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Superiorized Adaptive Projected Subgradient Method
With Application to MIMO Detection
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and Sławomir Stańczak , Senior Member, IEEE

Abstract—In this paper, we show that the adaptive projected
subgradient method (APSM) is bounded perturbation resilient.
To illustrate a potential application of this result, we propose a
set-theoretic framework for MIMO detection, and we devise al-
gorithms based on a superiorized APSM. Various low-complexity
MIMO detection algorithms achieve excellent performance on i.i.d.
Gaussian channels, but they typically incur high performance loss if
realistic channel models (e.g., correlated channels) are considered.
Compared to existing low-complexity iterative detectors such as
individually optimal large-MIMO approximate message passing
(IO-LAMA), the proposed algorithms can achieve considerably
lower symbol error ratios over correlated channels. At the same
time, the proposed methods do not require matrix inverses, and
their complexity is similar to IO-LAMA.

Index Terms—MIMO detection, nonconvex optimization,
adaptive projected subgradient method, superiorization.

I. INTRODUCTION

S ET-THEORETIC estimation is at the heart of a large variety
of signal processing techniques. It works by expressing

any available information about the sought solution in the form
of constraint sets, and by finding a feasible point, i.e., a point
that is consistent with each of these constraints [1]. In many
cases, this point can be computed with very simple algorithms
based on projection methods. A famous example is the widely
used projections onto convex sets (POCS) algorithm [2], [3],
[4], which finds a point in the intersection of a finite family of
closed convex sets by computing projections onto each of the
sets in a cyclic manner. The appeal of projection methods like
POCS lies in their simple structure and their potential to tackle
very large problems [5], [6].

To bridge the gap between this feasibility seeking approach
and constrained minimization, the authors of [7] have proposed
the superiorization methodology. Instead of pursuing a feasible
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point with optimal objective value, superiorization aims at
finding a feasible point with reduced objective value compared
to the output of some feasibility-seeking algorithm [8]. By
interleaving fixed point iterations (with respect to the feasible
set) with perturbations that aim at decreasing the objective
value, superiorization can reduce the computational complexity
considerably compared to iterative techniques for constrained
minimization [9]. Provided that a feasibility-seeking algorithm
is bounded perturbation resilient, the convergence of its superi-
orized versions is guaranteed automatically [7]. In recent years,
bounded perturbation resilience has been proven for several
classes of algorithms, including block-iterative projection
methods [10], amalgamated projection methods [11], dynamic
string averaging projection methods [12], [13], and fixed point
iterations of averaged nonexpansive mappings [14] (which
include POCS with relaxed projections as a particular case [15]).

The results in the above studies are restricted to problems
with a finite number of constraint sets (most of them in finite
dimensional spaces). However, there exist estimation problems
– such as adaptive filtering or online learning [16] – in which
information on the sought point arrives sequentially, resulting in
feasibility problems with a potentially infinite number of con-
straints. To tackle problems of this type, the authors of [17] have
proposed the adaptive projected subgradient method (APSM).
This algorithmic framework is an extension of Polyak’s sub-
gradient algorithm [18] to the case where the cost function
changes at each iteration. Applications of the APSM to adaptive
filtering and online learning problems include multiaccess inter-
ference suppression [19], acoustic feedback cancellation [20],
[21], robust beamforming [22], robust subspace tracking [23],
online radio-map reconstruction [24], kernel-based online clas-
sification [25], distributed learning in diffusion networks [26],
[27], [28], decoding of analog fountain codes [29], and adaptive
symbol detection [30], [31], to cite only a few.

The first objective of this study is to investigate the bounded
perturbation resilience of the APSM. We show that most of its
theoretical guarantees still apply when bounded perturbations
are added to the iterates in each iteration. As a result, the APSM
can be used as a basic algorithm for superiorization. The second
objective of this study is to illustrate the usefulness of the theo-
retical results by applying a particular instance of a superiorized
APSM to detection in multiple-input multiple-output (MIMO)
systems. In doing so, we extend our previous results [32] by
theoretical convergence guarantees. Nevertheless, the theoret-
ical results on bounded perturbation resilience of the APSM
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can be used in a much wider range of applications, including
problems in infinite dimensional Hilbert spaces.

A. Relation to Existing Studies on MIMO Detection

MIMO detection has been studied for decades. Yet the grow-
ing interest in large-scale multi-antenna systems still drives the
need for low-complexity approximation techniques. A compre-
hensive overview of MIMO detection algorithms can be found
in [33] and [34]. The authors of [35] propose a low-complextity
MIMO detector based on approximate message passing (AMP).
They show that this individually-optimal large-MIMO AMP
(IO-LAMA) algorithm is optimal for MIMO detection over
i.i.d. Gaussian channels in the large-system limit under some
additional conditions. In [36], the authors relax the assumption
of i.i.d. Gaussian channels by proposing an orthogonal approxi-
mate message passing (OAMP) algorithm for MIMO detection
over the more general class of unitarily invariant channel ma-
trices. In contrast to the AMP detector (IO-LAMA) proposed
in [35], each iteration of OAMP involves a matrix inversion in or-
der to compute the linear minimum mean square error (LMMSE)
estimate, making OAMP more computationally complex than
IO-LAMA. Many recent publications on MIMO detection [37],
[38], [39], [40], [41], [42], [43] propose deep-unfolded versions
of iterative detectors. Despite their celebrated success, some of
these techniques have been found to suffer considerable perfor-
mance loss on realistic channels. The authors of [42] mitigate this
problem by proposing an online training scheme, which in turn
increases the computational cost compared to deep-unfolded
algorithms that are trained offline. Although the number of iter-
ations required to achieve good approximations can be reduced
significantly by learning the algorithm parameters via deep
unfolding, an extensive comparison of deep-unfolded detectors
is outside the scope of this paper. Therefore, we restrict our
attention to untrained detectors. However, we note that, owing
to their iterative structure, the proposed algorithms can be readily
used as a basis for deep-unfolded detection algorithms.

This study approaches MIMO detection from a set-theoretic
perspective. By posing the problem in a real Hilbert space,
we devise iterative MIMO detectors with provable convergence
properties based on a superiorized APSM. The proposed de-
tectors have a per-iteration complexity similar to IO-LAMA.
However, unlike IO-LAMA, the proposed methods do not im-
pose any assumptions on the channel matrices. Simulations
show that, despite their low complexity, the proposed methods
can outperform the more complex OAMP detector on realistic
channel models specified in [44].

B. Preliminaries and Notation

Unless specified otherwise, lowercase letters denote scalars,
lowercase letters in bold typeface denote vectors, and uppercase
letters in bold typeface denote matrices. The sets of nonnegative
integers, nonnegative real numbers, real numbers, and complex
numbers are denoted by N, R+, R, and C, respectively. The
set of summable sequences in R+ is denoted by �1+(N). The
nonnegative part of a real number x ∈ R is denoted by (x)+ :=
max{x, 0}. We denote by I the identity operator and by I the
identity matrix. The all-zero vector is denoted by 0, where the

dimension of the space will be clear from the context. Given two
sets A and B, we write A ⊂ B or B ⊃ A if (∀x ∈ A) x ∈ B.

Throughout this paper, we denote by (H, 〈·, ·〉) a real Hilbert
space with induced norm (∀x ∈ H) ‖x‖ :=

√〈x,x〉. Given a
function f : H → R, we denote by arg minx∈Hf(x) the set
of all minimizers of f (note that this set can be empty). The
distance between two points x,y ∈ H is d(x,y) = ‖x− y‖.
The distance between a point x ∈ H and a nonempty set C ⊂ H
is defined as d(x, C) = infy∈C ‖x− y‖. Following [45], we
define the projection of a point x ∈ H onto a nonempty subset
C ⊂ H as the set

ΠC(x) := {y ∈ C| d(x,y) = d(x, C)} ,
and we denote by PC : H → C an arbitrary but fixed selection
of ΠC , i.e., (∀x ∈ H) PC(x) ∈ ΠC(x). If C is nonempty, closed,
and convex, the set ΠC(x) is a singleton for all x ∈ H, so ΠC
has a unique selection PC , which itself is called a projector.
For closed nonconvex sets C 
= ∅ in finite-dimensional Hilbert
spaces, ΠC(x) is nonempty for all x ∈ H, but it is not in general
a singleton. Nevertheless, we will refer to the selection PC as
the projector, as the distinction from the set-valued operator ΠC
will always be clear.

The sublevel set of a function f : H → R at level c ∈ R

is denoted by lev≤cf := {x ∈ H | f(x) ≤ c}. We say that a
function f : H → R ∪ {−∞,+∞} is coercive if f(x) → +∞
whenever ‖x‖ → +∞. Moreover, we say that the function f
is closed if all of its sublevel sets are closed. In this work,
we extend the notion of proximal mappings to proper closed
(possibly nonconvex) functions.

Definition 1 (Proximal Mapping): Let f : H → (−∞,+∞]
be a proper, closed function. The proximal mapping proxf :
H → H associated with f satisfies (∀x ∈ H)

proxf (x) ∈ P(x) := arg miny∈H

(
f(y) +

1

2
‖x− y‖2

)
,

where we assume that (∀x ∈ H) P(x) 
= ∅.
If f is proper, lower-semicontinuous, and convex, the setP(x)

is a singleton for all x ∈ H. In this case, the assumption that
(∀x ∈ H) P(x) 
= ∅ is always satisfied. If f is nonconvex, we
denote by proxf (x) a unique point selected deterministically
from the set P(x), assuming that such a point exists. Note that
P(x) is nonempty for all x ∈ H if (H = R

N , 〈·, ·〉) is a finite
dimensional real Hilbert space and the function y �→ f(y) +
1
2‖x− y‖2 is coercive for all x ∈ H [46, Th. 6.4].

Given a subsetX ⊂ H, a fixed point of a mappingT : X → H
is a point x ∈ X satisfying T (x) = x. The set Fix(T ) = {x ∈
H |T (x) = x} is called the fixed point set of T . Given two map-
pings T1 : H ⊃ D1 → R1 ⊂ H and T2 : H ⊃ D2 → R2 ⊂ H
such that R2 ⊂ D1, we use the shorthand T1T2 := T1 ◦ T2 to
denote their concatenation, which is defined by the composition
(∀x ∈ H) T1T2(x) := (T1 ◦ T2)(x) = T1(T2(x)).

Definition 2 [47, Definition 4.1, 4.33], [17], [14], [48, Defini-
tion 2.2.1]: Let X ⊂ H be a nonempty subset of H. A mapping
T : X → H is called

1) nonexpansive if

(∀x ∈ X )(∀y ∈ X ) ‖T (x)− T (y)‖ ≤ ‖x− y‖.
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2) averaged nonexpansive or α-averaged nonexpansive if
there exist α ∈ (0, 1) and a nonexpansive mapping R :
X → H such that T = (1− α)I + αR.

3) firmly nonexpansive (1/2-averaged nonexpansive) if
(∀x ∈ X )(∀y ∈ X )

‖T (x)− T (y)‖2 ≤ 〈T (x)− T (y),x− y〉,
or equivalently, if 2T − I is nonexpansive.

4) quasi-nonexpansive if Fix(T ) 
= ∅ and

(∀x ∈ X )(∀y ∈ Fix(T )) ‖T (x)− y‖ ≤ ‖x− y‖.
5) averaged quasi-nonexpansive or α-averaged quasi-

nonexpansive if there exist α ∈ (0, 1) and a quasi-
nonexpansive mapping R : X → H such that T = (1−
α)I + αR.

6) firmly quasi-nonexpansive (1/2-averaged quasi-
nonexpansive) if Fix(T ) 
= ∅ and (∀x ∈ X )(∀y ∈
Fix(T ))

‖T (x)− y‖2 ≤ ‖x− y‖2 − ‖T (x)− x‖2,
or equivalently, if 2T − I is quasi-nonexpansive [47,
Proposition 4.2].

7) κ-attracting quasi-nonexpansive if Fix(T ) 
= ∅ and (∃κ >
0)(∀x ∈ X )(∀y ∈ Fix(T ))

‖T (x)− y‖2 ≤ ‖x− y‖2 − κ‖x− T (x)‖2.
Fact 1 [47, Sec. 16.1]: Let f : H → R be a continuous

convex function1 and denote by (∀x ∈ H)

∂f(x) := {g ∈ H | (∀y ∈ H) 〈y − x,g〉+ f(x) ≤ f(y)} (1)

the subdifferential (i.e., the set of all subgradients) of f at x.
Then (∀x ∈ H) ∂f(x) 
= ∅.

Fact 2: Let f : H → R be a continuous convex function such
that lev≤0f := {x ∈ H | f(x) ≤ 0} 
= ∅ and let g(x) ∈ ∂f(x)
be a subgradient of f at x ∈ H. Then the subgradient projector

T : H → H : x �→
{
x− f(x)

‖g(x)‖2g(x) if f(x) > 0

x if f(x) ≤ 0
(2)

is firmly quasi-nonexpansive, i.e., the mapping 2T − I is quasi-
nonexpansive [49, Proposition 2.3]. Moreover, the mapping (1 −
λ)I + λT is quasi-nonexpansive for all λ ∈ [0, 2].

Fact 3 [17, Proposition 2]: Let K ⊂ H be a nonempty closed
convex set, and let T be the subgradient projector in (2) relative
to be a continuous convex function f with lev≤0f 
= ∅. Then for
any λ ∈ (0, 2), the mapping

T̂λ := PK ((1− λ)I + λT )

is (1− λ
2 )-attracting quasi-nonexpansive with fixed point set

Fix(T̂ ) = K ∪ lev≤0f .
Definition 3: A sequence (βnyn)n∈N in H is called a se-

quence of bounded perturbations if (βn)n∈N ∈ �1+(N) and (∃r ∈
R) (∀n ∈ N) ‖yn‖ ≤ r.

Definition 4 [50, Definition 1.1]: Let S be a nonempty subset
of H and let (xn)n∈N be a sequence in H. Then (xn)n∈N is

1Note that convex functions f : H → R are not in general continuous if H is
infinite dimensional.

� quasi-Fejér (monotone) of Type-I relative to S if
(∃(εn)n∈N ∈ �1+(N))(∀z ∈ S)(∀n ∈ N)

‖xn+1 − z‖ ≤ ‖xn − z‖+ εn.

� quasi-Fejér (monotone) of Type-II relative to S if
(∃(εn)n∈N ∈ �1+(N))(∀z ∈ S)(∀n ∈ N)

‖xn+1 − z‖2 ≤ ‖xn − z‖2 + εn.

� quasi-Fejér (monotone) of Type-III relative to S if (∀z ∈
S)(∃(εn)n∈N ∈ �1+(N))(∀n ∈ N)

‖xn+1 − z‖2 ≤ ‖xn − z‖2 + εn.

The following known results related to quasi-Fejér monotone
sequences will be used in Section II.

Fact 4 [47, Lemma 5.31]: Let (αn)n∈N and (βn)n∈N be
sequences in R+, and let (γn)n∈N and (δn)n∈N be sequences
in �1+(N) such that

(∀n ∈ N) αn+1 ≤ (1 + γn)αn − βn + δn.

Then the sequence (αn)n∈N converges and
∑

n∈N βn converges.
Fact 5 [50, Proposition 3.2]: The different types of quasi-

Fejér sequences relative to a set S ⊂ H are related as follows.
� Type-I =⇒ Type-III
� Type-II =⇒ Type-III
� if S is bounded, then Type-I =⇒ Type-II.
Fact 6 [50, Proposition 3.2–3.3]: Let (xn)n∈N be a quasi-

Fejér sequence (of Type-I, Type-II, or Type-III) relative to a
nonempty set S ⊂ H. Then (xn)n∈N is bounded and (∀z ∈ S)
(‖xn − z‖)n∈N converges.

II. BOUNDED PERTURBATION RESILIENCE OF THE ADAPTIVE

PROJECTED SUBGRADIENT METHOD

In this section, we show that the APSM [17] is bounded
perturbation resilient. As a consequence of this result, we enable
the use of superiorized heuristics based on the APSM. The proofs
follow closely the structure in [17], with the main difference that
we add bounded perturbations to the recursions in that study. As
in [17], Lemma 1 and Theorem 1 are technical results used to
prove Theorem 2, the main contribution in this section. The
following propositions are also used in the proof of Theorem 2.
In particular, Proposition 1 establishes a connection between
quasi-nonexpansivity and quasi-Fejér monotonicity.

Proposition 1: Let (Tn : H → H)n∈N be a sequence of quasi-
nonexpansive mappings such that C :=

⋂
n∈N Fix(Tn) 
= ∅, and

let (βnyn)n∈N be a sequence of bounded perturbations in H.
Then the sequence (xn)n∈N generated by

(∀n ∈ N) xn+1 = Tn (xn + βnyn) , x0 ∈ H,

is quasi-Fejér of Type-I relative to C.
Proof: See Appendix A
For sequences of attracting quasi-nonexpansive mappings, we

can derive a slightly stronger result stated below.
Proposition 2: Let κ > 0, let (Tn : H → H)n∈N be a se-

quence of κ-attracting quasi-nonexpansive mappings such that
C :=

⋂
n∈N Fix(Tn) 
= ∅, and let (βnyn)n∈N be a sequence of

bounded perturbations inH. Then for any bounded subsetU ⊂ C
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the sequence (xn)n∈N generated by

(∀n ∈ N) xn+1 = Tn (xn + βnyn) , x0 ∈ H,

satisfies the following: (∃(γn)n∈N ∈ �1+(N)) (∀z ∈ U)
‖xn+1 − z‖2 ≤ ‖xn − z‖2 − κ‖xn+1 − xn‖2 + γn.

Proof: See Appendix B
The following lemma is a generalization of [17, Lemma 1] to

quasi-Fejér monotone sequences. The proof follows almost line
by line the proof in [17, Lemma 1].

Lemma 1: Suppose that a sequence (un)n∈N in H is quasi-
Fejér monotone of Type-I relative to a closed convex set C ⊂ H.
In addition, suppose that C has a nonempty relative interior with
respect to a linear variety V ⊂ H, i.e., there exist x0 ∈ C ∩ V
and ε > 0 satisfying U := {x ∈ V | ‖x− x0‖ ≤ ε} ⊂ C. Then
(PV(xn))n∈N converges strongly to a point in V .

Proof: See Appendix C
Lemma 1 is used to prove the following theorem, which

generalizes [17, Th. 1] to quasi-Fejér monotone sequences. It
provides sufficient conditions for strong convergence of quasi-
Fejér monotone sequences. The proof follows very closely the
proof in [17].

Theorem 1: Let (un)n∈N be a quasi-Fejér sequence of Type-I
relative to a closed convex set C ⊂ H, and suppose that there
exist κ > 0 and (γn)n∈N ∈ �1+(N) such that (∀z ∈ C)(∀n ∈ N)

κ‖un − un+1‖2 ≤ ‖un − z‖2 − ‖un+1 − z‖2 + γn. (3)

Then (un)n∈N converges strongly to a point in H if C has a
nonempty relative interior with respect to a hyperplane W ⊂ H.

Proof: See AppendixD
Finally, Theorem 2, which is based on [17, Th. 2], states the

main result of this section. It shows that perturbed versions of
the APSM essentially enjoy the same convergence guarantees
as their unperturbed counterpart in [17], except for monotone
approximation. The proof of Theorem 2 relies on Propositions 1
and 2, and on Theorem 1.

Theorem 2: Let (Θn : H → R+)n∈N be a sequence of con-
tinuous convex functions, let K ⊂ H be a nonempty closed
convex set, and denote the APSM update for the nth iteration
by2 (∀n ∈ N)

Tn : H → H

x �→
{
PK
(
x− λn

Θn(x)
‖Θ′

n(x)‖2Θ
′
n(x)

)
if Θ′

n(x) 
= 0,

PK(x) otherwise,
(4)

where Θ′
n(xn) ∈ ∂Θn(xn) and λn ∈ [0, 2]. Moreover, let

(βnyn)n∈N ⊂ H be a sequence of bounded perturbations, define
(∀n ∈ N)

Ωn :=

{
x ∈ K

∣∣∣∣Θn(x) = Θ�
n := inf

x∈K
Θn(x)

}
,

2The projection onto K for Θ′
n(x) = 0 ensures that the perturbed APSM

generates a sequence in K regardless of the perturbations. It is not part of
the definition in [17], where the absence of perturbations guarantees that the
sequence produced by the APSM is restricted to the set K.

and suppose that

(∀n ∈ N) Θ�
n = 0 and Ω :=

⋂
n∈NΩn 
= ∅. (5)

Then for any x0 ∈ K, the sequence (xn)n∈N in K generated by
the perturbed APSM3

x0 ∈ K, xn+1 = Tn (xn + βnyn) (6)

satisfies the following:
1) The sequence (xn)n∈N is quasi-Fejér monotone of Type-I

relative to Ω, so (xn)n∈N is bounded.
2) Moreover, if in addition to (5) (∃(ε1, ε2) ∈ R

2
+) (∀n ∈ N)

λn ∈ [ε1, 2− ε2] ⊂ (0, 2) and (Θ′
n(xn + βnyn))n∈N is

bounded, then limn→∞ Θn(xn + βnyn) = 0.
3) Assume that Ω has a relative interior w.r.t. a hyper-

plane W ⊂ H, i.e., (∃ũ ∈ Ω ∩W) and (∃ε > 0) satis-
fying U := {u ∈ W | ‖u− ũ‖ ≤ ε} ⊂ Ω. Then by us-
ing (∀n ∈ N) λn ∈ [ε1, 2− ε2] ⊂ (0, 2), the sequence
(xn)n∈N in (6) converges strongly to a point û ∈ K, i.e.,
limn→∞ ‖xn − û‖ = 0. Moreover, limn→∞ Θn(û) = 0
provided that (i) (Θ′

n(xn + βnyn))n∈N is bounded and
that (ii) there exists bounded (Θ′

n(û))n∈N, where (∀n ∈
N) Θ′

n(û) ∈ ∂Θn(û).
4) In addition the assumptions (i) and (ii) in (c), assume that

Ω has an interior point ũ, i.e., (∃ρ > 0) satisfying {v ∈
H | ‖v − ũ‖ ≤ ρ} ⊂ Ω. Define (xn)n∈N by using (∀n ∈
N)λn ∈ [ε1, 2− ε2] ⊂ (0, 2), and let û := limn→∞ xn ⊂
K (the existence of û is guaranteed by (c)). In this case, if

(∀ε > 0)(∀r > 0)(∃δ > 0) inf
d(xn,lev≤0Θn)≥ε

‖ũ−xn‖≤r

Θn(xn) ≥ δ,

the limit û satisfies û ∈ lim inf
n→∞ Ωn, where lim inf

n→∞ Ωn :=⋃∞
n=0

⋂
k≥n Ωk and the overbar denotes the closure of a

set.
Proof: See Appendix E
Remark 1: We note that in [17], the condition in (5) does not

concern the initial n0 iterations, allowing for a finite number of
cost functions that lead to an empty intersection of zero level
sets. Nevertheless, Theorem 2 still covers this case if we let
x0 := x̃n0

, where x̃n0
∈ H denotes the estimate after the first

n0 iterations.
Owing to the versatile applicability of the APSM, Theorem 2

can be used to prove the convergence of algorithms in a wide
range of applications. For example, it offers a straightforward
means of proving the convergence of the heuristic proposed
in [29]. An application to channel estimation for hybrid beam-
forming architectures in an online setting can be found in [51].
Moreover, unlike many existing results on bounded perturba-
tion resilience, Theorem 2 even applies to infinite dimensional
Hilbert spaces. In the remainder of this paper, we use Theorem 2
to devise iterative MIMO detectors based on a superiorized
APSM.

3We can assume without loss of generality that x0 ∈ K, since (∀x ∈ H)
T0(x) ∈ K.
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III. APPLICATION TO MIMO DETECTION

To illustrate the usefulness of the theoretical results in Sec-
tion II, we devise iterative MIMO detectors with low complexity
based on a superiorized APSM. We consider a MIMO system
with K transmit- and N receive antennas. For constellation
alphabets with independent real-and imaginary part (such as the
conventional QPSK or digital QAM; see, e.g., [52, Sec. 1.3]),
which are commonly used in practice, we can describe the
system using the real-valued signal model [53]

y = Hs+w,

where y ∈ R
2N is the received signal, H ∈ R

2N×2K is the
channel matrix, s ∈ R

2K is the transmit signal with coefficients
(∀k ∈ I := {1, . . . , 2K}) sk ∈ A ⊂ R drawn independently
from a uniform distribution over a finite set A of real-valued
constellation points, and w ∼ N (0, σ2

2 I) is a 2N -dimensional
real vector of i.i.d. Gaussian noise samples.

The goal of MIMO detection is to estimate the transmit signal
vector s based on knowledge of the channel H and the received
signal vector y. Since the entries of s are distributed uniformly
over the constellation alphabet and w is a vector of Gaussian
noise, the optimal detector uses the maximum likelihood crite-
rion given by

s� ∈ arg max
x∈S

p (y|x) = arg min
x∈S

‖Hx− y‖22, (7)

where S := A2K ⊂ R
2K is the discrete set of feasible transmit

signal vectors and p(y|x) denotes the conditional probability
of y given x. The maximum likelihood problem is known to
be NP-hard [54] (and, in fact, NP-complete [55]). Therefore,
various suboptimal approximations have been proposed.

In Section III-A, we formulate Problem (7) in a real Hilbert
space, which allows us to propose algorithms with convergence
guarantees based on Theorem 2. In Section III-B, we replace the
finite set S in Problem (8) by its convex hull and we propose
an APSM to approximate a solution to the relaxed problem.
Subsequently, in Section III-C, we propose superiorized version
of this algorithm by adding bounded perturbations in each
iteration with the intent to steer the iterate towards a solution
to the nonconvex maximum likelihood problem. Similarly to
AMP, which alternates between gradient steps and (Gaussian)
denoising steps, the proposed algorithm interleaves subgradient
projections onto sublevel sets with denoising steps defined by
hard slicing or soft thresholding. A convergence proof for the
proposed method is provided in Section III-D, and the algorith-
mic steps are summarized in Section III-E.

A. Set-Theoretic Formulation in a Hilbert Space

In the following, we approach the problem from a set-theoretic
perspective, which enables us to devise low-complexity approxi-
mation techniques with provable convergence properties without
imposing any additional assumptions. To apply the results in
Section II, we formulate Problem (7) in a real Hilbert space
(H := R

2K , 〈·, ·〉) equipped with the standard Euclidean inner
product

(∀x,y ∈ H) 〈x,y〉 := yTx,

which induces the Euclidean norm ‖ · ‖ = ‖ · ‖2. In this Hilbert
space, we can express the maximum likelihood problem in (7)
as

minimize
x∈H

‖Hx− y‖2 + ιS(x), (8)

where and ιS : H → R+ ∪ {+∞} is the indicator function of S
given by

(∀x ∈ H) ιS(x) =

{
0 if x ∈ S
+∞ otherwise.

B. An Adaptive Projected Subgradient Method for MIMO
Detection

In principle, a solution to the maximum likelihood problem
can be approximated with iterative techniques that interleave
gradient steps for the cost function with projections onto the
nonconvex constraint set in (7). Such algorithms, based on
projected gradient methods or the alternating direction method
of multipliers (ADMM), have been discussed in [38], [40], [56].
However, owing to the projection onto the nonconvex constella-
tion alphabet, convergence of these algorithms cannot be guar-
anteed without imposing stringent assumptions on the channel
matrix (see [56]). Instead of directly approaching the nonconvex
maximum likelihood problem in (7), some authors [57], [58],
[59] have applied iterative algorithms to a relaxed version of
Problem (7), in which the discrete set S is replaced with its
convex hull

B := {x ∈ H | ‖x‖∞ ≤ amax} ,
where amax = max

a∈A
|a|. The resulting suboptimal detector

ŝ ∈ arg min
x∈B

‖Hx− y‖2 (9)

is also referred to as box-relaxation decoder [60]. In the fol-
lowing, we devise a basic algorithm based on an APSM that
aims at approximating solutions to Problem (9). According to
Theorem 2 and Remark 1, convergence of the APSM can only be
guaranteed if all but finitely many of its cost functions attain the
value zero. Hence we cannot directly use the objective function
in (7) as a cost function for all iterations of the APSM. If the
optimal objective value ρ̂ := ‖Hx̂− y‖2 of Problem (9) were
known, we could use the APSM to solve the problem

minimize
x∈B

(‖Hx− y‖2 − ρ̂
)
+
.

This reformulation of the convex minimization problem in (9)
is equivalent to the convex feasibility problem

findx such thatx ∈ Cρ̂ ∩ B, (10)

where (∀ρ ≥ 0)Cρ := {x ∈ H | ‖Hx− y‖2 ≤ ρ} is a sublevel
set of the objective function in (7), also known as stochastic
property set [61]. In the following, we build upon a technique
shown in [29], where the objective is to solve the problem

findx such thatx ∈
( ⋂

n≥n0

Cρn

)
∩ B, (11)
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for some n0 ∈ N, given a sequence (Cρn
)n∈N of stochastic

property sets. As in [29], we define a sequence of continuous
convex functions Θn : H → R+ by

(∀n ∈ N)(∀x ∈ H) Θn(x) :=
(‖Hx− y‖2 − ρn

)
+

and we use the APSM to minimize asymptotically (in the sense
defined in [17, Th. 2(b)]) this sequence of functions over the set
B by iteratively applying the recursion

x0 ∈ H, (∀n ∈ N)xn+1 := Tn(xn), (12)

where

Tn(x) :=

{
PB
(
x− μn

Θn(x)

‖Θ′
n(x)‖2

Θ′
n(x)

)
if Θn(x) > 0

PB(x) otherwise.
(13)

Here, (∀n ∈ N) Θ′
n : H → H : x �→ 2HT (Hx− y) ∈

∂Θn(x) defines a subgradient of Θn at x, and μn ∈
[ε1, 2− ε2] ⊂ (0, 2) is a relaxation parameter. If we choose the
elements of (ρn)n∈N to increase monotonically in such a way
that (∃n0 ∈ N) ρn0

> ρ̂, the recursion in (12) is guaranteed
to converge (see Section III-D). Moreover, if ρ0 is sufficiently
small and (ρn)n∈N increases sufficiently slowly, the final
objective value limn→∞ ‖Hxn − y‖2 will be close to optimal.
In the next subsection, we devise superiorized versions of
the algorithm in (12), which additionally aim at enforcing
the nonconvex constraint S . As the optimal objective value
ρ� := ‖Hs� − y‖2 of the ML problem in (7) may be larger
than ρ̂, we additionally require the sequence (ρn)n∈N to satisfy
(∃n0 ∈ N)(∀n ≥ n0) ρn ≥ ρ� ≥ ρ̂ in the following.

Comment 1: Problem (11) is feasible only for n0 such that
(∀n ≥ n0) ρn ≥ ρ̂. Moreover, for the feasible set to contain
the ML estimate s�, it is required that (∀n ≥ n0) ρn ≥ ρ�.
Furthermore, the algorithm in (12) will make progress (in the
sense that xn+1 
= xn) only if ρn < ‖Hxn − y‖2. Therefore,
the elements of the sequence (ρn)n∈N should increase slowly,
in order to ensure that there are sufficiently many iterations
between the first time ρn ≥ ρ̂ (or ρn ≥ ρ�, respectively) and
the instant at which ρn ≥ ‖Hxn − y‖2.

C. Superiorization

Replacing the discrete constellation alphabet S with its con-
vex hull B ⊃ S can potentially limit the performance of the
algorithm in (12), because it ignores available information on the
prior distribution of x. Therefore, we use the APSM in (12) as a
basic algorithm for superiorization, and we devise a superiorized
version

(∀n ∈ N) xn+1 := Tn(xn + βnvn), x0 ∈ H (14)

of this algorithm by adding small perturbations to its iterates with
the intent to reduce slightly the value of a certain superiorization
objective. According to Theorem 2, convergence of the sequence
generated by the recursion in (14) can still be guaranteed,
given that (βnvn)n∈N are bounded perturbations in the sense
of Definition 3, i.e., that (βn)n∈N ∈ �1+(N) and that (vn)n∈N is
a bounded sequence in H. Potential choices for the sequence
(vn)n∈N are introduced below.

Objective functions for superiorization are typically convex.
Nevertheless, we consider nonconvex objective functions in the
following. Moreover, as in [15], we slightly deviate from [8]
and [7], by using proximal mappings instead of subgradients
of the superiorization objective to define the perturbations.
In this way, we enable a simple trade-off between the per-
turbations’ magnitude and their contribution to reducing the
objective value. To incorporate prior information about the
transmit signal, we are interested in superiorization objective
functions f : H → R+ ∪ {+∞} that satisfy f(x) = 0 if and
only if x ∈ S . One example of such a function is the indicator
function f�2 := ιS . The proximal mapping associated with f�2
is given by proxf�2

(x) = PS(x). Here, PS denotes a projection
onto the set S . Since S is not convex, this point is not unique for
all x ∈ H. However, a projection onto S always exists because
the set is closed and the space H is finite dimensional. In this
way, we can devise perturbations of the form

(∀n ∈ N) v(�2)
n := PS(xn)− xn. (15)

As the primary objective of MIMO detection is to reduce the
symbol error ratio (SER), one could instead use a superiorization
objective that penalizes the number of coefficients of the estimate
x̂ ∈ H that lie outside of the set of valid constellation points, i.e.,∑

k:x̂k/∈A
1 = ‖x̂− PS(x̂)‖0, (16)

where ‖ · ‖0 denotes the �0 pseudo-norm. Borrowing a well-
known technique from compressed sensing [62], we replace the
�0 pseudo-norm in (16) with the �1-norm to define an alternative
superiorization objective (∀x ∈ H) f�1(x) := ‖x− PS(x)‖1.
Note that f�1 is still nonconvex due to the projection onto the
nonconvex set S . Nevertheless, based on [46, Example 6.8]
and the translation property of the proximal mapping [46,
Th. 6.11], (∀τ ≥ 0) we can define a proximal mapping asso-
ciated with τf�1 by4 proxτf�1

(x) = φτ (x− PS(x)) + PS(x),
where (∀τ ≥ 0) φτ : H → H is the soft-thresholding operator

(∀x ∈ H)(∀k ∈ I)φτ (x)|k := sign(xk)(|xk| − τ)+.

As a result, we obtain perturbations of the form (∀n ∈ N)

v(�1)
n := proxτnf�1

(xn)− xn

= φτn (xn − PS(xn)) + PS(xn)− xn. (17)

The convergence of the superiorized APSM in (14) with pertur-
bations according to (15) or (17) is investigated below.

D. Convergence of the Proposed Algorithms

According to Theorem 2 and Remark 1, the sequence pro-
duced by the superiorized APSM in (14) converges (strongly)
to a point x� ∈ B, given that the perturbations are bounded and
that

(C1) (∃n0 ∈ N)(∀n ≥ n0) Θ�
n = 0, i.e., defining (∀n ∈

N)Ωn := {x ∈ B |Θn(x) = Θ�
n} = B ∩ Cρn

, we have
Ω :=

⋂
n≥n0

Ωn 
= ∅.

4A detailed proof can be found in [51, Appendix B].
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(C2) (∃z ∈ Ω)(∃η > 0) {x ∈ H | ‖x− z‖ ≤ η} ⊂ Ω, i.e.,
the set Ω has an interior point.

Moreover, the pointx� minimizes all but finitely many functions
of the sequence (Θn)n∈N if

(C3) the sequence (Θ′
n(xn + βnyn))n∈N is bounded

(C4) there exists a bounded sequence (Θ′
n(x

�))n∈N, where
(∀n ∈ N) Θ′

n(x
�) ∈ ∂Θn(x

�)
The objective of the remainder of this subsection is to show

that these conditions are satisfied. We begin by showing that the
proposed perturbations are bounded.

Proposition 3: The proposed perturbations in (15) and (17)
are bounded.

Proof: Since B is compact, we can define c := maxx∈B ‖x‖.
By (13) and the definition of a projection, (∀n ∈ N) xn ∈ B and
(∀x ∈ H)PS(x) ∈ S ⊂ B. Consequently, we have

‖v(�2)
n ‖ = ‖PS(x)− xn‖ ≤ ‖PS(x)‖+ ‖xn‖ ≤ 2c

and

‖v(�1)
n ‖ = ‖φτ (x− PS(x)) + PS(x)− xn‖

≤ ‖φτ (x− PS(x)) ‖+ ‖PS(x)− xn‖
≤ 2‖PS(x)− xn‖ ≤ 4c,

which concludes the proof. �
Finally, we use Theorem 2 and Proposition 3 to prove the

convergence of the proposed algorithms. Since the proof requires
the convex hull of the constellation constraint to have an interior
point, we restrict our attention to constellation alphabets A the
elements of which span the entire complex plane. Note that we
can still apply the proposed approach to other constellations,
such as BPSK (see, e.g., [52, Sec. 1.3]), by posing the problem
in a subspace of H.

Proposition 4: Let (ρn)n∈N be a sequence in R+ satisfying
(∃n0 ∈ N) (∃η > 0) (∀n ≥ n0) ρn ≥ ρ� + η. Then the algo-
rithm in (14) with (βn)n∈N ∈ �1+(N) and perturbations accord-
ing to (15) or (17) is guaranteed to converge to a point x� ∈ B
minimizing all but finitely many functions of the sequence
(Θn)n∈N.

Proof: In light of Theorem 2, it remains to show that the con-
ditions (C1)–(C4) above are satisfied. Let s� denote a solution
to Problem (7).

(C1) By assumption, (∀n ≥ n0) ρn ≥ ρ� = ‖Hs� − y‖2,
whereby 0 ≤ Θ�

n ≤ (‖Hs� − y‖2 − ρn)+ ≤ 0. More-
over, (∀n ≥ n0) s

� ∈ Cρn
∩ B = Ωn, and thus Ω 
= ∅.

(C2) Define E := {x ∈ H | ‖s� − x‖ ≤ ε} with some posi-
tive ε ≤

√
ρ�+η−√

ρ�

‖H‖2 . All u ∈ H with ‖u‖ ≤ 1 satisfy

‖H(s�+εu)+y‖2 =ρ�+2ε〈Hs�−y,Hu〉+ε2‖Hu‖2
(i)

≤ ρ� + 2ε
√
ρ�‖H‖2 + ε2‖H‖22

≤ ρ� + η,

where (i) is an application of the Cauchy-Schwartz
inequality. Therefore, by assumption, (∀n ≥ n0) (∀x ∈
E) Θn(x) = 0, i.e., E ⊂ Cρn

. Now, we define a set with
nonempty interior by Q := {x ∈ H | (∀k ∈ I) sl ≤

xi ≤ su}, where (∀k ∈ I)

s̃k := sign(s�k) ·
(
|s�k| −

ε√
2K

)
,

sl := min(s̃k, sk), and su := max(s̃k, sk). Note that
(∀n ≥ n0) Q ⊂ E ⊂ Cρn

. Moreover, Q ⊂ B for suffi-
ciently small ε > 0, so it holds that Q ⊂ Ω.

(C3) Let (∀n ∈ N) zn := xn + βnyn. Since (∀n ∈ N)
Θn(x) = 0 ⇒ Θ′

n(x) = 0, it is sufficient to consider
the caseΘn(x) > 0. In this case, we have thatΘ′

n(x) =
2HT (Hx− y), so (∀xn ∈ B)

‖Θ′
n(zn)‖

(i)

≤2‖HTHzn‖+ 2‖HTy‖
(ii)

≤ 2‖HTH‖2 · ‖zn‖+ 2‖HTy‖
(iii)

≤ 2‖HTH‖2 ·(‖xn‖+βn‖yn‖)+2‖HTy‖
(iv)

≤ 2

(
c+ rmax

n∈N
βn

)
‖HTH‖2+2‖HTy‖.

Here, (i) and (iii) follow from the triangle inequality,
(ii) follows from the definition of an operator norm,
and (iv) follows from the definition of the constant c
in Proposition 3 and the fact that (∃r ∈ R) (∀n ∈ N)
‖yn‖ ≤ r. Consequently, the sequence of subgradients
(Θ′

n(xn + βnyn))n∈N is bounded.
(C4) Since (xn)n∈N is a convergent sequence in the compact

set B, its limit x� also belongs to B. Therefore, we can
apply the same argument as above. �

Comment 2: Note that the convergence proof in this subsec-
tion does not depend on the choice of the channel matrix H.
Hence, the proposed algorithms are guaranteed to converge for
arbitrary channel matrices.

E. Summary of the Proposed Algorithms

The proposed iterative MIMO dectectors with perturbations
according to (15) and (17), respectively, are summarized in
Algorithm 1 below.

Algorithm 1: Superiorized APSM for MIMO Detection
1: Parameters: (ρn ≥ 0)n∈N, (μn ∈ (0, 2))n∈N, (βn ≥ 0)n∈N,

(τn ≥ 0)n∈N
2: Input: H ∈ R

2N×2K ,y ∈ R
2N

3: Output: x̂ ∈ R
2K

4: Initialization: Choose arbitrary x0 ∈ H
5: for n = 0, . . . , nmax − 1 do
6: vn = proxτnf�j

(xn)− xn, j ∈ {1, 2}� (15) or (17)

7: zn = xn + βnvn

8: Θn(zn) = (‖Hzn − y‖2 − ρn)+
9: Θ′

n(zn) = 2HT (Hzn − y)

10: xn+1 =

{
PB(zn − μn

Θn(zn)

‖Θ′
n(zn)‖2Θ

′
n(zn)) if Θn(zn) > 0

PB(zn) otherwise
11: end for
12: return x̂ = xn+1
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In the simulations in Section IV, we terminate the algorithm
once a certain number of iterations is exceeded. Since the
sequence (xn)n∈N is guaranteed to converge, we could alterna-
tively terminate the algorithm once ‖xn+1 − xn‖ ≤ ε for some
ε > 0.

Comment 3: The complexity of Algorithm 1 is determined by
the vector-matrix multiplications in lines 8 and 9, which can be
computed with O(NK) multiplications. The same also holds
for IO-LAMA. By contrast, computing the LMMSE estimate
and the iterative steps of OAMP requires a matrix inverse or, for
numerical stability, solving a system of linear equations using
standard matrix factorization techniques. One of the best known
algorithms for this step [63] has a complexity of O(K2.376).

IV. NUMERICAL RESULTS

In this section, we compare the performance of the proposed
algorithms and existing methods. As a baseline, we consider the
widely used LMMSE estimator given by

xLMMSE = (HTH+ σ2I)−1HTy. (18)

For higher-order modulations, the SER depends on the scaling of
the estimate. Therefore, the constrained version of the LMMSE
estimator (also known as linearly constrained minimum variance
estimator) [64] typically achieves lower SER than the uncon-
strained LMMSE estimator in (18). The constrained LMMSE
estimate is given by

x̃LMMSE = diag(α)(HTH+ σ2I)−1HTy, (19)

where

(∀k ∈ I) αk =
(
hT
k

(
HHT + σ2I

)−1
hk

)−1

.

Here, hk denotes the kth column of H. The simulations below
assess the performance of the following algorithms:
� The APSM basic algorithm in (12) (APSM)
� The superiorized APSM in (14) with perturbations accord-

ing to (15) (APSM-L2)
� The superiorized APSM in (14) with perturbations accord-

ing to (17) (APSM-L1)
� The AMP-based MIMO detector (IO-LAMA) proposed

in [35] (IO-LAMA)
� The detector based on OAMP [36] (OAMP)
� The constrained LMMSE estimate x̃LMMSE in (19) (LMMSE)
� The box-relaxation decoder in (9), which is computed using

a general-purpose convex solver (Box Detector).
We consider a system with K = 16 single antenna transmitters
and N = 64 receive antennas and 16-QAM constellation. As
in [42], we assume perfect power allocation, i.e., we normalize
the columns of the channel matrix H to unit 2-norm. For the
APSM algorithms, we set (∀n ∈ N) ρn = 5 · 10−5 · 1.06n and
μn = 0.7. The perturbations of APSM-L2 are scaled using the
sequence (βn = bn)n∈N with b = 0.9. For APSM-L1, we set
(∀n ∈ N) τn = 0.005 and βn = 0.9999. All iterative algorithms
are initialized withx0 = 0. The design parameters of the APSM-
based algorithms were chosen somewhat arbitrarily, in a way
that resulted in good performance for all problem types under
consideration. We note that the number of iterations required

Fig. 1. SER as a function of the number of iterations averaged over 10000
realizations of i.i.d. Gaussian channels.

Fig. 2. SER as a function of the number of iterations averaged over 10000
3GPP channels.

by these methods could potentially be reduced by tuning their
parameters for a particular problem setting.

Fig. 1 shows the SER throughout the iterations, averaged over
10000 i.i.d. Gaussian channel matrices with 9 dB signal-to-noise
ratio (SNR). It can be seen that both IO-LAMA and OAMP
achieve maximum likelihood performance within about 10 iter-
ations. The proposed APSM and APSM-L2 detectors eventually
achieve the same SER as the Box Detector. The APSM-L1
detector even achieves a slightly lower SER.

Fig. 2 shows the SER as a function of the number of iterations
averaged over 10000 (single-subcarrier) 3GPP channels [44]
with 18 dB SNR. The single-subcarrier channels are drawn at
random from a dataset that was generated using the code pro-
vided with [42]. While all APSM-type algorithms achieve a SER
belowLMMSE,IO-LAMA fails to reduce the SER throughout the
iterations. Again, the unperturbed APSM settles at a SER close
to that achieved by the Box Detector. Superiorization based
on the indicator function f�2 = ιS (APSM-L2) does not improve
the performance compared to the unperturbed basic algorithm
(APSM). By contrast, the SER achieved by APSM-L1 is about
an order of magnitude below the unperturbed basic algorithm
APSM, even outperforming the more complex OAMP detector.
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Fig. 3. SER as a function of the SNR averaged over 10000 3GPP channels.

Fig. 3 shows the average SER as a function of the SNR for
3GPP channels. Since IO-LAMA did not converge for 3GPP
channels, it is excluded from this comparison. It can be seen
that the perturbations of APSM-L2 did not achieve a significant
improvement over APSMwithout perturbations. Both APSM and
APSM-L2 almost achieve the same SER as the Box Detec-
tor throughout the entire SNR range. By contrast, APSM-L1
achieves a lower SER than OAMP for all SNR levels.

V. CONCLUSION

In this paper, we derived conditions for the convergence of per-
turbed versions of the APSM and we proposed iterative MIMO
detectors with convergence guarantees based on a superiorized
APSM. Unlike IO-LAMA, the proposed methods are guaranteed
to converge for arbitrary channel matrices. Simulations show
that the proposed methods can outperform OAMP on realistic
channels. Moreover, in contrast to OAMP, the proposed detec-
tors do not require matrix inverses, so they have a per-iteration
complexity similar to IO-LAMA. The theoretical results in
Section II are valid in arbitrary (possibly infinite dimensional)
real Hilbert spaces. Owing to the wide applicability of the
APSM, they can be used to devise heuristics with convergence
guarantees for various other applications.

APPENDIX

A. Proof of Proposition 1

By quasi-nonexpansivity of Tn, it holds that (∀z ∈ C)(∀n ∈
N)

‖xn+1 − z‖2 = ‖Tn(xn + βnyn)− z‖2
(i)

≤ ‖xn + βnyn − z‖2

= ‖xn − z‖2 + 2βn〈xn − z,yn〉+ β2
n‖yn‖2

(ii)

≤ ‖xn−z‖2+2βn‖xn−z‖·‖yn‖+β2
n‖yn‖2

= (‖xn − z‖+ βn‖yn‖)2 ,
where (i) follows from quasi-nonexpansivity of Tn and (ii)
is an application of the Cauchy-Schwartz inequality. Since

(βnyn)n∈N is a sequence of bounded perturbations, there
exists r > 0 such that (∀n ∈ N) ‖yn‖ ≤ r, and (γn)n∈N :=
(rβn)n∈N ∈ �1+(N). Consequently, (∃(γn)n∈N ∈ �1+(N)) (∀z ∈
C) (∀n ∈ N)

‖xn+1 − z‖ ≤ ‖xn − z‖+ γn,

which is the desired result. �

B. Proof of Proposition 2

Since (∀n ∈ N) Tn is κ-attracting quasi-nonexpansive with
Fix(Tn) ⊇ C ⊇ U , it holds that (∀z ∈ U)(∀n ∈ N)

‖xn+1 − z‖2

≤ ‖xn + βnyn − z‖2 − κ‖xn+1 − (xn + βnyn)‖2

= ‖xn − z‖2 + 2βn〈xn − z,yn〉+ β2
n‖yn‖2

− κ
(‖xn+1 − xn‖2 + 2βn〈yn,xn − xn+1〉+ β2

n‖yn‖2
)

(i)

≤ ‖xn − z‖2 + 2βn〈xn − z,yn〉+ β2
n‖yn‖2

− κ
(‖xn+1 − xn‖2 + 2βn〈yn,xn − xn+1〉

)
(ii)

≤ ‖xn − z‖2 + 2βn‖xn − z‖‖yn‖+ β2
n‖yn‖2

− κ‖xn+1 − xn‖2 + 2κβn‖yn‖‖xn − xn+1‖
= ‖xn − z‖2 − κ‖xn+1 − xn‖2

+ 2βn‖yn‖ (‖xn − z‖+ κ‖xn − xn+1‖) + β2
n‖yn‖2,

where (i) follows from nonnegativity of βn‖yn‖ and (ii) is
a two-fold application of the Cauchy-Schwartz inequality. By
Proposition 1, (xn)n∈N is quasi-Fejér of Type-I relative to C,
so Fact 6 ensures that (xn)n∈N is bounded. Boundedness of
(xn)n∈N, (yn)n∈N andU , guarantee the existence of some r > 0
such that (∀n ∈ N)(∀z ∈ U) ‖xn − z‖+ κ‖xn − xn+1‖ ≤ r
and (∀n ∈ N) ‖yn‖ ≤ r. Consequently we can write

‖xn+1−z‖2 ≤ ‖xn−z‖2−κ‖xn+1−xn‖2 + βnr
2 (2 + βn)

≤ ‖xn − z‖2 − κ‖xn+1 − xn‖2 + βnr
2 (2 + b) ,

where we defined b :=
∑

n∈N βn. Therefore, defining c :=
r2(2 + b) and (γn)n∈N := (cβn)n∈N ∈ �1+(N) yields the desired
result. �

C. Proof of Lemma 1

The following proof follows line by line the proof in [17,
Lemma 1], while accounting for quasi-Fejér monotonicity (in-
stead of Fejér monotonicity as in [17]).

It is sufficient to show that (PV(xn))n∈N is a Cauchy se-
quence. To do so, we first show that there exists (γn)n∈N ∈
�1+(N) such that (∀n ∈ N)

2ε‖PV(un)−PV(un+1)‖≤‖un−x0‖2−‖un+1−x0‖2+γn.
(20)

If PV(un) = PV(un+1) for some n ∈ N, quasi-Fejér mono-
tonicity of (un)n∈N ensures that (20) holds for thisn. Therefore it
is sufficient to consider n ∈ N such that PV(un) 
= PV(un+1).
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In this case, we have x0 + ε PV(un)−PV(un+1)
‖PV(un)−PV(un+1)‖ ∈ C ∩ V , thus

by Type-I quasi-Fejér monotonicity of (un)n∈N there exists
(δn)n∈N ∈ �1+(N) such that∥∥∥∥x0 + ε

PV(un)− PV(un+1)

‖PV(un)− PV(un+1)‖ − un+1

∥∥∥∥
≤
∥∥∥∥x0 + ε

PV(un)− PV(un+1)

‖PV(un)− PV(un+1)‖ − un

∥∥∥∥+ δn.

Squaring and expanding the above inequality yields

‖x0−un+1‖2+2ε

〈
PV(un)−PV(un+1)

‖PV(un)−PV(un+1)‖ ,x0−un+1

〉
+ε2

≤‖x0−un‖2+2ε

〈
PV(un)−PV(un+1)

‖PV(un)−PV(un+1)‖ ,x0−un

〉
+ε2

+ 2δn

∥∥∥∥x0 + ε
PV(un)− PV(un+1)

‖PV(un)− PV(un+1)‖ − un

∥∥∥∥+ δ2n.

By rearranging and applying the triangle inequality, we obtain

2ε
〈PV(un)− PV(un+1),un − un+1〉

‖PV(un)− PV(un+1)‖
≤ ‖x0 − un‖2 − ‖x0 − un+1‖2

+ δn

(
2

∥∥∥∥x0 + ε
PV(un)− PV(un+1)

‖PV(un)− PV(un+1)‖ − un

∥∥∥∥+ δn

)

≤‖x0−un‖2−‖x0−un+1‖2+δn (2 ‖x0−un‖+2ε+δn) .

Since (un)n∈N is quasi-Fejér monotone with respect to C and
x0 ∈ C, the sequence (‖x0 − un‖)n∈N converges (see Fact 6).
Therefore (∃r > 0) (∀n ∈ N) ‖x0 − un‖ < r. By defining
a := (2r + 2ε+

∑
n∈N δn) we obtain a sequence (γn)n∈N =

(aδn)n∈N ∈ �1+(N) such that

2ε
〈PV(un)− PV(un+1),un − un+1〉

‖PV(un)− PV(un+1)‖
≤ ‖x0 − un‖2 − ‖x0 − un+1‖2 + γn.

From firm nonexpansivity of PV (see Definition 2) we have

0 ≤ ‖PV(un)− PV(un+1)‖

≤ 〈PV(un)− PV(un+1),un − un+1〉
‖PV(un)− PV(un+1)‖ ,

which proves (20). Since (∀n ∈ N) γn ≥ 0, the inequality in
(20) implies (∀n ∈ N)(∀k ∈ N)

2ε‖PV(un)− PV(un+k)‖

≤ ‖un − x0‖2 − ‖un+k − x0‖2 +
∞∑
i=n

γi.

Moreover, since (‖un − x0‖)n∈N converges and (γn)n∈N ∈
�1+(N), (∀δ > 0) (∃N ∈ N) (∀n ≥ N) (∀k ∈ N)

2ε‖PV(un)− PV(un+k)‖

≤ ‖un − x0‖2 − ‖un+k − x0‖2 +
∞∑
i=n

γi < δ,

which shows that (PV(un))n∈N is a Cauchy sequence. �

D. Proof of Theorem 1

The following proof follows very closely the proof in [17],
extending the result in [17] to quasi-Fejér monotone sequences.
A more detailed proof can be found in [51, Sec. 2.2].

According to Lemma 1, the sequence (PW(un))n∈N
converges strongly a point in W . Hence we can de-
fine v̂ := limn→∞ PW(un) and e ∈ H satisfying W = {x ∈
H | 〈e,x− v̂〉 = 0} and ‖e‖ = 1. Moreover, according to
Fact 6, the sequence (‖un − z‖)n∈N converges for all z ∈
C, so we can define a := limn→∞ ‖un − PC∩W(v̂)‖ and
ρ :=

√
a2 − ‖PC∩W(v̂)− v̂‖2. Note that by nonexpansivity

of PW we have a ≥ limn→∞ ‖PW(un)− PC∩W(v̂)‖ = ‖v̂ −
PC∩W(v̂)‖, so ρ is well-defined.

Now we apply the same geometric arguments as in [17,
Th. 1], with the slight difference that we replace the
set S(δ1,δ2) := {x ∈ H | ‖PW(x)− v̂‖ ≤ δ1, a ≤ ‖x−
PC∩W(v̂)‖ ≤ a+ δ2} byS′

(δ1,δ2)
:= {x ∈ H | ‖PW(x)− v̂‖ ≤

δ1, |‖x− PC∩W(v̂)‖ − a| ≤ δ2} to account for quasi-Fejér
monotonicity (instead of Fejér monotonicity) of (un)n∈N. As
in [17], we deduce the existence of sufficiently small δ1 > 0
and δ2 > 0 such that S′

(δ1,δ2)
⊂ B(ε) := B1(ε) ∪ B2(ε),

where B1(ε) := {x ∈ H | ‖x− (v̂ + ρe)‖ ≤ ε} and
B2(ε) := {x ∈ H | ‖x− (v̂ − ρe)‖ ≤ ε} for arbitrary fixed
ε ∈ (0, ρ/2).

Since limn→∞ ‖PW(un)− v̂‖ = 0 and limn→∞ ‖un −
PC∩W(v̂)‖ = a, there exists n1 ∈ N such that

(∀n ≥ n1) un ∈ S′
(δ1,δ2)

⊂ B(ε).
Moreover, by (3), there exists n2 ∈ N such that

(∀n ≥ n2) ‖un − un+1‖ < 2ε,

which ensures the unique existence of i ∈ {1, 2} satisfying

(∀n ≥ n2) un ∈ Bi(ε).

This implies the strong convergence of (un)n∈N to either v̂ + ρe
or v̂ − ρe. �

E. Proof of Theorem 2

1) Note that (∀n ∈ N) lev≤0Θn 
= ∅ by assumption. Hence
by Fact 3, (∀n ∈ N) the mapping Tn is quasi-
nonexpansive. According to Proposition 1, the sequence
(xn)n∈N is quasi-Fejér monotone of Type-I relative to Ω.
This in turn implies that (xn)n∈N is bounded (see Fact 6).

2) Introducing the shorthand (∀n ∈ N) zn := xn + βnyn

and

Φn =

{
λn

Θn(zn)
‖Θ′

n(zn)‖2Θ
′
n(zn) if Θ′

n(zn) 
= 0,

0 otherwise
(21)

we can write (∀n ∈ N)(∀xn ∈ K) (∀z ∈ Ω)

‖xn+1 − z‖2 = ‖PK(zn −Φn)− PK(z)‖2
(i)

≤ ‖xn + βnyn −Φn − z‖2
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= ‖xn − z‖2 + 2〈βnyn −Φn,xn − z〉
+ ‖βnyn −Φn‖2

= ‖xn − z‖2 + 2〈βnyn −Φn,xn − z〉
+ β2

n‖yn‖2 − 2〈Φn, βnyn〉+ ‖Φn‖2

= ‖xn − z‖2 − 2〈Φn,xn + βnyn − z〉
+ 2βn〈yn,xn − z〉+ β2

n‖yn‖2 + ‖Φn‖2
(ii)

≤ ‖xn − z‖2 − 2〈Φn, zn − z〉+ ‖Φn‖2

+ 2βn‖yn‖‖xn − z‖+ β2
n‖yn‖2

where (i) follows from nonexpansivity of PK, and (ii) is
an application of the Cauchy-Schwarz inequality. Since
(xn)n∈N and (yn)n∈N are bounded, for any bounded sub-
setU ⊂ Ω there exists r > 0 such that (∀z ∈ U) (∀n ∈ N)
‖xn − z‖ ≤ r and ‖yn‖ ≤ r. Hence by defining c :=
(2r2 + r2

∑
n∈N βn) and (γn)n∈N := (cβn)n∈N we have

(∀z ∈ U)
‖xn+1 − z‖2 ≤ ‖xn − z‖2 − 2 〈Φn, zn − z〉

+ ‖Φn‖2 + 2βnr
2 + β2

nr
2

≤ ‖xn − z‖2 − 2 〈Φn, zn − z〉
+ ‖Φn‖2 + γn.

If Θn(zn) = 0 or Θ′
n(zn) = 0, (21) yields Φn = 0,

whereby

‖xn+1 − z‖2 ≤ ‖xn − z‖2 + γn. (22)

Otherwise, i.e., ifΘn(zn) 
= 0 andΘ′
n(zn) 
= 0, it follows

from (1) that

‖xn+1 − z‖2

≤ ‖xn − z‖2 − 2λn
Θn(zn)

‖Θ′
n(zn)‖2

〈Θ′
n(zn), zn − z〉

+ λ2
n

Θn(zn)
2

‖Θ′
n(zn)‖2

+ γn

≤ ‖xn − z‖2 − 2λn
Θn(zn)

‖Θ′
n(zn)‖2

(Θn(zn)−Θn(z))

+ λ2
n

Θn(zn)
2

‖Θ′
n(zn)‖2

+ γn

= ‖xn − z‖2

− λn

(
2

(
1− Θn(z)

Θn(zn)

)
− λn

)
Θ2

n(zn)

‖Θ′
n(zn)‖2

+ γn.

(23)

Since (∀n ∈ N) λn ∈ [ε1, 2− ε2] and (∀n ∈ N)(∀z ∈
U ⊂ Ω) Θn(z) = 0, we have

λn

(
2

(
1− Θn(z)

Θn(zn)

)
− λn

)
≥ ε1ε2.

Hence, by defining a sequence

(∀n ∈ N) cn :=

{
0 if Θ′

n(zn) = 0

ε1ε2
Θ2

n(zn)
‖Θ′

n(zn)‖2 otherwise,
(24)

we can summarize (22) and (23) as

(∀n ∈ N) ‖xn+1 − z‖2 ≤ ‖xn − z‖2 − cn + γn. (25)

Because (1) ensures that Θ′
n(x) = 0 ⇒ Θn(x) = Θ�

n =
0, it is sufficient to consider the case Θ′

n(zn) 
= 0. More-
over, if this case occurs finitely many times, there ex-
ists N0 such that (∀n ≥ N0) Θ�

n = 0. Thus it remains
to show that limk→∞ Θnk

(znk
) = 0, where (nk)k∈N is

the subsequence of (n)n∈N comprised of all elements
of the infinite set J := {n ∈ N | !Θ′

n(x) 
= 0}. Accord-
ing to Fact 4, (‖xn − z‖2)n∈N converges and (cn)n∈N
is summable, whereby

∑
n∈J ε1ε2

Θ2
n(zn)

‖Θ′
n(zn)‖2 < ∞. More-

over, since (∀n ∈ J ) ε1ε2
Θ2

n(zn)
‖Θ′

n(zn)‖2 ≥ 0, it follows that

lim
k→∞

ε1ε2
Θ2

nk
(znk

)

‖Θ′
nk
(znk

)‖2 = 0.

Therefore, boundedness of (Θ′
n(xn + βnyn))n∈N ensures

that limn→∞ Θn(xn + βnyn) = 0.
3) It holds by assumption in (5) that (∀n ∈ N) K ∩

lev≤0Θn 
= ∅. Therefore, according to Fact 3, the map-
ping Tn in (4) is (1− λn

2 )-attracting quasi-nonexpansive.
Since the set U is bounded and (∀n ∈ N) λn ≤ 2− ε2,
Proposition 2 implies that (∃(γn)n∈N ∈ �1+(N))(∀z ∈ U)
ε2
2
‖xn+1 − xn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + γn.

Consequently, since (xn)n∈N is quasi-Fejér of Type-I rela-
tive toΩ (see (a)), Theorem 1 guarantees that the sequence
(xn)n∈N converges strongly to a point û ∈ H. More pre-
cisely, it holds that û ∈ K, because (xn)n∈N is a sequence
in the closed set K. Since (βnyn)n∈N are bounded per-
turbations, the sequence (zn := xn + βnyn)n∈N satisfies
limn→∞ zn = limn→∞ xn = û. By assumption (ii) there
exists R > 0 such that (∀n ∈ N) ‖Θ′

n(û)‖ ≤ R. Thus we
can use Fact 1 and the Cauchy-Schwartz inequality to
obtain

0 ≤ Θn(û) ≤ Θn(zn)− 〈zn − û,Θ′
n(û)〉

≤ Θn(zn) +R‖zn − û‖ → 0.

4) The proof is identical to the proof of [17, Th. 2(d)]. �
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M. Yukawa, “Kernel-based adaptive online reconstruction of coverage
maps with side information,” IEEE Trans. Veh. Technol., vol. 65, no. 7,
pp. 5461–5473, Jul. 2016.

[25] K. Slavakis, S. Theodoridis, and I. Yamada, “Online Kernel-based classifi-
cation using adaptive projection algorithms,” IEEE Trans. Signal Process.,
vol. 56, no. 7, pp. 2781–2796, Jul. 2008.

[26] R. L. G. Cavalcante, I. Yamada, and B. Mulgrew, “An adaptive projected
subgradient approach to learning in diffusion networks,” IEEE Trans.
Signal Process., vol. 57, no. 7, pp. 2762–2774, Jul. 2009.

[27] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Adaptive robust dis-
tributed learning in diffusion sensor networks,” IEEE Trans. Signal Pro-
cess., vol. 59, no. 10, pp. 4692–4707, Oct. 2011.

[28] B.-S. Shin, M. Yukawa, R. L. G. Cavalcante, and A. Dekorsy, “Distributed
adaptive learning with multiple kernels in diffusion networks,” IEEE Trans.
Signal Process., vol. 66, no. 21, pp. 5505–5519, Nov. 2018.

[29] R. L. G. Cavalcante, S. Stańczak, D. Schupke, and J. Klaue,
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Sławomir Stańczak (Senior Member, IEEE) studied
electrical engineering with specialization in control
theory at the Wroclaw University of Technology,
Wroclaw, Poland, and the Technical University of
Berlin (TU Berlin), Berlin, Germany. He received the
Dipl.-Ing. degree and the Dr.-Ing. degree (summa cum
laude) in electrical engineering from the TU Berlin,
in 1998 and 2003, respectively, and the Habilitation
degree (venialegendi) in 2006. Since 2015, he has
been a Professor of network information theory at the
TU Berlin and the Head of the Wireless Communica-

tions and Networks Department, Fraunhofer Institute for Telecommunications,
Heinrich Hertz Institute (HHI). Prof. Stanczak has been involved in research
and development activities in wireless communications since 1997. In 2004 and
2007, he was a Visiting Professor at the RWTH Aachen University, Aachen,
Germany and in 2008, he was a Visiting Scientist at Stanford University,
Stanford, CA, USA. He is a co-author of two books and more than 200
peer-reviewed journal articles and conference papers in the area of information
theory, wireless communications, signal processing and machine learning. Prof.
Stanczak received research grants from the German Research Foundation and
the Best Paper Award from the German Communication Engineering Society
in 2014. He was a Co-chair of the 14th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC 2013). Between
2009 and 2011, he was an Associate Editor of the European Transactions for
Telecommunications (information theory) and an Associate Editor of the IEEE
TRANSACTIONS ON SIGNAL PROCESSING between 2012–2015 and the Chair of
the ITU-T Focus Group on Machine Learning for Future Networks including 5G
from 2017–2020. Since 2020, Prof. Stanczak has been the Chairman of the 5G
BERLIN association and an Editor of the IEEE JOURNAL ON SELECTED AREAS

IN COMMUNICATIONS for the special issue Machine Learning in Communica-
tions and Networks. Since 2021 he has been a Coordinator of the 6G Research
& Innovation Cluster and the flagship project CampusOS.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


