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Procrustes Analysis on the Manifold of SPSD
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Abstract—In contemporary high-dimensional data analysis, in-
trinsically similar and related data sets are often significantly
different due to various undesired factors that could arise from
different acquisition equipment, calibration, environmental condi-
tions, and many other sources of batch effects. Therefore, the task
of aligning such data sets has become ubiquitous. In this work,
we present a method for the alignment of different, but related,
sets of Symmetric Positive Semidefinite (SPSD) matrices, which
constitute a commonly-used family of features, e.g., covariance
and correlation matrices, various kernels, and prototypical graph
and network representations. Our method does not require any
a-priori correspondence, and it is based on non-Euclidean Pro-
crustes Analysis (PA) using a particular Riemannian geometry of
SPSD matrices. While the derivation is focused on the manifold
of SPSD matrices, we show that our alignment method can be
applied directly in the original high-dimensional data space, when
considering SPSD features that are sample covariance matrices.
We demonstrate the advantage of our approach over competing
methods in simulations and in an application to Brain-Computer
Interface (BCI) with electroencephalographic (EEG) recordings.

Index Terms—Domain adaptation, symmetric positive semi-
definite matrices, Riemannian geometry, BCI, EEG.

I. INTRODUCTION

A LONGSTANDING problem in data science is how to
represent, analyse, and process a union of different, but

related, data sets. Often, due to the inherent heterogeneity of
many types of data sets, useful representations usually cannot
be achieved simply by merging multiple data sets into one big
data set. Furthermore, a model learned from one data set is
typically not appropriate as-is for the analysis of another. The
density of the data sets could be different as a result of a broad
variety of application-dependent differences, e.g., the recording
conditions, the technology of the data acquisition, the production
process and calibration of the recording device, the population
of subjects, the physical conditions, etc. In order to exploit the
model learned from one data set for analysis tasks in another
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data set, or to jointly process and analyze them, prior alignment
of the data sets is required.

One approach for alignment, which is primarily based on
geometric considerations, is Procrustes Analysis (PA) [1]. Orig-
inated in shape analysis, PA aims to adjust two or more shapes in
order to facilitate a meaningful comparison between them. Given
pairs of landmarks from both shapes, the adjustment is typically
performed by applying three transformations: centering, scaling,
and rotation, such that the distances between the landmarks are
minimized. Extending this idea from shapes to high-dimensional
point clouds facilitated an appealing data alignment approach,
which is simple, efficient, and mathematically tractable, and
it does not require any rigid a-priori model assumptions or
estimates of the whole distribution of the data. Indeed, data
alignment using PA has been successfully applied to various
fields, including Brain-Computer Interface (BCI) [2], genetics
and bioinformatics [3], [4], [5], indoor navigation [6], face
recognition [7], and hierarchical representation [5], [8], to name
but a few.

The application of PA to high-dimensional data sets poses
challenges since such data typically do not live in a Euclidean
space. The recent common practice for high-dimensional data
analysis is based on the manifold assumption, i.e., to assume the
existence of an intrinsic low-dimensional manifold underlying
the data [9], [10], [11], [12]. However, learning the manifold
from observations might be impractical in some real-world
problems. An alternative approach is to use informative features
with a-priori known and useful geometry. One natural example
of such features is covariance matrices that embody multivariate
associations. If the covariance matrices are full rank, they live on
a Riemannian manifold, also known as the Symmetric Positive
Definite (SPD) cone [13], [14]. Rodrigues et al. [2] presented
PA based on the Riemannian geometry of SPD matrices, with
application to BCI involving electroencephalographic (EEG)
recordings of different subjects. Yet, many types of data sets,
such as gene expression data [15] and hyper-spectral imaging
data [16], [17], have a low dimensional structure, and therefore,
the covariance matrices stemming from such data are rank
deficient, i.e., they are Symmetric Positive Semidefinite (SPSD)
matrices. Other examples of SPSD features are kernels, similar-
ity matrices, and graph Laplacians, where the multiplicity of the
zero eigenvalue equals the number of connected components of
the associated graph [18].

In this work, we address the problem of aligning high-
dimensional data sets by solving a new PA problem designed
specifically for SPSD matrices with a fixed rank [19]. Given two
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sets of SPSD matrices, we aim to align the sets by matching their
statistical moments and available labels. For this purpose, we
derive the three geometric operations composing PA: centering,
scaling, and rotation, by using the Riemannian framework of
SPSD matrices presented in [19], [20]. Broadly, our proposed
centering is based on Riemannian mean subtraction derived
using parallel transport. The scaling is based on matching the
Riemannian dispersion, which is carried out with respect to the
geodesic path. Lastly, the rotation makes use of a small number
of landmarks and is designed to match the first- and second-order
statistical features of the sets. Conceptually, our work could be
viewed as an extension of [2] from SPD geometry to SPSD
geometry. Seemingly, the difference between SPD geometry and
SPSD geometry is subtle and could be technically solved by
an appropriate regularization, yet, it is in fact fundamental and
involves a completely different geometry.

We demonstrate the usefulness of our approach in simula-
tions and in an application to BCI involving EEG recordings.
Recently, the spatial covariance matrix of EEG recordings has
been shown to be an informative feature for BCI applications,
leading to state-of-the-art performance [21], [22], [23], [24].
Here, we show that using our method to align sets of covariance
matrices of EEG recordings acquired from different subjects is
beneficial, facilitating improved BCI performance compared to
other alignment methods.

Seemingly, one limitation of the proposed approach, when
it is applied to aligning data through the alignment of the
SPSD features of the data, is that every downstream task is also
restricted to using these aligned SPSD features. We show that
if the SPSD features are computed as the sample covariance
matrices, then the centering and rotation steps of the proposed
PA, which are derived following SPSD geometry considerations,
can be applied directly in the original data space. Consequently,
in this case, we are not restricted to using the SPSD features in
downstream tasks following the proposed alignment, in contrast
to other related algorithms for data alignment [2], [20], [25].

The remainder of the paper is organized as follows. In Sec-
tion II, we present the relevant mathematical background. Sec-
tion III presents the problem formulation. The proposed method
is presented in Section IV. In Section V, we show how our
method can be applied directly to high-dimensional data sets
with a low-dimensional structure. In Section VI, we showcase
the performance of the proposed algorithm in applications to
simulated data and to real EEG recordings. Section VII con-
cludes the paper.

II. MATHEMATICAL BACKGROUND

We present a brief mathematical background on the three Rie-
mannian manifolds considered in this paper. For more details,
we refer the readers to [14], [19], [20], [26].

A. The Manifold of SPD Matrices

We denote the set of all r × r SPD matrices by

Pr =
{
P ∈ Rr×r : P = PT , P � 0

}
. (1)

The tangent space TPPr at a point P ∈ Pr is the set of all
symmetric matrices

TPPr =
{
S ∈ Rr×r : S = ST

}
.

ForS1, S2 ∈ TPPr, the affine invariant metric is defined by [13]

〈S1, S2〉P =
〈
P− 1

2S1P
− 1

2 , P− 1
2S2P

− 1
2

〉
, (2)

where 〈A,B〉 = Tr{ATB}. The set Pr in (1) with the inner
product (2) constitutes a Riemannian manifold. For P1, P2 ∈
Pr, the map of P2 to the tangent space TP1

Pr is given by the
following explicit expression of the Logarithmic map

S = LogP1
(P2) = P

1/2
1 log(P−1/2

1 P2P
−1/2
1 )P

1/2
1 . (3)

Its inverse is given by the following explicit expression of the
Exponential map

P2 = ExpP1
(S) = P

1/2
1 exp(P−1/2

1 SP
−1/2
1 )P

1/2
1 . (4)

The geodesic path from P1 ∈ Pr to P2 ∈ Pr is given by

γP1→P2
(t) = ExpP1

(
tLogP1

(P2)
)

= P
1/2
1

(
P

−1/2
1 P2P

−1/2
1

)t
P

1/2
1 , t ∈ [0, 1] . (5)

Intuitively, the logarithmic map could be interpreted as follows.
If we move from a base point P1 with initial velocity LogP1

(P2)
and maintain constant speed along the geodesic, then after one
time step, we arrive at P2. The square of the arc length of the
geodesic path in (5) is given by

d2P(P1, P2) =
∥∥∥log

(
P

−1/2
1 P2P

−1/2
1

)∥∥∥2
F

=
r∑

i=1

log2(λi), (6)

where λi are the eigenvalues of P−1
1 P2. The arc length in

(6) defines an affine-invariant distance, to which we will refer
as the Riemannian distance in Pr. We note that the affine-
invariant property of this distance can be explicitly written by
d2P(P1, P2) = d2P(A

TP1 A,A
TP2 A) for every invertible ma-

trix A.
In the context of PA, we will consider the Fréchet mean, the

dispersion, and the following transport map.
Definition 1 (Fréchet mean and dispersion):
1) The Fréchet mean (first order moment) of a set {xi ∈

M}Ni=1 is defined by

x = M ({xi}) := arg min
x∈M

N∑
i=1

d2R (x, xi) , (7)

where dR is the Riemannian distance on M.
2) The dispersion (second order moment) of a set {xi ∈

M}Ni=1 is defined by

D({xi}) =
1

N − 1

N∑
i=1

d2R(x, xi). (8)

Definition 2 (Isometric Transport Map [20]): Let {xi ∈
M}Ni=1 be a set of points on a Riemannian manifold M with
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mean M({xi}) = x. We call the map Γ̃+
x→x0

: M → M of the
set {xi} to the point x0 ∈ M an isometric transport map if:

1) It satisfies: M({Γ̃+
x→x0

(xi)}Ni=1) = x0.
2) It is an isometry, i.e., it preserves pairwise distances:

dM(xi, xj) = dM
(
Γ̃+
x→x0

(xi) , Γ̃
+
x→x0

(xj)
)
.

Note that these definitions of the Fréchet mean, the dispersion,
and the isometric transport map are not specific to the SPD
manifold, and they will be used in the context of other manifolds
as well.

Let {Pi ∈ Pr} be a set with mean M({Pi}) = P . Yair et al.
showed in [27] that the map

Γ̃+

P→P0
(Pi) = TpPiT

T
p , (9)

where Tp = (P0P
−1
)1/2, is an isometric transport map on Pr.

The map in (9) is tightly related to Parallel Transport (PT) with
one important distinction: it maps points from the manifold to the
manifold, while PT maps points from tangent space to tangent
space. Broadly, PT is the process of transporting a vector along
a curve of the manifold such that the covariant derivative of the
transported vector along the curve is zero (see [28] for more
details). The map in (9) is equivalent to mapping Pi ∈ Pr to
the tangent space at P , parallel transporting the mapped vector
along the geodesic path from P to P0, and mapping the result
back to manifold Pr.

B. The Grassmann Manifold

Let Vd,r be the set of all d× r matrices, r < d, whose r
columns are orthonormal vectors in Rd. Let Or be the set of
all r × r orthogonal matrices, such that any O ∈ Or satisfies
OOT = OTO = I . Following [26], we view the Grassmann
manifold as the quotient space Gd,r = Vd,r

/
Or. A point on Gd,r

is an r-dimensional subspace of Rd, and it is represented by an
equivalence class

[G] = {GO : O ∈ Or},

where G ∈ Vd,r. Let G⊥ ∈ Rd×(d−r) be the orthogonal comple-
ment of G, i.e., [G G⊥] ∈ Od. The tangent space at [G] ∈ Gd,r

is given by

TGGd,r =

{
Δ = G⊥B

∣∣∣∣B ∈ R(d−r)×r

}
.

We consider the inner product proposed in [26]

〈Δ1,Δ2〉G = Tr
{
ΔT

1 Δ2

}
= Tr{BT

1 B2},

where T[G]Gd,r � Δ1 = G⊥B1 and T[G]Gd,r � Δ2 = G⊥B2.
Note that G⊥ and B are not uniquely identified, but any choice
results in the same inner product. The geodesic path from
[G1] ∈ Gd,r to [G2] ∈ Gd,r is given by

γG1→G2
(t) = ExpG1

(
tLogG1

(G2)
)
, t ∈ [0, 1] . (10)

where Log and Exp denote the Logarithmic and Exponential
maps on the Grassmann manifold (for their explicit expressions,
see [20]). The arc length of the geodesic path in (10) specifies a

Riemannian distance. The square of the arc length is given by

d2G(G1, G2) = ‖Θ‖F , (11)

where Θ represents the angles between the subspaces and can
be computed by the following Singular Value Decomposition
(SVD) GT

1 G2 = O1(cosΘ)OT
2 .

Let {Gi ∈ Gd,r} be a set with mean M({Gi}) = [G]. In [20],
it was shown that the following map is an isometric transport map
on Gd,r

Γ̃+

G→G0
(Gi) = Q0Q

T
Gi, (12)

where Q = [G G⊥], G⊥ is the orthogonal complement of

G, Q0 = Q exp

([
0 −BT

B 0

])
, and B = G

T
⊥LogG(G0). For

simplicity, we denote the isometric transport map on Gd,r by

Tg = Q0Q
T

.

C. The Manifold of SPSD Matrices

We denote the set of all d× d SPSD matrices with a fixed
rank r < d by

S+
d,r =

{
C ∈ Rd×d : C = CT , C 
 0, rank(C) = r

}
.

We follow the work of Bonnabel and Sepulchre [19], which
considers the following quotient manifold representation

S+
d,r

∼= (Vd,r × Pr)/Or.

Since any C ∈ S+
d,r can be decomposed as

C = URUT ,

where U ∈ Vd,r and R ∈ Pr, C can be represented by

C ∼= (U,R), (13)

where Vd,r × Pr is termed the structure space representa-
tion [19].

The representation in the structure space (13) is not unique
because any orthogonal matrix O ∈ Or satisfies

C = URUT = (UO)
(
OTRO

)
(UO)T ,

and therefore

C ∼=
(
UO,OTRO

)
,

so that U in (13) is considered as a point on the Grassmann
manifold Gd,r.

The fact that the structure space is not unique makes the
practical use of a set of SPSD matrices challenging. Recently
in [20], a canonical representation of a set of SPSD matrices
in the structure space was proposed, such that every matrix in
the set has a unique structure space representation, and it was
shown to be useful when SPSD matrices are considered as data
features. Given a set of SPSD matrices C = {Ci}, we denote the
canonical structure space representation by

Ci
∼= (Gi, Pi), (14)

where the computation of (Gi, Pi) is given in Algorithm 1.



1910 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

By [19, Thm. 1], the space S+
d,r equipped with the following

metric

〈(Δ1, S1) , (Δ2, S2)〉(U,R) = 〈Δ1,Δ2〉U + k 〈S1, S2〉R (15)

which is the sum of the metrics in Gd,r and Pr with some
parameter k > 0, is a Riemannian manifold with horizontal
space

T(U,R)S+
d,r = {(Δ, S) : Δ ∈ TUGd,r, S ∈ TRPr} . (16)

We note that there exist in the literature other metrics for
S+
d,r, e.g., those presented in [29], [30]. We choose this par-

ticular representation and its associated metric for three rea-
sons. First, it provides a metric, which generalizes the Affine
Invariant Riemannian Metric (AIRM) for SPD matrices (2),
since it is invariant to orthogonal transformations, scaling, and
pseudoinversion [19]. Second, it was shown in [20] that this
metric provides better empirical results compared to the metric
proposed in [30]. Third, this geometry enables the computation
of essential components, such as the Fréchet mean, and as far as
we know, there is no algorithm for computing the Fréchet mean
using the geometry proposed in [29].

In [19], a special path of interest between two points in S+
d,r,

C1
∼= (U1, R1) and C2

∼= (U2, R2), was proposed. This path
is based on a horizontal geodesic in the structure space, and
therefore, we first find two representatives of C1 and C2 in
the structure space that are connected by horizontal geodesics.
Define the rotation of U2 with respect to U1 by

Ũ2 = ΠU1
(U2) := U2O2O

T
1 , (17)

where UT
1 U2 = O1ΣO

T
2 is an SVD. The matrix C2 can be rep-

resented also by C2
∼= (Ũ2, R̃2), where R̃2 = ŨT

2 C2Ũ2. Then,
by [19, Thm. 2], the path between C1 and C2, given by

γ̂C1→C2
(t) = U(t)R(t)U(t)T , t ∈ [0, 1], (18)

where U(t) = γU1→˜U2
(t) and R(t) = γR1→ ˜R2

(t), admits the
following properties. First, it connects C1 and C2, i.e.,
γ̂C1→C2

(0) = C1 and γ̂C1→C2
(1) = C2, and γ̂C1→C2

(t) ∈ S+
d,r

for all t ∈ [0, 1]. Second, the path (U(t), R(t)) is a horizontal lift
of γ̂C1→C2

(t) and it is a geodesic in the structure space. Third,
the squared total length of γ̂C1→C2

(t) is given by

l2 (γ̂C1→C2
) = d2G

(
U1, Ũ2

)
+ kd2P

(
R1, R̃2

)
, k > 0. (19)

The path γ̂C1→C2
(t) is not necessarily a geodesic path in the

Riemannian manifold S+
d,r with the metric in (15). In addition,

its length in (19) is not a distance since it does not satisfy
the triangle inequality. Nevertheless, it was shown theoretically
in [19] and empirically in [20] that the length in (19) is a
meaningful measure of dissimilarity.

We consider a map of C2
∼= (Ũ2, R̃2) to the horizontal space

T(U1,R1)S+
d,r by the corresponding logarithmic maps in the

structure space as follows

L̂(U1,R1)(Ũ2, R̃2) =
(

LogU1

(
Ũ2

)
,LogR1

(
R̃2

))
. (20)

Informally, in the remainder of this paper, we view the hori-
zontal space in (16) as the tangent space, the path γ̂C1→C2

(t) in

Algorithm 1: Canonical Representation for a Set of SPSD
Matrices [20].

Input: C = {Ci ∈ S+
d,r}Ni=1

Output: A canonical representation
C = {Ci

∼= (Gi, Pi)}Ni=1

1: for i = 1 to N do
2: Compute Ui ∈ Rd×r the r first eigenvectors of Ci

3: end for
4: Compute the Grassman mean U = M({Ui}Ni=1)
5: for i = 1 to N do
6: Rotate Ui: Gi = ΠU (Ui) � see (17)
7: Set Pi = GT

i CiGi

8: end for
9: return {(Gi, Pi)}Ni=1

(18) as an approximate geodesic path, and the map in (20) as an
approximate logarithmic map in S+

d,r.

III. PROBLEM FORMULATION

Consider two data sets: the source set

X = {Xi}Nx

i=1 ,

and the target set

Y = {Yi}Ny

i=1 ,

where Xi and Yi are d× d SPSD matrices with rank r < d,
which are viewed as data points. Suppose that each set consists
of L classes. We consider a semi-supervised setting, where
the labels of only a small subset Xl ⊂ X and the labels of
only a small subset Yl ⊂ Y are known, and they are used for
the proposed data alignment. We assume that the statistical
distributions of X and Y are different due to various extrinsic
factors, yet the sets are intrinsically related.

To formulate our goal, we follow [2] and parametrize the
statistical distributions of X and Y using their first- and second-
order moments, which are defined in the Riemannian sense as
follows.

Let M be the SPSD manifold. Since the length in (19) is not
a distance, the Fréchet mean in (7) cannot be used as is. Instead,
we use the mean proposed in [31] which is computed as follows.
Let Ci

∼= (Gi, Pi) be the canonical representation obtained by
applying Algorithm 1 to a set of SPSD matrices C = {Ci}Ni=1.
The mean of C is given by

C ∼= (G,P ), (21)

where G = M({Gi}) and P = M({Pi}).
For computing the dispersion of C, we use (19) as a measure of

dissimilarity betweenC andCi instead of dR in (22) because dR
is not defined, giving rise to the following alternative dispersion

σ2 =
1

N − 1

N∑
i=1

l2
(
γ̂C→Ci

)
. (22)
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Now, equipped with the mean and dispersion of a set, we
parametrize the statistical distributions of X and Y as follows

ΩX =
{
X,Mx

1 ,M
x
2 , . . .,M

x
L, σx

}
ΩY =

{
Y ,My

1 ,M
y
2 , . . .,M

y
L, σy

}
,

where X and Y are the means of X and Y , respectively, Mx
i

and My
i are the means of the ith class in the sets X and Y ,

respectively, and σx and σy are the dispersions of X and Y ,
respectively.

Our goal is to align X and Y such that the above parametriza-
tion of their statistical distributions coincide. After alignment,
a model learned from one set, say X , can be exploited for an
analysis or learning task applied to the other set, say Y , despite
their heterogeneity. For example, let f : X → {1, 2, . . ., L} be
a classification function defined on the set X . A good alignment
of X and Y facilitates good classification results simply by
applying f to points in Y after alignment.

IV. PROPOSED METHOD

Following standard PA [1], the proposed alignment of the two
sets X and Y is composed of three operations on the manifold
S+
d,r: centering, scaling, and rotation. In this section, we present

their proposed implementation on S+
d,r.

A. Centering

We center the sets X and Y by subtracting their respective
means using a transport map defined as follows. Let {Ci

∼=
(Gi, Pi)} be the canonical representation of a set with a mean
M({Ci}) = C ∼= (G,P ), and let C0

∼= (G0, P0) be another
point on S+

d,r such that G0 = ΠG(G0) and P0 = GT
0 C0G0.

Definition 3 (Rigid Transport Map): We call the map
ΨC→C0

: S+
d,r → S+

d,r a Rigid transport map if the following
two conditions hold.

1) It satisfies: M(ΨC→C0
({Ci})) = C0

2) It preserve the length of the curve between C and Ci ∀i.
i.e.:

l2
(
γ̂C→Ci

)
= l2

(
γ̂C0→Ψ

C→C0
(Ci)

)
∀i.

Note that a rigid transform map (Definition 3) differs from an
isometric transform map (Definition 2) by requiring geodesic
length rather than distance preservation.

We define the following map:

Γ̃+

C→C0
(Ci) ∼=

(
Γ̃+

G→G0
(Gi) , Γ̃

+

P→P0
(Pi)

)
= (TgGi, TpPiT

T
p ), (23)

where the matrices Tg and Tp are given in Sections II-A and
II-B, respectively.

Proposition 1: The map Γ̃+

C→C0
is a rigid transport map.

See Appendix A for the proof of Proposition 1.

Let C0 = diag([1r 0d−r]) denote the origin of the space.

We center X and Y by applying Γ̃+

C→C0

X
(ctr)
i = Γ̃+

X→C0
(Xi), ∀Xi ∈ X

Y
(ctr)
j = Γ̃+

Y→C0
(Yj), ∀Yi ∈ Y. (24)

We denote the sets after centering by

X (ctr) =
{
X

(ctr)
i

∼=
(
G

(ctr)
i , P

(ctr)
i

)}
Y(ctr) =

{
Y

(ctr)
j

∼=
(
V

(ctr)
j , R

(ctr)
j

)}
, (25)

whose means according to Proposition 1 are C0.

B. Scaling

We propose to scale the centered source set X (ctr) such
that its dispersion after scaling matches the dispersion of the
centered target set Y(ctr), namely σy . This operation is carried
out by sampling the geodesic path (18) between the origin C0

and X
(ctr)
i

∼= (G
(ctr)
i , P

(ctr)
i ). Let (G0, P0) be the structure space

representation of C0, and let γ̂
C0→X

(ctr)
i

(t) ∼= (Gi(t), Pi(t)) be

the geodesic path between C0 and X
(ctr)
i , whose length is given

by

l2
(
γ̂
C0→X

(ctr)
i

)
= d2G

(
G0, G

(ctr)
i

)
+ kd2P

(
P0, P

(ctr)
i

)
. (26)

Consider the structure space representation of X (ctr) and Y(ctr)

defined in (25). Let σg and σv be the dispersion of {G(ctr)
i }

and {V (ctr)
i } on Gd,r, respectively, and let σp and σr be the

dispersion of{P (ctr)
i } and{R(ctr)

i }onPr, respectively. We define

the scaling of X(ctr)
i by

X
(scl)
i

∼=
(
G

(scl)
i , P

(scl)
i

)
=

(
Gi

(
t =

σv

σg

)
, Pi

(
t =

σr

σp

))
,

such that the scaled source set is given byX (scl) = {X(scl)
i }. The

dispersion after scaling is given by

σ2
(
X (scl)

)
=

Nx∑
i=1

l2
(
γ̂
C0→X

(scl)
i

)
.

Proposition 2: Then the dispersion of the set X (scl) is equal
to the dispersion of the set Y(ctr), i.e.,

σ2
(
X (scl)

)
= σ2

y.

See Appendix B for the proof of Proposition 2.

C. Rotation

According to the problem formulation presented in Sec-
tion III, the sets X and Y are composed of L classes. In this
step, we propose to match the means of the classes such that the
classes in both sets coincide.

Definition 4 (Rotation): Let {Ci
∼= (Gi, Pi)} ⊂ S+

d,r be the

canonical representation of a set with a meanM({Ci}) = C. We
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call a map R : S+
d,r → S+

d,r a rotation about C if the following
properties are satisfied:

1) R preserves the length of the path between all pairs of
points:

l2
(
γ̂Ci→Cj

)
= l2

(
γ̂R(Ci)→R(Cj)

)
, ∀i, j.

2) R maps C to itself, i.e., R(C) = C.
3) R preserves the length of the path to C:

l2
(
γ̂Ci→C

)
= l2

(
γ̂R(Ci)→C

)
, ∀i.

Let SO(d) be the set of all special orthogonal d× d matrices,
i.e., orthogonal matrices with determinant 1. The following map
is a rotation about the origin C0 for any C ∼= (G,P ):

R(C) ∼= (OgG,OpPOT
p ), (27)

where Op ∈ SO(r), and Og ∈ SO(d) is of the form

Og =

[
Og1 0
0 Og2

]
,

where Og1 ∈ SO(r) and Og2 ∈ SO(d− r). In the Supplemen-
tary Materials, we show that the map in (27) indeed satisfies all
the three properties of Definition 4.

To find the bestR, which describes the relation betweenX (scl)

and Y(ctr), we search for the rotation which matches the classes
means of X (scl) to those of Y(ctr) by minimizing the following
criterion

min
R

L∑
c=1

l2(γ̂R(Mx
c )→My

c
), (28)

where Mx
c
∼= (Gx

c , P
x
c ) and My

c
∼= (Gy

c , P
y
c ) are the mean of

the c-th class of X (scl) and Y(ctr), respectively. We note that in
contrast to the previous steps (centering and scaling), which are
completely label-free, this step requires subsets of X and Y that
are sufficiently large and allow for accurate estimations of Mx

c

andMy
c , respectively. Alternatively, an unsupervised rotation by

matching the second-order moments of the data sets as in [5],
[27], can be considered.

By using the arc length in (19) and the form of R in (27), the
criterion in (28) can be decoupled to two minimization problems

min
Og∈SO(d)

L∑
c=1

d2G(G
y
c , OgG

x
c ) (29)

min
Op∈SO(r)

L∑
c=1

d2P(P
y
c , OpP

x
c O

T
p ). (30)

We solve (29) and (30) by using the steepest descent algorithm
on the Riemannian manifold of all rotation matrices, which was
implemented in [32]. This algorithm computes the Riemannian
gradient by mapping the Euclidean gradient to the tangent space
of the manifold. The Euclidean gradient of (30) is given in [2]
by

∇Op

L∑
c=1

d2P(P
y
c , OpP

x
c O

T
p )

= 4

L∑
c=1

log
(
(P y

c )
−1 OpP

x
c O

T
p

)
Op. (31)

For the Euclidean gradient computation of (29), see Supple-
mentary Materials. We note that the convergence of the steepest
descent algorithm implemented in [32] to a global minimum is
not guaranteed. However, we will show experimentally that it
performs well on both simulated and real problems.

We note that the matrices Og and Op, as well as Tg and Tp,
are invertible matrices. This gives rise to the following insight.
Suppose X and Y are represented canonically in the structure
space and have the same dispersion, i.e. σx = σy, such that
the discrepancies between the statistics of X and Y are indeed
expressed by transportations, T̃g and T̃p, and rotations, Õg and
Õp. Consequently, the centering step in Section IV-A and the
rotation step in this section, can be viewed as the estimation
of the inverse of T̃g , T̃p, Õg and Õp, and the proposed PA can
potentially match the statistical distributions.

V. DA IN THE ORIGINAL DATA SPACE

In this work, we consider the SPSD matrices as data features.
Despite being quite broad (e.g., low-rank covariance matrices,
graph Laplacians, kernel and similarity matrices), the focus on
SPSD matrices applies not only to the current context of data
alignment, but also to every subsequent downstream task that is
restricted to working with particular SPSD features.

As a remedy, in this section, we show that the centering and
rotation steps can be applied equivalently in the original data
space rather than to the SPSD sample covariance matrices. We
remark that we did not find such an equivalent implementation
of the scaling step.

Consider two sets of data sets: Dx = {Dxi
∈ Rd×nxi}Nx

i=1

and Dy = {Dyi
∈ Rd×nyi}Ny

i=1, where the columns of Dxi
and

Dyi
are samples in Rd with zero mean. The sample covariance

matrices of Dxi
and Dyi

are given by

ΣXi
=

1

nxi
− 1

Dxi
DT

xi

ΣYi
=

1

nyi
− 1

Dyi
DT

yi
,

respectively. We assume that ΣXi
,ΣYi

∈ S+
d,r, and denote the

sets of the sample covariance matrices computed from Dx

and Dy , by X = {ΣXi
}Nx
i=1 and Y = {ΣYj

}Ny

j=1. Let (Gi, Pi)
be the canonical representation of ΣXi

, obtained by applying
Algorithm 1 to the set X . To apply alignment directly to Dx

we first compute the centering matrices of the set X , Tpx
and

Tgx , and the centering matrices of the set Y , Tpy
and Tgy , as

described in Section IV-A. Second, we compute the rotation
matricesOg andOp as described in Section IV-C. Then, we apply
three consecutive steps: centering, rotation, and transportation
to the mean of Y , which are given by

Σ̂Xi
:= Γ̃+

C0→Y

(
R
(
Γ̃+

X→C0
(ΣXi

)
))

, (32)

where X and Y are the means of X and Y , respectively.
Proposition 3: The transformation of Dxi

D̂xi
=
(
T−1
gy

OgTgx

)
Gi

(
T−1
py

OpTpx

)
GT

i Dxi
(33)
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Fig. 1. Two tori x(θ, ϕ) and y(θ, ϕ) defined by the parametrization given in
(34).

satisfies

1

nxi
− 1

D̂xi
D̂T

xi
= Σ̂Xi

.

The proof appears in Appendix E.
Proposition 3 implies that when we apply the transformation

in (33) toDxi
, the relation between the sample covariance of the

data before and after the transformation is given by centering,
rotation about the origin, and transportation to the mean Y .
Consequently, after the transformation in (33), the covariance
matrices characterizing the data from both sets Dx and Dy are
aligned.

The implication of Proposition 3 is that we are not restricted
to using SPSD features in downstream tasks following the
proposed alignment, in contrast to other related algorithms for
data alignment, such as [2], [20], [25]. Section VI-B illustrates
the application of this result.

VI. EXPERIMENTAL RESULTS

A. Toy Problem – Alignment

Consider two tori with the following parametrization

x(θ, ϕ) =

⎡
⎣(4 + 2 cos (θ)) cos (ϕ)
(4 + 2 cos (θ)) sin (ϕ)

2 sin (θ)

⎤
⎦

y(θ, ϕ) = O

⎡
⎣(3 + cos (θ)) cos (ϕ)
(3 + cos (θ)) sin (ϕ)

sin (θ)

⎤
⎦ , (34)

where O ∈ SO(3) is picked arbitrarily and given by

O =

⎡
⎣ 0.7651 −0.5426 0.3468

0.4314 0.8317 0.3495
−0.4781 −0.1177 0.8704

⎤
⎦ .

Fig. 1 presents both tori x(θ, ϕ) and y(θ, ϕ), where it can be
seen that y(θ, ϕ) is a scaled and rotated version of x(θ, ϕ).

For each torus, we generate a set of covariance matrices as
follows. Let [θ, ϕ]T be a random variable with a uniform distri-
butionU [0, π/2]× [0, π/2]. Each realization [ϕi, θi]

T of [ϕ, θ]T

defines a point on the torus. We collect N = 500 points from
x(θ, ϕ): {xi = x(θi, ϕi)}500i=1. For each point xi, we compute
the sample covariance

Xi =
1

|Ni| − 1

∑
nij

∈Ni

(
nij − xi

) (
nij − xi

)T
, (35)

Fig. 2. The PC of the covariance matrices after mapping to the tangent space
of S+

3,2: (a) X and Y before alignment, (b) X (ctr) and Y(ctr) after centering,

(c) X (scl) and Y(ctr) after scaling and (d) X (rot) and Y(ctr) after rotation. Points
are colored according to their angle ϕ.

where nij = x(θij , ϕij ) ∈ Ni and [θij , ϕij ]
T is a realization of

a Gaussian variable centered around [θi, ϕi]
T with a covariance

Σ = 10−4I .
The above procedure is repeated for the other torus y(θ, ϕ),

resulting in another set of N = 500 points [ϕi, θi]
T with their

associated covariance matrices Yi. The obtained two sets of
covariance matrices are denoted by X = {Xi}500i=1 and Y =
{Yi}500i=1. Since the considered torus is a two-dimensional surface
embedded in R3, the sample covariance matrices Xi and Yi

computed based on a small neighborhood are approximately in
S+
3,2.
Our goal in this context could be stated as follows. We wish

to align X and Y , such that the covariance matrices Xi and Yj

of any two close points in the (hidden) parameter space [θi, ϕi]
T

and [θj , ϕj ]
T , where each lies on a different torus, will be close.

We apply our method and get a set of covariance matrices
after each of the three steps: centering, scaling, and rotation.
For the rotation step, we divide the covariance matrices into
four classes according to their respective angles θi and ϕi. Each
class corresponds to one of the four combinations θi ≶ π/4 and
ϕi ≶ π/4. We use 50 labels from the target set Y , which is 10%
of the set size.

To visualize the resulting sets after adaptation, we use the
approximate logarithmic map in (20) to map the matrices to the
tangent space. After mapping to the tangent space, the matrices
are viewed as vectors in a linear space, where we can apply
Principal Components Analysis (PCA) and display the Principal
Components (PC).

Fig. 2 shows the PC before and after each of the steps of
the proposed method: (a) X and Y before alignment, (b) X (ctr)

and Y(ctr) after centering, (c) X (scl) and Y(ctr) after scaling, and
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Fig. 3. The torus y(θ, ϕ) in blue and the rotated tori x(j)(θ, ϕ), j ∈
{1, 2, 10}, in red.

(d)X (rot) andY(ctr) after rotation. Each point in Fig. 2 represents
a covariance matrix, and it is colored according to its respective
(hidden) angle ϕ. We observe that the proposed method indeed
aligns X and Y . Furthermore, the correspondence between the
colors of the points from both sets (representing the angle ϕ)
illustrates that the obtained alignment respects the intrinsic
low-dimensional structure of the data (in this case, the hidden
parametrization by ϕ and θ).

B. Toy Problem – Denoising in the Original Data Space

In Section V, we showed that the proposed alignment can be
applied in the original feature space, in which the data is given,
thereby not restricting downstream tasks to the use of SPSD
features. In this section, we demonstrate this capability using a
subsequent denoising task following the alignment.

Consider the following (reference) torus

y(θ, ϕ) =

⎡
⎣(3 + cos (θ)) cos (ϕ)
(3 + cos (θ)) sin (ϕ)

sin (θ)

⎤
⎦

and the following ten rotated tori

x(j)(θ, ϕ) = O(j)y(θ, ϕ),

where O(j) ∈ SO(3), 1 ≤ j ≤ 10, are picked arbitrarily. Sup-
pose each torus represents a different domain. Fig. 3 shows the
reference torus y(θ, ϕ) in blue, and a few rotated tori x(j)(θ, ϕ)
in red.

A data set Dyi
in the domain of the torus y(θ, ϕ) is given by

a set of samples from a signal defined on y(θ, ϕ):

Dyi
= {y (θi (tn) , ϕi (tn))}300n=1 ,

where[
θi(t)
ϕi(t)

]
=

[
θi(0) +

1
10 (2t+ cos (5πt) + 0.2 cos (10πt))

ϕi(0) + 0.3t sin (5πt)

]
,

and [θi(0), ϕi(0)]
T are sampled from a uniform grid in the

square [0, π/2]× [0, π/2]. Data sets D(j)
xi in the domain of the

tori x(j)(θ, ϕ) are given by sets of samples from noisy signals
defined on x(j)(θ, ϕ) by

D(j)
xi

=
{
x(j) (θi (tn) + σθi(tn), ϕi (tn) + σϕi

(tn))
}300

n=1
,

Fig. 4. Zoom in to the tori: (a) y(θ, ϕ) and (b) x(1)(θ, ϕ). The black points

are samples of the datasets Dyi and D
(1)
xi

, which are defined on y(θ, ϕ) and
x(1)(θ, ϕ), respectively.

where σθi(tn) and ϕθi(tn) are realizations of a Gaussian vari-
able with zero mean and variance σ2 = 4 · 10−4, such that
the input Signal-to-Noise Ratio (SNR) (before denoising) is
26.2 dB. Fig. 4 presents examples for: (a) a set of samples from
the clean signal Dyi

, and (b) a set of samples from the noisy

signal D(1)
xi .

Following the notation in Section V, we denote Dy = {Dyi
}

and D(j)
x = {D(j)

xi }. To attenuate the noise in D(j)
x , we first

apply the transformation in (33) to adapt D(j)
xi to Dyi

and get

D̂
(j)
xi , and then, we average over all the noisy (and adapted)

signals: D̃xi
= 1

10

∑10
j=1 D̂

(j)
xi . To illustrate the importance of

data alignment for denoising, we compare between the averaged
signal without alignment and the averaged signal after align-
ment. Fig. 5 shows the denoising results with and without the
proposed alignment. The clean signal Dxi

(t) and the filtered
signal D̃yi

(t) are depicted by the blue curve and the red curve,
respectively. Each row in the figure presents a different trajectory
of Dyi

(t) and D̃xi
(t). The left and right columns show the

denoising results without alignment and the denoising results
by using the proposed alignment, respectively.

We observed that by using the proposed alignment prior to
averaging (denoising), we obtain a better noise attenuation.
Furthermore, when using alignment, the structure of the signal
is preserved while the averaging of the signals D(j)

xi (t) without
a prior alignment hinders the structure of the signal. To quanti-
tatively measure the denoising results, we compute the SNR of
the resulting signal. The SNR obtained by the denoising after
alignment is 42 dB, whereas the SNR obtained by the denoising
without alignment is only 20.6 dB.

C. Application to BCI

One of the paradigms of BCI is the Steady State Visually
Evoked Potential (SSVEP), which is based on the fact that when
a user is looking at a flickering object at some frequency, this
frequency manifests itself in the spectrum of the EEG signal.
In typical SSVEP applications, a user is exposed to several
visual stimuli with different frequencies, where each stimulus
corresponds to a different command. The user chooses the
desired command by looking at the associated stimulus, and the
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Fig. 5. Denoising results. The clean signal Dxi (t) and the filtered signal

D̃yi (t) are represented by the blue curve and the red curve, respectively. Each

row presents a different trajectory of Dxi (t) and D̃yi (t). The left and the right
columns, show the denoising results without alignment and the denoising results
by using alignment, respectively.

system executes that command by identifying the corresponding
frequency in the EEG signal.

We apply our method to adapt the EEG recordings of one
subject to another. In our experiment, we use the EEG data from
the first SSVEP experiment in the MAMEM database [33], [34],
which consists of the recordings of 11 subjects. Each subject
was exposed in each trial to one of five flickering lights with a
different frequency {fk}5k=1. The EEG signals were recorded
during the experiment in 256 channels. However, we use only
the 13 most informative channels according to the performance
analysis reported in [33]. The task in this experiment is to
classify the EEG signals of each trial according to the flickering
frequencies. We note that in the technical report published with
the MAMEM database [33], subjects 3, 5, and 8 were marked
as outliers.

In the context of this paper, we will show that there is a
significant difference between the data recorded from different
subjects, and therefore, it could be beneficial to view each subject
as a domain. Subsequently, we will use our method for the
purpose of adapting data from two subjects (i.e., two domains),
which allows for high-quality classification of EEG signals of
one subject by a classifier trained on data from another subject.
We note that for fair comparisons with the competing methods,

Fig. 6. The covariance matrix of EEG signals recorded in five trials. In each
trial the subject was exposed to a flickering light with a different frequency fk .

we assume that all the labels of X are given, rather than the
labels of a subset Xl ⊂ X .

Let D ∈ RNc×Nt be the EEG signals recorded in one trial
after mean subtraction, where Nc = 13 is the number of chan-
nels and Nt = 1250 is the number of time samples. For pre-
processing, we use the mean subtraction and denoising algo-
rithm AMUSE [35], which are implemented in the SSVEP
toolbox [36] released as a part of the MAMEM database. Next,
we filterDwith five band-pass filters centered around the flicker-
ing frequency fk. Let Dk ∈ RNc×Nt be the EEG signals filtered
with the k-th filter. We use the covariance matrix proposed
in [37], which is block diagonal with the sample covariance
matrix Σk = 1

Nt−1DkD
T
k , k = 1, . . . , 5, in each block, i.e.,

Σ =

⎛
⎜⎜⎜⎜⎝
Σ1

Σ2

. . .

Σ5

⎞
⎟⎟⎟⎟⎠ ∈ R65×65. (36)

The dimension of Σ is 65× 65 since there are 5 flickering
frequencies, and therefore we have 5 ·Nc = 65 filtered signals.
Fig. 6 shows the covariance matrix of the EEG signals recorded
in five trials. In each trial, the subject was exposed to a flickering
light with a different frequency fk. It can be observed that in each
covariance matrix, a different Σk is dominant.
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Fig. 7. The eigenvalues decay of three different covariance matrices computed
for three different trials of the SSVEP experiment.

In Fig. 7, we plot the eigenvalues decay of three different co-
variance matrices Σ (36), where each matrix is computed based
on a different trial. We report that such decays are prototypical.
We see that the eigenvalues (sorted in descending order) have
small values, i.e., λi ≈ 0, for i > 12, implying that the rank of
the matrices is approximately r = 12. As a result, we consider
the covariance matrices as SPSD matrices of fixed rank r = 12.

We compute the covariance matrix given in (36) for each trial
of each subject, and denote the covariance matrix of the i-th trial
and the l-th subject by X

(l)
i ∈ S+

65,12. Let X(l)
i

∼= (G
(l)
i , P

(l)
i )

be the canonical representation. Throughout this experiment, we
set k in (15) such that the dispersion of {(G(l)

i )}i is the same

as the dispersion of {(P (l)
i )}i multiplied by k, balancing the

distances in Gd,r and the distances in Pr.
To illustrate the advantage of using the Riemannian geometry

of SPSD matrices, we compare it to the Riemannian geometry
of SPD matrices. We apply two logarithmic maps to the set
X (6) = {X(6)

i }: (a) the logarithmic map of the SPD manifold
given in (3), and (b) the approximation for the logarithmic map
of the SPSD manifold given in (20). Then, we compute the
two PCs in the obtained tangent space. Note that in the tangent
space, the matrices are viewed as vectors in a linear space, where
the standard PCA can be applied. Fig. 8(a) and (b) present the
resulting PC computed in the tangent space of the SPD manifold
and the SPSD manifold, respectively. Each point represents a
matrix of a single trial, which is colored by its respective label,
i.e., the stimulus frequency. One common practice to counter the
fact that the matrices are rank deficient is the Ledoit-Wolf estima-
tor for high-dimensional covariance matrices [38]. To compare
the SPSD geometry to the SPD geometry after applying the
Ledoit-Wolf estimator, we use the implementation of [38] in [39]
for the estimation of the covariance matrices Σk, k = 1, . . ., 5 in
(36). Fig. 8(c) presents the PCs obtained in the tangent space of
the SPD manifold when the covariance matrices were estimated
by the Ledoit-Wolf algorithm. Fig. 8(d) presents the PC obtained
by stacking each matrix into one vector and then applying PCA,
namely, using Euclidean geometry.

Each point in Fig. 8 represents a covariance X
(6)
i , and it is

colored according to the corresponding flickering frequency.
We observe that the Riemannian geometry of SPSD matrices
provides better separation between the frequencies compared to
the separation obtained by the Riemannian geometry of SPD
matrices or by the standard Euclidean Geometry.

Fig. 8. The PC of the covariance matrices in the set X (6) after mapping to the
tangent space by using: (a) the logarithmic map of the SPD manifold given in (3),
(b) the approximation for the logarithmic map of the SPSD manifold proposed
in [20], (c) the logarithmic map of the SPD manifold given in (3), where the
covariance matrices were estimated using [38]. (d) presents the PC obtained by
stacking each matrix into one vector and then applying PCA. Points are colored
according to the flickering frequency classes.

TABLE I
COMPARISON BETWEEN THE MEAN ACC OBTAINED BY USING DIFFERENT

GEOMETRIES

To objectively measure the degree of separation between the
frequencies for each of the subjects (except the outlier subjects
3, 5, and 8), we train a Minimum-Distance to Mean (MDM)
classifier [21] with the labels of 80% of the trials, and then
classify the rest of the trials. The MDM classifier associates
a sample to the class with the closest mean. We repeat this
experiment 20 times for each subject and compute the mean
Classification Accuracy (ACC). Table I shows the mean ACC
obtained by using each of the different geometries: Euclidean,
SPD with sample covariance matrices, SPD with covariance
matrices estimated using [38], and the SPSD geometry proposed
by [19]. We see that the MDM classifier obtains the highest mean
ACC when using the SPSD geometry.

We note that Fig. 8 visualizes covariance matrices of only one
subject. To illustrate the need for data alignment, we visualize
the covariance matrices of two different subjects. Fig. 9 presents
the tSNE representation [40] computed in the tangent space of
data from subjects 2 and 4, which were arbitrarily chosen. Each
point represents a covariance matrix of one trial, and it is colored
according to the flickering frequency. The covariance matrices
of subject 2 are marked by asterisks and the covariance matrices
of subject 4 are marked by circles. We observe that trials of the
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Fig. 9. A two-dimensional tSNE representation of the covariance matrices of
two subjects. Each point represents a covariance matrix of one trial, and it is
colored according to the flickering frequency class. The covariance matrices of
subject 2 are marked by asterisks and the covariance matrices of subject 4 are
marked by circles.

TABLE II
MEAN ACC AND STANDARD DEVIATION (STD) AFTER ALIGNMENT BETWEEN

ALL PAIRS OF SUBJECTS. NOTE THAT ALGORITHMS WITH ASTERISK (*) ARE

COMPLETELY UNSUPERVISED

same flickering frequencies recorded for different subjects do
not reside in the same vicinity. The variability between the two
subjects limits the ability to identify the flickering frequency in
the EEG signal of one subject by training a classifier on signals
from another subject. For example, a classifier trained on the
recordings of subject 4, obtains a considerably low ACC (0.64)
when applied to recordings of subject 2.

We apply the proposed alignment algorithm to align the
covariance matrices of all pairs of subjects, where one subject
is the source and the other is the target. For the rotation step, we
use the labels of 5 trials from each class in the source set. To
quantitatively evaluate the alignment of each pair of subjects,
we train a MDM classifier [21] on the target set and test it on the
source set. We compare the obtained ACC of four algorithms
for data alignment: (a) PA on Pd [2], (b) a naive union of SPSD
matrices without alignment, (c) Transportation on S+

d,r [20] and

(d) PA on S+
d,r (ours). To compare the algorithms numerically,

we compute the average accuracy of all pairs excluding the
outlier subjects 3, 5 and 8, where our algorithm is applied both
with and without the scaling step. Table II shows the average
accuracy obtained by the four algorithms. Our algorithm obtains
a comparable ACC to the ACC obtained by [20], and in contrast
to the experiment in Section VI-A, it obtains the highest accuracy
without the scaling step. Fig. 10 presents the confusion matrix
for each of the four algorithms consisting of the ACC of all pairs
of subjects, excluding subjects 3, 5, and 8. Table III presents the
average precision, recall, and F1 measure of each class, obtained
by the tested algorithms.

Fig. 6 implies that a specific classifier for the SSVEP appli-
cation could be implemented as follows:

k̂ = argmax
k

‖Σk‖F , (37)

Fig. 10. The confusion matrix obtained by: (a) PA on Pd [2], (b) a naive union
of SPSD matrices, (c) Transportation on S+

d,r
[20], (d) PA on S+

d,r
(ours) and

(e) PA on S+
d,r

without scaling (ours). The (i, j) entry is the classification
accuracy obtained for the ith subject by a classifier that was trained on the
jth subject.

TABLE III
CLASSIFICATION RESULTS. MEAN PRECISION, RECALL, AND F1, AFTER

ALIGNMENT BETWEEN ALL PAIRS OF SUBJECTS. NOTE THAT ALGORITHMS

WITH ASTERISK (*) ARE COMPLETELY UNSUPERVISED
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TABLE IV
COMPARISON BETWEEN THE ACC OBTAINED BY THE PROPOSED ALGORITHM

AND THE ACC OBTAINED BY THE BASELINE CLASSIFIER IN (37) USING

SUBJECT 4 AS THE TARGET SET

Fig. 11. A two dimensional representation of the covariance matrices of three
pairs of subjects before alignment (left column) and after alignment (right
column). Each point represents a covariance matrix of one trial, and it is colored
according to the flickering frequency class. Covariance matrices from the source
set are marked by asterisks and covariance matrices from the target set are marked
by circles.

where ‖ · ‖F is the Frobenius norm, and Σk is the k-th block of
Σ defined in (36). We consider the classifier in (37) as a baseline
classifier for this application. To compare our method with this
baseline, we designate the recordings of subject 4 as the target
set and train the MDM classifier on this set. Then we classify
the recordings of all the other subjects. Table IV compares the
obtained ACC with the ACC obtained by the baseline classifier
(37). We see that for most of the subjects, the proposed alignment

improves the classification results. The mean ACC is improved
by 8%. In practice, a subject should be considered as a (good)
target if the intra-subject covariance matrices are well separated
into the different classes. Specifically, when using the MDM
classifier, this separation can be evaluated by the percentage
of the covariance matrices for which the closest mean is the
mean of the true class. For subject 4 (and subject 11 as well),
100% of the covariance matrices satisfy this condition, and
therefore, this is a good choice of a target set. We repeat the
above experiment, where each time the recordings of a different
subject are designated as the target set. We report that the mean
ACC is improved by the alignment for all the subjects, except
subjects 3, 5 and 8, which are the outlier subjects.

Same as in Fig. 9, in Fig. 11 we present the tSNE representa-
tion of covariance matrices from three pairs of subjects before
and after alignment in the left and right columns, respectively.
Each point represents a covariance matrix of one trial, and it is
colored according to the flickering frequency. Covariance matri-
ces from the source set are marked by asterisks and covariance
matrices from the target set are marked by circles. It can be
observed that before alignment, points from the source set and
points from the target set of the same class, reside in different
regions. In contrast, after applying the proposed alignment, the
classes of the source set coincide with the classes of the target
set.

VII. CONCLUSION

In this work, we propose an algorithm for data alignment
based on the Riemannian geometry of SPSD matrices. We show
that this algorithm can be applied not only to SPSD matrices
but also to high-dimensional data sets with a low-dimensional
structure, by performing the centering and rotation steps in the
data space using geometric considerations stemming from their
corresponding sample covariance matrices. The advantage of
the proposed algorithm is illustrated in both simulated and real
data.

Our method relies on the assumption that the rank and the
dimension of the SPSD matrices in a given set are fixed. In future
work, we plan to address the case where SPSD matrices have
different ranks or different dimensions [25], corresponding for
example to a different number of electrodes in two different EEG
experiments. In addition, our algorithm only takes into account
the first and the second moments of the statistical distribution
of a given data set, while in future work, we will investigate the
incorporation of higher moments.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: For the proof of property 1 in Definition 3 see [20].
Next, we prove property 2 in Definition 3. Let {Ci

∼=
(Gi, Pi)} ⊂ S+

d,r be the canonical representation of a set with

a mean M({Ci}) = C ∼= (G,P ), and let C0
∼= (G0, P0) be

another point on S+
d,r such that G0 = ΠG(G0) and P0 =

GT
0 C0G0. The length of the curve γ̂C→Ci

is given by (19)

l2
(
γ̂C→Ci

)
= d2G

(
G,Gi

)
+ kd2P

(
P , Pi

)
, k > 0.
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Next, we show that

l2
(
γ̂C→Ci

)
= l2

(
γ̂C0→˜Γ+

C→C0
(Ci)

)
∀i. (38)

The structure space representation of the transported set
Γ̃+

C→C0
(Ci) is given by (TgGi, TpPiT

T
p ), where the matrices

Tg and Tp are give in Sections II-A and II-B, respectively. To
use (19) for the computation of the right hand side of (38), we
need to insure that TgGi satisfies

ΠG0
(TgGi) = TgGi.

By definition, ΠG0
(TgGi) = (TgGi)O1O

T
2 , where GT

0 TgGi =
O1ΣO

T
2 is an SVD. Since G0 = TgG (see [20]), we have

GT
0 TgGi = G

T
TT
g TgGi = G

T
Gi. (39)

Therefore, O1 and O2 are given by the left and the right or-

thogonal matrices of the SVD: G
T
Gi = OΣOT

i , respectively.
Hence

ΠG0
(TgGi) = (TgGi)OOT

i = TgGi,

The last equality is due to the fact that ΠG(Gi) = GiOOT
i =

Gi, since (Gi, Pi) is the canonical representation of Ci. Now,
we use (19) to compute the right hand side of (38)

l2
(
γ̂C0→˜Γ+

C→C0
(Ci)

)

= d2G (G0, TgGi) + kd2P
(
P0, TpPiT

T
p

)
= d2G

(
TgG,TgGi

)
+ kd2P

(
TpPTT

p , TpPiT
T
p

)
= d2G

(
G,Gi

)
+ kd2P

(
P , Pi

)
= l2

(
γ̂C→Ci

)
The third equality holds since dP is an affine-invariant distance
and dG is invariant to orthogonal matrix multiplication. �

APPENDIX B
PROOF OF PROPOSITION 2

To show that σ2(X (scl)) = σ2
y we use the following lemmas.

Lemma 1: Let G(t) be a geodesic path between G1 ∈ Gd,r

and G2 ∈ Gd,r, where G2 = ΠG1
(G2). The geodesic path G(t)

satisfies

G(t) = ΠG1
(G(t)) .

See Appendix C for the proof. According to Lemma 1,
G

(scl)
i satisfies G

(scl)
i = ΠG0

(G
(scl)
i ). Therefore, the length of

the geodesic path between C0 and X
(scl)
i is given by

l2
(
γ̂
C0→X

(scl)
i

)
= d2G

(
G0, G

(scl)
i

)
+ kd2P

(
P0, P

(scl)
i

)
.

Lemma 2: Let G(t) be a geodesic path between two points
G1, G2 ∈ Gd,r. The distance between G1 and G(t) is given by

d2G (G1, G(t)) = t2‖Θ‖2F (40)

where GT
1 G2 = O1(cosΘ)OT

2 is an SVD.
See Appendix D for the proof.

We note that an analogous result to Lemma 2 in the SPD
manifold can be obtained by substituting (5) in (6)

d2P (P1, P (t)) = t2
r∑

i=1

log2(λi), (41)

where λi are the eigenvalues of P−1
1 P2. By using Lemmas 1 and

2, we now prove Proposition 2.
Proof:

σ2
(
X (scl)

)
=

=

Nx∑
i=1

l2
(
γ̂
C0→X

(scl)
i

)

=

Nx∑
i=1

d2G

(
G0, Gi

(
t =

σv

σg

))
+ kd2P

(
P0, Pi

(
t =

σr

σp

))

=
σ2
v

σ2
g

Nx∑
i=1

d2G

(
G0, G

(ctr)
i

)
+

σ2
r

σ2
p

Nx∑
i=1

d2P

(
P0, P

(ctr)
i

)

= σ2
v + kσ2

r = σ2
y.

The second equality is due to Lemma 1 and (41), and the third
equality is due to Lemma 2. �

APPENDIX C
PROOF OF LEMMA 1

Proof: Let G1,⊥ be the orthogonal complement of G1, such
that [G1 G1,⊥] ∈ Od. The geodesic path G(t) is given by [26]

G(t) = G1V cos(Σt)V T + U sin(Σt)V T , (42)

where UΣV T is the compact SVD of G1,⊥B, B ∈ R(d−r)×r.
Recall that

ΠG1
(G(t)) = G(t)OtO

T
1 ,

where GT
1 G(t) = O1SO

T
t is an SVD (see (17)). To find the

SVD of GT
1 G(t), we multiply (42) by GT

1 from the left

GT
1 G(t) = GT

1 G1V cos(Σt)V T +GT
1 U sin(Σt)V T

= V cos(Σt)V T +GT
1 U sin(Σt)V T .

The second term equals zero since the columns of U are in the
subspace of G1,⊥. Therefore, the SVD of GT

1 G(t) is given by

GT
1 G(t) = V cos(Σt)V T ,

and

ΠG1
(G(t)) = G(t)V V T = G(t).

�

APPENDIX D
PROOF OF LEMMA 2

Proof: Let H be the direction of G(t) at t = 0, i.e., Ġ(0) =
H . The path length between G1 and G(t) is given by [26]

dG (G1, G(t)) = t ‖Σ‖F , (43)
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where H = UΣV T is the compact SVD of H . As noted in [26],
(43) holds only for small enough t such that there are no
conjugate points. In our context, it theoretically limits the ratio
t = σv/σg , however, our empirical tests did not find it limiting
in practice.

For t = 1 we have G(1) ∈ [G2]. By substituting t = 1 in (43)
we get

dG (G1, G(1)) =

dG(G1, G2) = ‖Σ‖F . (44)

On the other hand, the arc length of the geodesic path between
the points G1 and G2 is given by

dG (G1, G2) = ‖Θ‖F ,

where GT
1 G2 = O1(cosΘ)OT

2 is an SVD. Therefore, we get
‖Θ‖F = ‖Σ‖F , and (43) becomes

dG (G1, G(t)) = t‖Θ‖F . (45)

�

APPENDIX E
PROOF OF PROPOSITION 3

Proof: First, we explicitly write Σ̂Xi
in (32):

Σ̂Xi
:= Γ̃+

C0→Y

(
R
(
Γ̃+

X→C0
(ΣXi

)
))

∼= (T−1
gy

OgTgxGi, T
−1
py

OpTpx
PiT

T
px
OT

p T
−T
py

)

∼=
(
T−1
gy

OgTgxGi

)(
T−1
py

OpTpx
PiT

T
px
OT

p T
−T
py

)
·

·
(
T−1
gy

OgTgxGi

)T
,

Then, we have

1

nxi
− 1

D̂xi
D̂T

xi

=
1

nxi
− 1

(
T−1
gy

OgTgx

)
Gi

(
T−1
py

OpTpx

)
GT

i

(
Dxi

DT
xi

)
·

·Gi

(
T−1
py

OpTpx

)T
GT

i

(
T−1
gy

OgTgx

)T
=
(
T−1
gy

OgTgx

)
Gi

(
T−1
py

OpTpx

)
GT

i

(
GiPiG

T
i

)
·

·Gi

(
T−1
py

OpTpx

)T
GT

i

(
T−1
gy

OgTgx

)T
=
(
T−1
gy

OgTgxGi

)(
T−1
py

OpTpx
PiT

T
px
OT

p T
−T
py

)
·

·
(
T−1
gy

OgTgxGi

)T
= Σ̂Xi

The second equality is due to the definition ΣXi
=

1
nxi

−1Dxi
DT

xi
= GiPiG

T
i . The third equality is due to the fact

that Gi ∈ Vd,r and therefore, GT
i Gi = Ir,r. �
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