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Abstract—Hyperspectral target detection is a task of primary
importance in remote sensing since it allows for location and dis-
crimination of target features. To this end, the reflectance maps,
which contain the spectral signatures and related abundances of the
materials in the observed scene, are often used. However, due to the
low spatial resolution of most hyperspectral sensors, targets occupy
a fraction of the pixel and, hence, the spectra of different sub-pixel
targets (including the background spectrum) are mixed together
within the same pixel. To solve this issue, in this paper, we adopt a
generalized replacement model accounting for multiple sub-pixel
target spectra and formulate the detection problem at hand as a
binary hypothesis test where under the alternative hypothesis the
target is modeled in terms of a linear combination of endmembers
whose coefficients also account for the presence of the background.
Then, we devise detection architectures based upon the generalized
likelihood ratio test where the unknown parameters are suitably
estimated through procedures inspired by the maximum likelihood
approach. The performances of the proposed decision schemes are
evaluated by means of both synthetic as well as real data and
compared with other counterparts by showing the effectiveness of
the proposed procedure.

Index Terms—Detection, generalized likelihood ratio test,
hyperspectral imaging, maximum likelihood estimation, sub-pixel
target.

NOTATION AND ACRONYMS

In what follows, vectors and matrices are denoted by boldface
lower-case and upper-case letters, respectively. Symbols det(·)
andTr(·) denote the determinant and the trace of a square matrix,
respectively. Symbols I and 0 represent the identity matrix and
the null vector or matrix of suitable dimensions, respectively.
1 is the vector of ones. As to the numerical sets, R is the set
of real numbers, RN×M is the Euclidean space of (N ×M)-
dimensional real matrices (or vectors if M = 1). We use (·)T to
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denote the transpose while‖ · ‖ is the Euclidean norm of a vector.
We write x ∼ NN (μ,M) if x is a N -dimensional Gaussian
vector with mean μ ∈ RN×1 and positive definite covariance
matrix M ∈ RN×N .

Finally, we provide below a list of the used acronyms:

ACE Adaptive Coherence Estimator.
ACUTE Adaptive Cell Under Test Estimator.
AMF Adaptive Matched Filter.
ASD Adaptive Subspace Detector.
GLRT Generalized Likelihood Ratio Test.
MC Monte Carlo.
MLE Maximum Likelihood Estimate.
MSD Matched Subspace Detector.
OSP Orthogonal Sub-space Projection.
PDF Probability Density Function.
PUT Pixel Under Test.
RIT Rochester Institute of Technology.
RMS Root Mean Square.
RMSE Root Mean Square Error.
SMF Spectral Matched Filter.

I. INTRODUCTION

HYPERSPECTRAL imaging spectrometers enable the de-
tection and discrimination of different target features in a

scene due to hundreds or thousands of spectral channels covering
the visible, near and shortwave infrared and ultraviolet spectral
bands. Their field of application is very wide and ranges from
agricultural remote sensing, object classification, atmospheric
monitoring, to military investigation [1], [2], [3], [4].

On the other hand, the consequent low spatial resolution en-
tails a challenging situation due to the fact that different materials
can jointly occupy a single Pixel Under Test (PUT). As a matter
of fact, the spectra of different sub-pixel targets (including the
background spectrum) are mixed together as well as the corre-
sponding fraction (or abundance) of constituent endmembers. In
general, the number of endmembers and their abundances at each
pixel are unknowns and the corresponding estimation process,
i.e., the hyperspectral unmixing, gets complicated due to the
model inaccuracies, the observation noise, the environmental
conditions, and the endmember variability [5].

Unmixing algorithms currently rely on mixing models that
can be either linear or nonlinear. The first case corresponds to
a macroscopic mixing scale, whereas the second one is more
representative of the physical interactions between the scat-
tering from multiple materials. As for the unmixing methods,
signal-subspace, geometrical, statistical, sparsity-based, and
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spatial-contextual procedures have been proposed over the
years [6].

Recent advances, in the field of hyperspectral imaging, are
directed towards the development of target detection algorithms
fed by hyperspectral images and exploiting spectral signatures of
the materials to identify the targets of interest [7]. In this case, the
separation of the background signature from the desired targets
represents the major challenge and the actual classification pro-
cedures are not directly applicable to target detection since the
targets’ number is typically too small for using clustering-based
algorithms. Moreover, the targets of interest may appear as
sub-pixel targets where the background interference directly
distorts the shape of the real observed target spectrum.

With reference to this latter issue, different solutions have
been proposed for target detection in hyperspectral imaging [8].
The main difference between the various algorithms relies on the
availability of prior knowledge about the spectral characteristics
of the desired targets. When the target spectral information is not
a-priori known, or is affected by uncertainty, anomaly detectors
can be used, where hyperspectral image anomalies are related
to a general kind of spectral irregularity due to the presence of
atypical objects. In this case, pattern recognition or statistical
schemes are used for the detection of the objects that stand
out from the background [9]. On the contrary, if the spectral
characteristics of the desired targets are a-priori known, both
the noise and the background can be statistically modeled as
Gaussian-distributed and several classical target detection algo-
rithms can be used, such as the linear Spectral Matched Filter
(SMF), the Matched Subspace Detector (MSD), the Adaptive
Subspace Detector (ASD), and the Orthogonal Sub-space Pro-
jection (OSP) [10]. However, these detectors do not consider any
constraint on the abundance of sub-pixel targets and background.
Otherwise stated, they do not account for the fact that when a
sub-pixel target is present, the amount of background should be
reduced by the same proportion, which leads to the definition
of the so called replacement model, by which a sub-pixel target
is supposed to “replace” or fill part of the background within
a given pixel [11]. It is important to notice that this problem
is not a classical detection one, as the background power is
different under the two hypotheses (background-only versus
target-plus-background). Recent efforts for the development of
detectors based on the replacement model can be found in [12],
[13]. In [12], the analogous of Kelly’s Generalized Likelihood
Ratio Test (GLRT) [14] for the replacement model, namely the
Adaptive Cell Under Test Estimator (ACUTE), is derived, allow-
ing for the detection of small targets with adaptivity with respect
to the background abundance estimated in the PUT. A modified
version of the replacement model is developed in [13], where
the GLRT is derived in the presence of a residual additive noise.

However, since in the hyperspectral sensors the spectra of dif-
ferent sub-pixel targets are mixed together with the background
spectrum, a generalized replacement model is proposed in this
paper, where the sum of the total amount of both multiple sub-
pixel targets and background spectra is equal to one, as explained
ahead. In this way, the problem of detecting the presence of mul-
tiple sub-pixel targets is formulated as a binary hypothesis test
where under the alternative hypothesis the target is modeled in
terms of a linear combination of endmembers whose coefficients
also account for the presence of the background. This model
allows us to detect and identify one or more targets from a wide
spectral library of plausible targets, such as different car types
in a parking area, or a single target characterized by multiple
spectral signatures, such as the pickup truck not considered

in [12]. The detection problem at hand is solved by deriving
decision rules where the unknown parameters, the background
statistics, and the abundance vector are replaced by suitable
estimates based upon available secondary data collected around
the PUT. Particularly, an iterative approach is proposed for the
estimation of the unknown abundance vector and two different
solutions (heuristic and constrained solutions) are considered
at this end. Finally, it is worth noticing that, as a byproduct,
the devised detection architectures allow identifying the specific
sub-pixel targets in the PUT, from the spectral library of pos-
sible endmembers, by exploiting their corresponding estimated
abundances.

The remainder of the paper is organized as follows. Section II
is devoted to the replacement model and the formal statement of
the detection problem. Two detection architectures are derived
in Section III, which differ for the estimation of the target abun-
dances. In Section IV, the behavior of the proposed architectures
is investigated by means of both simulated as well as real data.
Finally, concluding remarks end this article in Section V. Some
derivations are confined to the appendices.

II. PROBLEM STATEMENT

This section defines a generalization of the so called replace-
ment model [12] that will be used to perform the detection in our
case. To this end, let us consider a hyperspectral sensor able to
collect the reflected light (i.e., radiance) from the observed scene
through a large number, say N , of spectral bands. The radiance
is generally converted into a reflectance spectrum to remove the
effects of the non-uniform sun power-spectral density and the
atmospheric contribution [15], [16]. The observed reflectance
data samples from a given pixel can be grouped to form an
N -dimensional vector, namely,

y = [y1, y2, . . . , yN ]T ∈ RN×1.

In this work, a generalization of the replacement model [16]
is adopted, in which the presence of multiple sub-pixel targets
(or otherwise stated endmembers) is supposed. The spectrum of
each pixel can be expressed as a linear combination of r end-
members plus the background component (that is, non-target)

y = Tα+
(
1−αT1

)
b, (1)

where:
� T = [t1, . . . , tr] ∈ RN×r denotes the endmember matrix

(the columns are their spectral signatures);
� α = [α1, . . . , αr]

T ∈ Rr×1 is the vector of the unknown
fill factors subject to the constraints

αi ≥ 0, ∀i ∈ {1, . . . , r} and
r∑

i=1

αi < 1; (2)

� b ∈ RN×1 is the background spectral signature.
This model is reasonable because it is likely for a pixel to

comprise one or more target materials, due to the low spatial
resolution of the majority of hyperspectral sensors. The spectra
of the different sub-pixel targets are mixed together (weighted
by their respective abundances or fill factors) and with the
spectrum of the background. As the abundances represent the
proportion of the corresponding endmembers, the amount of
both the sub-pixel targets and the background spectra is subject
to the constraint that their sum is one. A special case of (1)
is when αi = 0, ∀i ∈ {1, . . . , r}, which implies the absence of
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targets, i.e., the presence of background only. On the contrary,
due to the strict inequality in (2), the model does not admit the
complete absence of the background’s component. Moreover,
we assume that a set of data, i.e., z1, . . . , zK , K > N , collected
in the proximity ofy and sharing the same background properties
of y, is available. These data, used for estimation purposes, are
assumed independent and identically distributed.

The detection problem aims at choosing between the null
hypothesis H0 (αi = 0, ∀i ∈ {1, . . . , r}) and the alternative hy-
pothesis H1 (αi �= 0, for at least one i ∈ {1, . . . , r}). Using this
system model, we can express our problem as the following
binary hypothesis test⎧⎪⎪⎪⎨⎪⎪⎪⎩

H0 :

{
y = b,
zk = bk, k = 1, . . . ,K,

H1 :

{
y = Tα+

(
1−αT1

)
b,

zk = bk, k = 1, . . . ,K,

(5)

with b and bk ∼ NN (μ,M), k = 1, . . . ,K. It is also supposed
that b and bk are statistically independent. Notice that the
detection problem presupposes that the background power varies
between the two competing hypotheses.

Before concluding this section, we provide the expressions
of the joint PDF of y and Z = [z1, . . . , zK ] under H0 and H1

that are given in (3) and (4) (shown at the bottom of this page),
respectively.

III. GLRT-BASED DETECTOR DESIGNS

In this section, we design decision rules for problem (5) that
are based upon the GLRT. Specifically, we modify this design
procedure by exploiting suitable estimates forα that are different
from the Maximum Likelihood Estimate (MLE). This choice is
dictated by the difficult mathematics arising from the application
of the maximum likelihood approach to the estimation of α as
required by the GLRT criterion. Therefore, we start from the
general equation of the GLRT, that is

max
μ,M,α

f1(y,Z;μ,M,α)

max
μ,M

f0(y,Z;μ,M)

H1
>
<
H0

η, (6)

where η is the detection threshold1 set according to a given
probability of false alarm (or probability of type I error), and
proceed by separately solving the two optimization problems.

Under H0, the problem at hand is well-known and, hence, for
brevity, we show below the final results only. The MLEs of μ

1Hereafter, we use symbol η to denote the generic threshold.

and M are given by

μ̂0 =
1

K + 1
(y + z̃) (7)

with z̃ =
∑K

k=1 zk and

M̂0 =

[
(y − μ̂0)(y − μ̂0)

T +
∑K

k=1(zk − μ̂0)(zk − μ̂0)
T
]

K + 1
,

(8)
respectively, and the final compressed log-likelihood under H0

is2

L0(μ̂0, M̂0) = −C1 − C2 log det(M̂0)−NC2, (9)

where C1 = [(K + 1)N/2] log (2π) and C2 = (K + 1)/2.
Now, we focus on the H1 hypothesis and write the corre-

sponding log-likelihood (see (4))

L1(μ,M,α) = −C1 −N logA− C2 log (detM)

− ‖M−1/2 (x−Aμ) ‖2
2A2

−
K∑

k=1

‖M−1/2 (zk − μ) ‖2
2

, (10)

where A = (1−αT1) and x = y −Tα. We first maximize
L1(μ,M,α) with respect to μ, by setting to zero the corre-
sponding derivative and obtain

− 1

A
M−1x+M−1μ+

K∑
k=1

(−M−1zk +M−1μ
)
= 0 (11)

⇒ (K + 1)M−1μ =
1

A
M−1x+M−1z̃ (12)

⇒ μ̂ =
1

K + 1

(
1

A
x+ z̃

)
. (13)

Using the above result in (10), after some algebraic manipu-
lations, the partially-compressed log-likelihood can be recast
as

L1(μ̂,M,α) = − C1 −N logA− C2 log (detM)

− Tr

{
M−1

2

[(
1

A
x− μ̂

)(
1

A
x− μ̂

)T

+

K∑
k=1

(zk − μ̂) (zk − μ̂)T
]}

. (14)

2For simplicity, in what follows, we omit the dependence of the log-likelihood
function on data y and Z.

f0(y,Z;μ,M) =

(
1

(2π)N/2 det(M)1/2

)K+1

exp

{
−1

2
Tr

[
M−1

(
(y − μ)(y − μ)T +

K∑
k=1

(zk − μ)(zk − μ)T

)]}
. (3)

f1(y,Z;μ,M,α) =

(
1

(2π)N/2 (1−αT1)N/(K+1) det(M)1/2

)K+1

× exp

{
−1

2
Tr

[
M−1

((
y−Tα−(

1−αT1
)
μ
) (

y−Tα−(
1−αT1

)
μ
)T

(1−αT1)2
+

K∑
k=1

(zk − μ) (zk − μ)T
)]}

. (4)
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The MLE of M under H1 can be computed by resorting to the
following inequality [17] log det(A) ≤ Tr[A]−N , whereA is
any N -dimensional matrix with nonnegative eigenvalues, and,
hence, we come up with

M̂ =

[(
1
Ax− μ̂

)(
1
Ax− μ̂

)T
+

K∑
k=1

(zk − μ̂) (zk − μ̂)T
]

K + 1
.

(15)

Hence, we update (14) with M̂ and find

L1(μ̂, M̂,α) = − C3 −N logA− C2 log det

[(
1

A
x− μ̂

)

×
(
1

A
x− μ̂

)T

+
K∑

k=1

(zk−μ̂)(zk − μ̂)T
]
,

(16)

where C3 = C1 +
1
2 (K + 1)N − C2N log (K + 1). In Ap-

pendix A, we show that the argument of the determinant in (16)
can be suitably manipulated leading to the following expression
for the partially-compressed log-likelihood function

L1(μ̂, M̂,α) = −C3 −N logA− C2 log (detS1)− C2

× log

(
1 +

K

K + 1

(
1

A
x− 1

K
z̃

)T

S−1
1

(
1

A
x− 1

K
z̃

))
= −C3 −N log

(
1−αT1

)− C2 log (detS1)

− C2 log

(
1 + C4

∥∥∥∥S−1/2
1

(
y −Tα

1−αT1
− ˜̃z

)∥∥∥∥2
)
, (17)

where S1 = S− 1
K(K+1) z̃z̃

T with S = ZZT − 1
K+1 z̃z̃

T ,

C4 = K
K+1 , and ˜̃z = 1

K z̃. Since we are interested in the maxi-
mization of the partially-compressed log-likelihood with respect
to α, we focus on the terms that depend on α only and define
the following function

g(α) = N log
(
1−αT1

)
+ C2 log

⎡⎣1 + ∥∥∥∥∥
(
y0 −T0α

1−αT1
− ˜̃z0

)T
∥∥∥∥∥
2
⎤⎦ (18)

where y0 = C
1/2
4 S

−1/2
1 y, T0 = C

1/2
4 S

−1/2
1 T and ˜̃z0 =

C
1/2
4 S

−1/2
1

˜̃z. The maximization of (17) with respect to α is
equivalent to the problem⎧⎪⎨⎪⎩

minα g(α)

subject to
r∑

i=1

αi < 1,

αi ≥ 0, ∀i ∈ {1, . . . , r}.
(19)

In the next subsection, we describe two different procedures to
solve problem (19). Denoting by α̂ the generic solution returned
by these procedures, we use it in (17) and the final expression
of the detection architecture is

L1(μ̂, M̂, α̂)− L0(μ̂0, M̂0)
H1
>
<
H0

η. (20)

A. Solution to (19)

The approach devised here relies on an iterative solution of
(19). In particular, we firstly highlight the dependence of the
objective function from a single entry of α, say αj , and then,
at each iteration, we minimize g(α) with respect to αj as the
index j varies. To this end, let us notice that

1−αT1 = 1−
r∑

i=1

αi = 1−
∑
i�=j

αi − αj = aj − αj (21)

where aj = 1−∑
i�=j αi with 0 < aj < 1. Moreover, we have

that

y0 −T0α = y0 − [t01, . . . , t0N ]α

= y0 −
∑
i�=j

t0i αi − t0j αj = yj − t0j αj (22)

with yj = y0 −
∑

i�=j t0i αi. The estimation procedure iterates
according to the following rationale. Denoting by t the iteration
index and given the estimates α(t+1)

i (at the (t+ 1)th iteration),

i = 1, . . . , j − 1, andα(t)
i (at the tth iteration), i = j + 1, . . . , r,

we exploit g(α) to build up the following function of αj

g(αj) = N log
(
â
(t,t+1)
j − αj

)
+ C2

× log

⎡⎣1 + ∥∥∥∥∥
(
ŷ
(t,t+1)
j − t0jαj

â
(t,t+1)
j − αj

− ˜̃z0

)∥∥∥∥∥
2
⎤⎦ , (23)

where â
(t,t+1)
j = 1−∑j−1

i=1 α
(t+1)
i −∑r

i=j+1 α
(t)
i and

y
(t,t+1)
j = y0 −

∑j−1
i=1 t0i α

(t+1)
i −∑r

i=j+1 t0i α
(t)
i . This

function is then used to come up with the update of the
estimate of αj at the (t+ 1)h iteration. Specifically, in the
next subsections, we devise two different approaches: the first
is heuristic whereas the second incorporates the constrained
solutions of (19) at the design stage. An initial estimate of
αi, i = 1, . . . , r is necessary to initialize the algorithms as well
as a reasonable stopping criterion as, for instance, setting a
maximum number of iterations, say Niter.

1) Heuristic Solution: Let us recast (23) as

g(αj) = N log
(
â
(t,t+1)
j − αj

)
+ C2

× [
log (D0 +D1αj +D2α

2
j )

− 2 log
(
â
(t,t+1)
j − αj

)]
, (24)

where D0 = (ŷ
(t,t+1)
j )T ŷ

(t,t+1)
j − 2â

(t,t+1)
j (ŷ

(t,t+1)
j )T ˜̃z0 +

(â
(t,t+1)
j )2˜̃zT0 ˜̃z0 + (â

(t,t+1)
j )2; D1 = 2[â

(t,t+1)
j (tT0j

˜̃z0 − ˜̃zT0 ˜̃z0)

+(ŷ
(t,t+1)
j )T ˜̃z0 − (ŷ

(t,t+1)
j )T t0j ]− 2â

(t,t+1)
j ; and D2 =

1 + tT0jt0j − 2tT0j
˜̃z0 + ˜̃zT0 ˜̃z0.

Setting to zero the first derivative of (24) with respect to αj

leads to the following quadratic equation

−ND2α
2
j + [2C2D2â

(t,t+1)
j + (C2 −N)D1]αj

+[C2D1â
(t,t+1)
j + 2D0C2 −ND0] = 0. (25)

Now, we can evaluate α̃
(t+1)
j by choosing the real-valued pos-

itive solution of (25) returning the minimum value of (24).
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However, since the constraint (2) must be satisfied, we regularize
α̃
(t+1)
i , i = 1, . . . , r, as follows

α̂
(t+1)
i = α̃

(t+1)
i

(1− αb)
r∑

i=1

α̃
(t+1)
i

, (26)

where 0 ≤ αb < 1 represents the unknown background abun-
dance; in practice, it can be set using a linear grid of values (sized
according to the available a priori information) and selecting
the value that minimizes the objective function. This heuristic
algorithm is summarized in Algorithm 1.

Algorithm 1: Estimation Procedure for αj (heuristic solu-
tion).

Input: T0, y0, ˜̃z0 α
(0)
i , i = 1, . . . , r, Niter

Output: α̂
1: Set t = 1
2: Set j = 1

3: Compute â
(t−1,t)
j = 1−

j−1∑
i=1

α
(t)
i −

r∑
i=j+1

α
(t−1)
i

4: Select the jth column of T0, i.e., t0j

5: Compute y
(t−1,t)
j = y0 −

j−1∑
i=1

t0i α
(t)
i

−
r∑

i=j+1

t0i α
(t−1)
i

6: Compute α̃
(t)
j by solving (25) and selecting the

positive real-valued solution that minimizes (24)
7: If j < r, set j = j + 1 and go to step 3 else go to step 8
8: Normalize α̃(t) = [α̃

(t)
1 , . . . , α̃

(t)
r ]T as in (26) to obtain

α̂(t) = [α̂
(t)
1 , . . . , α̂

(t)
r ]T

9: If t < Niter, set t = t+ 1 and go to step 2 else go to
step 10

10: Return α̂ = [α̂
(t)
1 , . . . , α̂

(t)
r ]T

2) Constrained Solutions: Let us introduce an auxiliary vari-
able, say βj , such that

βj +

j−1∑
i=1

α
(t+1)
i +

r∑
i=j+1

α
(t)
i + αj = 1 (27)

⇒ βj + αj = â
(t,t+1)
j . (28)

Then, we exploit βj to modify (23) by incorporating the model
constraint on the abundances, namely

g(αj , βj) = N log βj + C2

× log

⎡⎣1 + ∥∥∥∥∥
(
ŷ
(t,t+1)
j − t0jαj

βj
− ˜̃z0

)∥∥∥∥∥
2
⎤⎦ ,

(29)

and consider the following minimization problem⎧⎪⎨⎪⎩
min
αj ,βj

g(αj , βj)

subject to αj + βj = â
(t,t+1)
j

. (30)

Fig. 1. Signal processing chain leading to the proposed detectors.

Now, we apply the method of Lagrange multipliers and define
the Lagrangian

L(αj , βj) = g(αj , βj)− λ
(
αj + βj − â

(t,t+1)
j

)
, (31)

where λ is a Lagrange multiplier. Setting to zero the gradient
of the Langrangian and considering the constraint equation, we
form the following system of equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λA1α
2
j + (λA2 − 2C2A1)αj + λA3 − C2A2 = 0

− λB1β
3
j + (NB1 − λB2)β

2
j + (NB2 − C2B2 − λB3)βj

+NB3 − 2C2B3 = 0

αj + βj = â
(t,t+1)
j

(32)
where A1 = tT0jt0j ; A2 = 2[βjt

T
0j
˜̃z0 − (ŷ

(t,t+1)
j )T t0j ]; A3 =

β2
j (1+

˜̃zT0 ˜̃z0)−2βj(ŷ
(t,t+1)
j )T ˜̃z0+(ŷ

(t,t+1)
j )T ŷ

(t,t+1)
j ; B1 =

(1+˜̃zT0 ˜̃z0); B2=2[αjt
T
0j
˜̃z0−(ŷ

(t,t+1)
j )T ˜̃z0]; B3=(ŷ

(t,t+1)
j )T

ŷ
(t,t+1)
j − 2αj(ŷ

(t,t+1)
j )T t0j + α2

jt
T
0jt0j .

Finally, the estimate of α̂j , say α̂(t+1)
j , is obtained by selecting

the real-valued positive solution that is strictly lower than 1 and
minimizes the objective function as summarized in Algorithm 2.
A block diagram of the signal processing chain towards the
formation of the detectors is shown in Fig. 1.

Before investigating the performance of both solutions, it
is important to notice that the convergence to the global min-
imum is not guaranteed. Nevertheless, it can be shown that
g(α) is limited from below (provided that K > N ) and the
constrained solution gives rise to a nonincreasing sequence of
values for g(α) satisfying the constraint (19). It follows that the
constrained algorithm converges at least to a local constrained
stationary point. On the other hand, the heuristic approach,
which is less time demanding than the constrained algorithm,
due to the normalization (26), is not guaranteed to return a
nonincreasing sequence of the objective function as highlighted
by the numerical examples of the next section, where it is shown
that the convergence curves experience a plateau as the number
of iterations grows.

IV. PERFORMANCE ANALYSIS

In this section, we assess the detection performance of the
proposed detectors through numerical examples based on simu-
lated as well as real data. To this end, we resort to a hyperspectral
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Fig. 2. Cooke City scene of the RIT dataset in RGB representation combining bands 15, 8, and 3 respectively. W1, W2 and W3 represent the three test windows
used to perform the multiple sub-pixel target analysis described in the following sections.

Algorithm 2: Estimation Procedure for αj (constrained
solution).

Input: T0, y0, ˜̃z0 α
(0)
i , i = 1, . . . , r, Niter

Output: α̂
1: Set t = 1
2: Set j = 1

3: Compute â
(t−1,t)
j = 1−

j−1∑
i=1

α
(t)
i −

r∑
i=j+1

α
(t−1)
i

4: Select the jth column of T0, i.e., t0j

5: Compute y
(t−1,t)
j = y0 −

j−1∑
i=1

t0i α
(t)
i

−
r∑

i=j+1

t0i α
(t−1)
i

6: Compute α̂
(t)
j by solving (32) and selecting the

real-valued positive solution that is strictly lower than
1 and minimizes (29)

7: If j < r, set j = j + 1 and go to step 3 else go to step 8
8: If t < Niter set t = t+ 1 and go to step 2 else go to

step 9
9: Return α̂ = [α̂

(t)
1 , . . . , α̂

(t)
r ]T

dataset, namely the Rochester Institute of Technology (RIT) ex-
periment3 [18]. The RIT open data experiment has been specially
designed for target detection and has been widely used in the
open literature [12], [19]. Indeed, a corrected and geo-registered
reflectance map is available so that the detection performance
will be independent from any particular experimental setup.

Data were collected in July 2006 with a coverage area of
approximately 2.0 km2 and around the small town of Cooke City,
Montana, USA. To this end, the airborne HyMap sensor operated
by HyVista was used [20]. The images were acquired flying at
1.4 km above the ground and were successively geo-registered
using ground control points. Both calibrated spectral radiance

as well as spectral reflectance after atmospheric compensation
are available in the dataset.

The Cooke City scene is shown in Fig. 2, which is composed
of 280× 800 pixels. Each pixel is observed at 126 spectral bands
covering the electromagnetic spectrum from 0.45μm to 2.48μm
with a ground resolution of about 3.0× 3.0 m. It is important to
note that the spatial resolution of the map is of the same order
of magnitude as the target sizes, so that they will usually behave
as sub-pixel targets [21], [22].

In this dataset, civilian vehicles and small fabric panels were
used as targets. Specifically, three kinds of cars (indicated as
V1, V2 and V3) and four different fabric panels (F1, F2, F3 and
F4) are present in the scene. It is important to highlight that V2

is a pick-up characterized by two different spectral signatures,
namely, one corresponding to the cabin (V2c) and the other to the
back (V2b), so it can be considered as an example of multi-target.
For each target, a reference spectrum signature obtained from a
laboratory spectrophotometer is provided together with the RIT
dataset, as shown in Fig. 3.

Finally, the RIT dataset provides a standard self-test where
the targets’ map positions are known, and also a blind test
with unknown target positions to prevent ad hoc algorithms.
Moreover, the water absorption and low signal-to-noise bands
were identified and removed from the Cooke City dataset for
further processing. Precisely, bands no. 1, 2, 3, 63, 64, 65, 66,
95, 96, and 97 were discarded as in [23]. After removing these
bands, 116 spectral bands were retained.

A. Results on Simulated Data

In this subsection, a reflectance pixel containing the target
vehicle V2 is simulated according to the replacement model
defined in (1). Particularly, the considered endmembers’ matrix
is composed of three spectral signatures

T = [t2c, t2b, t3] ∈ R116×3,

3Data can be downloaded from [Online]. Available: http://dirsapps.cis.rit.edu

http://dirsapps.cis.rit.edu
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Fig. 3. Targets spectral signatures of RIT dataset.

TABLE I
ABUNDANCES FOR DIFFERENT SIMULATED PIXEL TEST CASES.

α2c, α2b, AND α3 ARE THE ABUNDANCES REFERRED TO

THE ENDMEMBERS V2c, V2b, AND V3, RESPECTIVELY

where t2c, t2b, and t3 denote the spectral signatures of V2c,
V2b, and V3, respectively, that are given together with the RIT
dataset.

We consider different configurations for the fill factor vector
of the abundances, as specified in Table I. It is important to
note that for the V2c endmember we assign a bigger value of
abundance as its reflectance signature is lower if compared with

Fig. 4. Log-likelihood mean variation versus the iteration number over 100
MC independent trials.

V2b, see Fig. 3(a). We add a background noise modeled in terms
of a zero-mean Gaussian random vector with variance 0.5 and in-
dependent entries. The number of secondary dataK is set to 625.

Remember that the heuristic approach, as specified in (26),
requires a selection of a linear grid of values for the background
abundance to minimize the objective function. Thus, we set
a linear grid of values from 0.1 to 0.9, with a step of 0.01.
This condition is applied for performances evaluated on both
simulated and real data.

As a preliminary step, we analyze the behavior of the proposed
procedures in terms of the number of iterations required for
convergence. To this end, we define the Log-likelihood variation
ΔL

(h)
1 as a function of the iteration index, say h, as

ΔL
(h)
1 =

∣∣∣∣∣L(h)
1 (μ̂, M̂, α̂)− L

(h−1)
1 (μ̂, M̂, α̂)

L
(h)
1 (μ̂, M̂, α̂)

∣∣∣∣∣ . (33)

In this analysis, two different cases are considered with abun-
dances’ sums of 0.7 and 0.9 (as in Table I), respectively. In
Fig. 4, we plot the average values of (33) evaluated over 100
Monte Carlo (MC) independent trials for both the heuristic and
the constrained approaches. From Fig. 4, it is clear that for
the heuristic algorithm the Log-likelihood variation settles at
an approximately constant value. In fact, after approximately 4
iterations,ΔL

(h)
1 varies around 10−3. Contrarily, the constrained

method requires more than 20 iterations to reaches a constant
value below 10−15 for ΔL

(h)
1 . Interestingly, both algorithms
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TABLE II
EXECUTION TIMES FOR THE HEURISTIC AND CONSTRAINED APPROACHES

share the same behavior in terms of convergence at the initial it-
eration values. For further details about the convergence of these
algorithms, the reader is referred to the end of Section IV, where
merits and drawbacks of the proposed solutions are discussed.
In the following, we will set the maximum number of iterations
as Niter = 15 which is sufficient to obtain ΔL

(h)
1 < 10−2 for4

both heuristic and constrained approaches. Finally, in Table II,
we show the execution times for a number of iterations leading to
approximately the same log-likelihood variation (around 10−3),
namely 4 iterations, and for Niter = 15. These values have been
obtained by using an Intel(R) Core(TM) i7-7500 U coupled with
Windows 10 (64 bits) and MATLAB R2019b. As expected, the
heuristic approach is less time-demanding than the constrained
solution but its approaching to a local stationary point is slower
than the constrained algorithm.

In Fig. 5(a) we plot the true abundance’s configurations spec-
ified in Table I while in Fig. 5(b) and (c) we plot the Root Mean
Square (RMS) value of the estimated abundances, averaged
over 1000 MC trials, for both the heuristic and the constrained
approaches, respectively. It is immediately evident that the
estimate trends of the heuristic and the constrained methods
are very similar. Both methods, in fact, for low concentrations
of targets’ abundances, i.e., high background concentration,
provide estimate values that differ considerably from the
true ones. This behavior can be explained if we look at the
Table I, where when abundance sum is less than 0.50, the single
endmembers’ abundances, i.e., α2c, α2b, and α3, are less than
the background concentration and represent a very challenge
situation. On the contrary, we notice that for abundances’ sum
greater than 0.50, we come up with reasonable estimates of
each target’s abundance. Specifically, when abundances’ sum is
greater than or equal to 0.80, the estimated values are very close
to the true values. In these configurations, the background’s
concentration is less than each abundances’ value.

A more accurate analysis of the abundances’ estimates ob-
tained for both constrained and heuristic algorithms is performed
in terms of RMS Error (RMSE), which is shown in Fig. 6.
As reasonable to expect, the RMSE trend is the same for both
algorithms. Specifically, from 0.32 to 0.50 of the sum of the
abundances, the RMSE is almost constant and it presents the
higher values. In this interval we note that the RMSE of heuristic
approach is slightly less than that of the constrained one. For
abundances’ sum of 0.5, the RMSE begins to decrease linearly,
confirming that estimated values are closer to the true ones. In
this case the constrained approach provides better estimation
performance than the heuristic method.

Fig. 7 shows the detection probability Pd evaluated using a
false alarm probability Pfa = 10−3 and 1000 MC trials. From
this figure, it turns out that the Pd values of the heuristic ap-
proach are higher than those of the constrained approach in the
interval of abundances less than or equal to 0.5. This trend, in

4Notice that10−3 is approximately the plateau level for the heuristic algorithm
mentioned before.

Fig. 5. RMS value of estimated abundances for the heuristic and constrained
approaches over 1000 MC trials and for different background intervals.

accordance with what has already been said for the RMSE, can
be due to better estimated values. For abundances’ sum greater
than 0.5, the detection probabilities are greater than 0.9 for
both approaches. Particularly, we get closer to the maximum
value for the detection probability at 0.6 and 0.7 of abun-
dances’ sum for the constrained and the heuristic approaches,
respectively.

B. Results on Real Data

In this section, the performance of the proposed architectures
is assessed through the real RIT dataset. This analysis allows
us to quantify the robustness of the proposed detectors in the
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Fig. 6. RMSE value for heuristic and constrained approach computer for 1000
MC trials.

Fig. 7. Detection probability computed for Pfa = 10−3 and for 1000 MC
independent trials.

presence of model mismatches due to the fact that real data do
not exactly match the design assumptions.

At first, we assess the performance in the case of a single
sub-pixel target. To this aim, we consider a single signature and
use Kelly’s GLRT [14], the Adaptive Matched Filter (AMF) [24],
the Adaptive Coherence Estimator (ACE) [25], [26], and the
ACUTE detector, recently proposed in [12], as competitors.
Next, the detection performance for multiple sub-pixel targets
is analyzed.

It is important to highlight that no specific pre-processing
has been applied to the real RIT dataset. Finally, for numerical
reasons, we scale the reflectance spectral signature (shown in
Fig. 3) by a factor of 100.

1) Single Sub-Pixel Target Detection: The objective of this
subsection is to compare the performance of the heuristic and
constrained detectors with the ACUTE detector [12]. To this
end, we use the entire RIT dataset and as target of interest
we consider V3 only. The choice of the target V3 is dictated
by the fact that it is the most challenging in terms of false
alarms, as shown in [12]. The V3 target, as indicated by the
information related to the dataset, has pixel coordinates: P3 ≡
(282, 186). Fig. 8 shows the spectral reflectance for this target
pixel.

In order to make a comparable performance analysis with the
ACUTE detector, the spectral matrix is composed of only the
spectral signature of target V3: T ≡ t3 ∈ R116×1.

Fig. 8. Spectral reflectance of target V3 located at pixel P3 ≡ (282, 186).
Blue dots indicate the considered spectral samples to avoid water absorption
and low SNR bands.

TABLE III
ABUNDANCE’ ESTIMATES OF TARGET V3 AT PIXEL P3 ≡ (282, 186),

FOR DIFFERENT BACKGROUND WINDOW SIZE

TABLE IV
PERFORMANCE COMPARISON BETWEEN ACUTE, KELLY’S GLRT, AMF, ACE,
AND THE PROPOSED DETECTORS FOR A 55× 55 WINDOW SIZE IN TERMS OF

FALSE ALARM RATE AND FOR TARGET V3 OF RIT DATASET

In Table III, we report the abundance’s estimates relative
to the target V3 for all the considered algorithms.5 These re-
sults are obtained by applying three background window sizes,
namely, 15× 15, 25× 25, and 55× 55 pixels around the PUT;
moreover, given the PUT, data for the background estimation
are selected excluding the pixels belonging to a 3× 3 window
centered on the PUT that might contain target signatures. We
note that a small background window size, such as 15× 15
or 25× 25, results in low abundance’s estimates of the target,
whereas the 55× 55 window returns a higher abundance’s esti-
mate as well as comparable abundances between these detectors.
For this reason, in what follows, we select a background window
of 55× 55 pixels.

The detection performance is assessed in terms of false alarm
rate.6 Table IV shows the false alarm rate achieved for the three
detectors. From this analysis, we note that the false alarm rate of

5Notice that the estimates provided by Kelly’s GLRT, AMF, and ACE share
the same value.

6Specifically, we repeat the same analysis conducted in [12], where the false
alarm rate is evaluated as the number of no target pixels having their detector’s
statistic strictly higher than the one calculated using P3.
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TABLE V
FALSE ALARM RATE FOR BOTH HEURISTIC AND CONSTRAINED APPROACHES

OVER W1 AND W2 WINDOWS APPLYING TWO CONFIGURATIONS

OF THE SPECTRAL MATRIX

the heuristic and the constrained detectors are almost the same
and both lower than that of the considered competitors.

2) Multiple Sub-Pixel Targets Detection: In this subsection,
we consider the target V2, a multiple target case as it is rep-
resented by the two spectral signatures: the cabin target V2c

(with signature t2c) and the back target V2b (with signature t2b).
Since for this scenario the ACUTE detector cannot be used, we
will focus only on the results obtained through the heuristic and
the constrained detectors and we use the ground truth from the
dataset. As indicated by data description, the V2 target is located
at pixel coordinates P2 ≡ (353, 156).

At first, we focus on the abundances’ estimation for this pixel
P2. In this analysis, we consider two different configurations
for the spectral matrix. Specifically, we take into account the
spectral matrix already defined in the simulated scenario, i.e.,
T = [t2c, t2b, t3] ∈ R116×3, and the spectral matrix made by
the two spectral signatures of the V2 target only, i.e., T̄ =
[t2c, t2b] ∈ R116×2. Around the PUT, the background window
of size 55× 55 pixels and the 3× 3 pixels guard window are
applied. Using both spectral matrices T̄ and T, and inspecting
the target abundance estimates for t2c and t2b, i.e., α̂2c and
α̂2b, respectively, we obtain low values for both algorithms. In
particular, focusing on the V2c target, the heuristic approach
returns α̂2c ≈ 0.094, while the value obtained by means of the
constrained approach is α̂2c ≈ 0.024. As for target V2b, the esti-
mated abundance is α̂2b ≈ 0.006 for the heuristic approach and
zero for the constrained one. Even though the true abundance’s
values are not given in the dataset, the estimated abundances
related to P2 are low in spite of the claimed presence of V2 in
that pixel. This situation is probably due to possible mismatches
between the real target signature and the presumed one.

In order to evaluate the detection performance in a multiple
sub-pixel scenario, we consider the three test windows shown in
Fig. 2, denoted by W1, W2, and W3, and of size 21× 21. Such
windows are representative of different scenarios. Specifically,
window W1 is exactly centered where is located V2 target, i.e,
PW1

≡ P2 ≡ (353, 156), and is characterized by a mixed pres-
ence of vegetation and anthropic elements, such as roads, houses,
and buildings. The second window, namely W2, is centered on
pixel PW2

≡ (275, 180) and it mainly encloses an urban area.
Finally, the W3 window, centered on pixel PW3

≡ (200, 170),
contains low vegetation. Given the most uniform coverage of
W3, we assume that the pixels of this window represent back-
ground only. Therefore, we set the detection threshold over W3

with Pfa = 10−2. Specifically, the threshold value is estimated
for each spectral matrix configuration, i.e., T̄ and T, and both
approaches. Table V summarizes the false alarm rates com-
puted over the other two windows, namely, W1 and W2. It is
immediately evident that the false alarm rates for the heuristic
and constrained approaches are of the same order for each test

Fig. 9. Spectral reflectance normalized to the maximum value of the consid-
ered 116 spectral samples of filled pixel P ′

2 ≡ (240, 155). The filling strategy
is applied according (34) and the background-target concentrations listed in
Table VI.

window. Specifically, regardless of the spectral matrix applied,
the false alarm rate is about 1% for W1 window and is about
6% for the W2 window. Notice that for the selected thresholds,
target V2, which is present in W1, would not be detected. On the
contrary, target V3, located at pixel P3 ≡ (282, 186), is within
the W2 window and a detection is obtained in its 3 × 3 pixels
guard window, specifically at pixel with coordinates (282, 185).
Finally, it is worth noticing that the high number of false alarms
inW2 might be due to the presence of several anthropic elements.

To further investigate the behavior of the proposed detectors,
we fictitiously introduce the V2 target within a real pixel of the
RIT dataset. Specifically, we identify a background pixel that
corresponds to P ′

2 ≡ (240, 155), and according to the replace-
ment model, we insert multi-target V2 into the real pixel. Specif-
ically, we denote by yF (αn) the spectral reflectance values of
the filled pixel, with n indicating a generic filling configuration
corresponding to background values ranging from 0.6 to 0.1,
and we define it as

yF (αn) = [t2c, t2b]αn + (1−αT
n1)yRIT , (34)

whereyRIT is the pixel reflectance of the RIT dataset, andαn =
[α2c, α2b]

T withα2c andα2b the abundances’ values for V2c and
V2b, respectively.

Particularly, we consider multiple configurations of
background-target concentrations as shown by the values of αn

in Table VI: the concentrations of interest are set for background
values from 0.6 to 0.1 and correspond to a cumulative target
abundance in between 0.4 and 0.9, respectively. Fig. 9 shows
the spectral reflectance of the filled pixel P ′

2 for the different
configurations of background-target concentrations.

Therefore, we process the filled pixel P ′
2 in all the considered

configurations for both the heuristic and constrained detectors
using the spectral libraries T̄ and T. In all these analyses,
we verified that the output of detector is above its reference
threshold, which means that the multiple sub-pixel target V2 is
correctly detected. Furthermore, Table VI shows the estimates
of the concentrations of each component of the target V2, i.e.,
α̂2c and α̂2b. From the table, we observe estimates for both
the heuristic and constrained approaches very close to the true
abundance values, especially for low background values. It is
also important to remember that when using the three signa-
tures’ spectral matrix, also the abundance estimate of the third
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TABLE VI
ABUNDANCES’ ESTIMATE OVER FILLED PIXEL P ′

2 FOR DIFFERENT CONFIGURATIONS OF BACKGROUND-TARGET

CONCENTRATIONS DEFINED ACCORDING TO (34). THE T̄ AND T SPECTRAL MATRICES ARE APPLIED

endmember, i.e., t3, is provided. In this case, the values of α̂3 are
zero or negligible, as expected. Furthermore, the greater spectral
library seems to not influence the estimation performance, at
least for the analysed cases, obtaining results comparable to
those of the two signatures’ spectral matrix.

Finally, we conclude the assessment by summarizing the
merits and drawbacks of the proposed methods. Starting from
the computational requirements, the constrained method is more
time-demanding since it requires to solve equation system (32)
whereas the heuristic approach leads to a quadratic equation
that admits easy closed-form solutions. This aspect is corrobo-
rated by the computation times measured in Subsection IV-A.
However, the convergence curves highlight that, although both
algorithms share the same behavior at the initial iteration values,
the heuristic method is not guaranteed to approach the local
stationary point as fast as the constrained solution due to the
presence of a floor related to the likelihood variation. Neverthe-
less, both algorithms do not guarantee the convergence to the
global stationary point. As for the detection performance, both
methods share almost the same number of false alarms, whereas
the heuristic detector returns Pd values higher than those related
to the constrained detector for values of the abundances’ sum
lower than about 0.5. Notice also that the transition from low to
high Pd values is sharper for the constrained method. From the
estimation standpoint, the former returns more reliable values
for the abundances than the latter and, more importantly, it is
less inclined to estimate false abundances unlike the heuristic
method that provides nonzero abundances for nonexistent sig-
natures.

V. CONCLUSION

In this paper, we have addressed the detection of sub-pixel
targets in hyperspectral images. As first step, we have introduced
a generalization of the so-called replacement model that includes
multiple spectral signatures with a constraint on the sum of their
abundances. It is important to underline that such a model is
different from the approximate additive model that is used by
most of conventional algorithms. Then, under this generalized
model, we have formulated the endmember detection problem as
a binary hypothesis test and applied GLRT-like design criteria.
Specifically, due to the intractable mathematics, we have suitably

modified the maximum likelihood approach to come up with
cyclic estimation procedures. The first procedure heuristically
incorporates the constraint on the abundances whereas the sec-
ond approach exploits the Lagrange multiplier method. Finally,
we have assessed their detection and estimation performance
over synthetic and real-recorded data. As term of comparison,
we have considered the so-called ACUTE detector proposed
in [12], Kelly’s GLRT, AMF, and ACE that, however, assume
the presence of only one spectral signature in the pixel under
test. The numerical examples have highlighted the effectiveness
of both the proposed approaches with the detector based on the
Lagrange multipliers overcoming the other counterparts.

Future research directions might encompass the design of
detectors that assume the vector of the fill factors α is no longer
deterministic but obeys a preassigned distribution based upon a
priori information. In addition, model (1) can be further extended
by considering adjacent pixels that could share some endmember
signatures and, hence, can be jointly processed to detect such
signatures.

APPENDIX A
PROOF OF (17)

Let us consider the matrix argument of the determinant in (16)
and observe that it can be written as(

1

A
x− μ̂

)(
1

A
x− μ̂

)T

+
K∑

k=1

(zk − μ̂) (zk − μ̂)T (35)

=
1

A2
xxT + (K + 1) μ̂μ̂T −

(
1

A
x+ z̃

)
μ̂T

− μ̂

(
1

A
x+ z̃

)T

+ ZZT (36)

=
1

A2
xxT − (K + 1) μ̂μ̂T + ZZT (37)

=
1
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xxT − 1

(K + 1)

(
1

A
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)(
1

A
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+ ZZT

=
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1
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z̃ z̃T (38)
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− 1
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K
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, (41)

where

S1 =

(
ZZT − 1

K + 1
z̃ z̃T

)
− 1

K(K + 1)
z̃ z̃T . (42)

Exploiting the fact that det(I+AB) = det(I+BA), A ∈
CN×M and B ∈ CM×N , we can write

det

[
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]
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and the proof is complete.
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