monochromatic model or
concatenation model. This is claimed as the advantage of the
QPR model and makes our quaternion method preferable in a
situation where one can only obtain a very limited number of
phaseless measurements.

We note that this work only provides a starting point for the
research of QPR, and there are undoubtedly many questions
worth further exploration. We point out several directions to
close this paper. Theoretically, although O(d) measurements
have been shown to be sufficient for QPR, it would be of
theoretical interest to investigate the precise measurement num-
ber needed for recovery of all signals in Q

d. This is known
as the minimal measurement number in phase retrieval (e.g.,
[43], [44], [45], [46]). Besides, compared to A∼Nn×d

Q
, coded

diffraction pattern (CDP) that applies Fourier transform to the
masked signal would be more practical for some applications
[64]. It is appealing to develop a similar measurement scheme
for quaternion signal, ideally accompanied by a guaranteed
algorithm. Moreover, while our simulations unveil an advan-
tage of QPR (i.e., success using fewer measurements), it is
interesting to explore more privileges so that one knows in
what regime the quaternion model is preferable. By making
use of the (approximately) low-rank structure of color images,
the advantages of using quaternion-based method were demon-
strated in image restoration or inpainting [9], [10], [23]. On
the other hand, recent works have explored how to incorporate
the low-rank priori into phase retrieval (referred to as low-rank
phase retrieval, LRPR) [65], [66], [67]. Taken collectively, we
conjecture that it may be fruitful to explore the benefit of using
quaternion method in LRPR.

APPENDIX A
AUXILIARY RESULTS

We provide some expectation results to support our analysis.
Their proofs and some technical remarks are provided in the
supplementary material.

Lemma 8: Assume entries of α ∈Q
d are i.i.d. drawn from

NQ, and u,v ∈Q
d satisfy ‖u‖= ‖v‖= 1. Then we have the

following:
(a) (rotational invariance) For any unitary matrix P ∈Q

d×d,
Pα and α have the same distribution.

(b) E|α∗u|2l = (l+1)!
2l

for any positive integer l.

(c) E
[
�(u∗αα∗v)

]2
= 1

4 + 5
4

[
�(u∗v)

]2 − 1
4

∣
∣�(u∗v)

∣
∣2.

(d) E
[
αα∗u|α∗v|2

]
= u+ 1

2vv
∗u.

Lemma 9: Assume γ1, · · · ,γn are independent random
vectors in R

d that have entries [γkj ] i.i.d. drawn from N (0, 1).
Fix i, j ∈ {1, 2} and any sufficiently small δ > 0, when n≥
C1δ

−2d log n for sufficiently large C1, with probability at least
1− 2n−9 − 2 exp(−cd), we have

∥
∥
∥
1

n

n∑

k=1

γkiγkjγkγ
�
k − E

[
γkiγkjγkγ

�
k

]∥∥
∥≤ Cδ.
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