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Abstract—The Cramér-Rao bound (CRB), a well-known lower
bound on the performance of any unbiased parameter estimator,
has been used to study a wide variety of problems. However, to
obtain the CRB, requires an analytical expression for the likelihood
of the measurements given the parameters, or equivalently a precise
and explicit statistical model for the data. In many applications,
such a model is not available. Instead, this work introduces a novel
approach to approximate the CRB using data-driven methods,
which removes the requirement for an analytical statistical model.
This approach is based on the recent success of deep generative
models in modeling complex, high-dimensional distributions. Us-
ing a learned normalizing flow model, we model the distribution
of the measurements and obtain an approximation of the CRB,
which we call Generative Cramér-Rao Bound (GCRB). Numerical
experiments on simple problems validate this approach, and ex-
periments on two image processing tasks of image denoising and
edge detection with a learned camera noise model demonstrate its
power and benefits.

Index Terms—Generative models, normalizing flows, CRB,
parameter estimation.

I. INTRODUCTION

THE Cramér-Rao Bound (CRB) is a lower bound on the
variance of any unbiased parameter estimator [2], [3], [4].

It has been used in a wide variety of estimation problems such
as DOA [5], TDOA [6], etc. The CRB enables to understand
the fundamental limits in a given parameter estimation prob-
lem, regardless of the algorithm used. However, to obtain an
applicable CRB, it is required to have an analytical expression
for the likelihood of the measurements given the parameters,
or equivalently a precise and explicit statistical model for the
measurements. In many applications, such a model is not avail-
able. Examples include device-specific noise statistics, such as
in image sensors [7], or radio frequency communications with
jamming [8], or unknown channel characteristics [9].
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Recently, generative models have shown state-of-the-art re-
sults in modeling complex, high-dimensional data distribution
from images [10], [11], voice [12], image noise [7] and commu-
nications channels [9]. In this work, we suggest to use generative
models to learn the measurement distribution from data. Then,
using this generative model, we obtain an approximation to the
CRB. We call this approach a Generative Cramér-Rao Bound
(GCRB) and show conditions under which the GCRB accu-
rately approximates the CRB. Specifically, we use a normalizing
flow [13], [14] to learn a generative model for the measurement
distribution. This is used, in turn, to generate samples of the
gradient of the log-likelihood and obtain, as an empirical mean,
an estimate of the Fisher Information Matrix (FIM). We refer to
this estimate as a Generative Fisher Information Matrix (GFIM).
Finally, by inverting the GFIM, we obtain the GCRB.

The GCRB enables approximation of the CRB in cases when
the measurement distribution is completely unknown.1 To assess
the approximation quality we provide three theoretical bounds:
i) a bound on the GFIM error due to imperfect learning in
terms of two well-known measures of the discrepancy between
probability distributions (Total Variation Distance and Fisher
Relative Information); ii) a bound on the error in the GCRB due
to the use of an empirical mean to estimate the GFIM from a finite
number of samples generated by the normalizing flow model;;
and iii) a bound on the relative error of the GCRB, combining
the effects learning and sampling errors.

To validate the GCRB, we examine two simple examples
of parameter estimation with Gaussian and non-Gaussian mea-
surement distributions, respectively. First, we show analytically
that the GCRB and the CRB produce the same results under
optimal conditions, i.e., assuming an invertible generative model
that produces the exact measurement distribution. Second, we
illustrate a realistic setup where we train a standard normalizing
flow on each of the two measurement distributions to evaluate
its GCRB and compare it to the corresponding CRB.

Then, to demonstrate the value of the GCRB, we use two
examples from image processing: image denoising, and edge
position detection, in the presence of realistic, camera-specific
noise. We model the camera noise using a recently published
normalizing flow model NoiseFlow [7]. With these examples,

1Our approach is somewhat related to the misspecified Cramér -Rao bound
(MSCRB) [15] in that the MSCRB too can be evaluated without knowledge of
the underlying true distribution by using data samples. However, the MSCRB
provides a bound on the accuracy of estimating parameters in an assumed (mis-
pecified) model, using measurements taken from an actual unknown distribution.
Instead, we aim to determine, from data, the true model and the bound on
parameter estimates in the true model.
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we show two main benefits of the GCRB: (1) a lower bound
for image denoising for several cameras, which provides a
device-specific lower bound; and (2) we compare the GCRB
lower bound on the estimation of the position and width param-
eters of an edge in an image corrupted by camera noise to the
CRB that would be obtained using two popular noise models:
white Gaussian, and Noise Level Function (NLF) noises. This
experiment demonstrates that the analytical CRB with specific
assumed noise models (such as the white Gaussian or even
the refined NLF noise models) cannot capture the complex
actual noise of image sensors and its effect on image processing
performance, which is, however, successfully captured by the
proposed GCRB.

The main contributions of this paper are the following.
� We introduce a Generative Cramér-Rao Bound - a data-

driven approach to approximate the CRB, eliminating the
need for an analytical statistical data model.

� We demonstrate the benefit of the GCRB on two real-world
problems of image denoising and edge detection.

� We evaluate the approximation quality (between the CRB
and the GCRB) using two simple measurement distribu-
tions.

� We provide a theoretical bound on the GCRB error due to
empirical sampling and learning error.

In the spirit of reproducible research, we make the code and
trained models of the generative Cramér-Rao bound available
online [16].

The paper is organized as follows: the Generative Cramér-Rao
Bound is developed in Section II followed by an analysis of
its theoretical properties in Section III. A brief overview of
normalizing flows is in Section IV. In Section V we present a set
of parameter estimation examples, including simple parameter
estimation in Gaussian and Non-Gaussian noise, and image
processing with device-specific noise. The experimental results
for the GCRB are described in Section VI, and Section VII pro-
vides discussion and conclusions. Section VIII provides detailed
proofs of the theoretical results of this paper. Appendices are
included in the online Supplementary Material.

II. GENERATIVE CRAMER-RAO BOUND

We introduce the Generative Cramér-Rao Bound (GCRB),
a data-driven approach to approximate the Cramér-Rao Bound
(CRB). We begin with the measurements model, the classical
CRB, and problem statement. Then, we introduce our method
to obtain the Generative Fisher Information Matrix (GFIM) and
the GCRB using an invertiable generative model.

A. Notation

Lower-case italics a and boldface a indicate a scalar and a
vector, respectively, with ‖a‖2 denoting the l2 norm. The i-th
element of vector a is indicated by [a]i. Upper-case boldface
A indicates a matrix, with its trace, determinant, transpose,
Frobenius norm and spectral norm (largest singular value) de-
noted by Tr(A), detA, AT , ‖A‖F, and ‖A‖, respectively. An
identity matrix of size k × k is denoted by Ik. For symmetric
matrix A the notations A � 0 (or A � 0) mean that A is

positive-definite (or positive semi-definite). For symmetric A
and B the inequality A � B mean that A−B � 0.

B. Data Model and Problem Statement

Consider a data model described by a random mapping, also
known as a “channel,” producing a random measurement R(θ)
from a deterministic input θ. The channel is fully characterized
by the probability density function (PDF) pR(r;θ). Let θ ∈ R

k

be a parameter vector, R ∈ R
d the measurement vector, and

pR(·;θ) : Rd −→ R
+ the probability density function of R for

a given parameter value θ. The CRB is specified in terms of the
log-likelihood (NLL) of R given θ

LR (θ) � log pR (r;θ)

and the corresponding Fisher information matrix (FIM)

FR (θ) � ER

[
∇θLR (θ)∇θLR (θ)T

]
, (1)

where ER[] denotes the expectation with respect to R. For the
CRB to apply, we assume that appropriate regularity condi-
tions [3], [17] hold. We list below those to which we appeal in
this paper explicitly, with the understanding that the remaining
regularity conditions hold too.

Assumptions II.1: pR(r;θ) satisfies the following conditions:

A.1 For all θ ∈ Θ, where Θ is an open set, the densities pR(r;θ)
have a common support Υ = {r : pR(r;θ) > 0} ⊆ R

d that
is independent of θ.

A.2 For any r ∈ Υ and θ ∈ Θ the derivative (gradient)
∇θpR(r;θ) with respect to θ exists and is finite.

A.3 For all θ ∈ Θ, the FIM is positive definite, FR � 0.

Let θ̂(R) be an unbiased estimator ofθ from the measurement
R(θ) that satisfies ER[‖θ̂(R)‖22] <∞. Then the covariance
matrix of the estimation error of any such estimator of θ satisfies
the so-called information inequality

ER

[(
θ̂(R)− θ

)(
θ̂(R)− θ

)T
]
� CRBR (θ) � [FR (θ)]−1 .

(2)

We wish to determine CRBR(θ) when the channel pdf
pR(r;θ) is unknown, and we are instead given representative
data samples. We define this problem as follows.

Problem 1: LetΘ ⊆ R
k be an open set. Assume that pR(r;θ)

and p(θ) satisfy Assumptions II.1 and II.2. Given a data setD =
{θi, ri}li=1 of l channel input-output samples that are indepen-
dent and identically-distributed (i.i.d) as ri ∼ pR(ri;θi),θi ∼
(θ), obtain an approximation to the Cramér-Rao lower bound on
the estimation of parameter θ ∈ Θ from the measurement R(θ):

CRBR (θ) ∀θ ∈ Θ.

The additional assumptions indicated above in Problem 1 are
the following.

Assumptions II.2:

A.4 Θ is bounded set.
A.5 p(θ) > εΘ > 0 ∀θ ∈ Θ
A.6 Υ is connected set.
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Assumptions II.1 are required in Problem 1 for the validity
of the information inequality. Assumptions II.2 facilitate the
training of the normalizing flow and generator. Specifically, A.6
facilitates the universal approximation by the generator; and
A.4 and A.5 enable all θ ∈ Θ to be present in the training set
with some non-vanishing probability, and limit the degree of
generalization to unseen θ required of the generator. Note that
whileθ is a deterministic unknown parameter for the purposes of
the CRB, p(θ) describes the sampling distribution of the training
set D. We will address these assumptions where relevant.

C. Method

We address Problem 1 with a two-stage approach. In the
first stage, we train a conditional normalizing flow (invertible
neural network) that learns the distribution of the measurements.
Training of normalizing flows is a well-studied subject, and
we only provide a short overview in Section IV. In the second
stage, we obtain an approximation of the CRB from the trained
conditional normalizing flow.

In the rest of this section, we describe how to approximate the
CRB using a trained conditional normalizing flow. Let ν(γ;θ)
be a trained conditional normalizing flow with conditioning
input θ and data input γ. Then G(z;θ), the inverse of ν with
respect to γ, is a conditional generator with conditioning input
θ and random input Z with known and tractable distribution
(usually Z ∼ N (0, I)), producing the output:

Γ (θ) = G (Z;θ) . (3)

WhileG is usually obtained directly from ν by a simple transfor-
mation and does not require separate training (see Section IV),
we refer to G as a trained generator because it is obtained from
the trained normalizing flow ν. We assume (in a sense soon to be
made precise) that the trained generator simulates the random
measurement process R(θ) accurately, i.e. Γ(θ) has the same
distribution as R(θ).

We make the standard assumption that for each θ, G(·;θ) :
R

d �→ R
d is a bijection, i.e., it has an inverse ν(·;θ), and that

both are differentiable functions, that is, for each θ, the mapping
G(·;θ) is a diffeomorphism. Furthermore, for reasons explained
below, we strengthen the differntiability assumption to G ∈ C2,
that is the first and second order derivatives, including the mixed
derivative of G w.r.t Z and θ exist and are continuous. A trained
G is a deterministic function of θ and Z, implemented as a
neural network G(·;θ) that is invertible in its first parameter.
Thanks to the randomness of Z, the generative model (3) is a
random mapping from θ to Γ(θ).

It is important to note that when the measurement distribution
is not continuous (e.g., quantized measurement), a different
approach is needed for learning the CNF. The most straightfor-
ward approach is to add a prepossessing stage such dequantiza-
tion [13], [18] making the measurement distribution continuous.
We used this approach to apply the GCRB to the problem of
frequency estimation from quantized measurements [19]. An
alternative approach can be to use a CNF built for discrete data

distribution [20]. However, the focus of this work is on contin-
uous measurements, leaving extensions to discrete distributions
for future work.

It follows, using the standard formula of transformation
of random variables, that the probability density function
of Γ(θ) is

pΓ (γ;θ) = pZ (ν (γ;θ)) |detJν (γ;θ)| , (4)

where Jν(γ;θ) =
∂ν(γ;θ)

∂γ is the Jacobian matrix of the trans-
formation ν(γ;θ) with respect to γ. Since both G and ν are
known functions and the pdf of Z is known (standard normal),
in principle, the pdf pΓ(γ;θ) can be determined.

Given the trained normalizing flow ν and the corresponding
generator G, we compute the GCRB as follows. First using (4)
we determine (as detailed in Appendix A1) the so-called score
vector

sθ (z) � ∇θ log pΓ (γ;θ)|γ=G(z;θ)

= ∇θ log [pZ (ν (γ;θ)) |detJν (γ;θ)|]|γ=G(z;θ) (5)

=
∂ν (γ;θ)

∂θ

T
∣∣∣∣∣
γ=G(z;θ)

×∇z log pZ (z) + k (γ,θ)|γ=G(z;θ) ,

(6)

where [k (γ,θ)]i = Tr

(
J−1ν (γ;θ)

∂Jν (γ;θ)

∂ [θ]i

)
,

(7)

where ∂ν(γ;θ)
∂θ is the Jacobian matrix of ν w.r.t θ, and in (7)

∂Jν(γ;θ)
∂[θ]i

is a derivative matrix of the Jacobian matrix Jν w.r.t
the i-th component of θ. Note that to evaluate the score vector
for a given z bothG and ν are used. We therefore refer to (6) as a
hybrid score vector. As an alternative, we show in Appendix A2
an equivalent form that only uses the generator G.

To perform the computation in (6)–(7) we need to be able
to evaluate the following derivatives: ν w.r.t θ, ν w.r.t γ, and
a mixed second derivative of ν w.r.t to γ and θ. As elaborated
in Appendix A2, this motivates the differentiability conditions
imposed on G above. We also require that the log-likelihood of
the base distribution pz(z) be differentiable, which is satisfied
by the Gaussian distribution. Moreover, Jν should be invertible,
which is usually guaranteed by common layer structures in the
CNF literate by combining design of the layer and training loss
objective (23). The invertibility condition detJν(γ;θ) = 0 also
enables stable training.

As a practical matter, because ν and G are implemented as a
neural networks, the required derivatives of ν andGw.r.t to their
respective inputs γ, z and θ can be easily evaluated in common
deep learning frameworks such as PyTorch [21], TensorFlow
[48], etc.

Given the score vector, we compute the Generative Fisher
Information Matrix (GFIM):

FG (θ) � EZ

[
sθ (Z) sθ (Z)T

]
. (8)

In practice, to avoid integration in (8), the expected value with
respect toZ is estimated as an empirical mean by sampling from
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Fig. 1. Generative Cramér Rao bound using normalizing flow.

pZ . The result is an empirical Generative Fisher Information
Matrix (eGFIM) that is computed as

FG (θ) � 1

m

m∑
i=1

sθ (zi) sθ (zi)
T , (9)

using m samples zi ∼ pZ . Finally, we approximate the CRB
using the empirical estimate of the GCRB (eGCRB) GCRBG

associated with generator G by

GCRBG (θ) = FG (θ)−1 . (10)

Given the trained neural networks G and ν, the computation
of GCRBG for a given value of θ is illustrated in Fig. 1. It
involves m uses of the neural networks G (to generate γ) and ν
(to generate the various derivatives) and the simple computations
in (6)–(7), (9), and (10), so can be computationally cheap.

In the rest of this subsection, we address a modification of the
GCRB to improve the learning of the generator in the practical
situation of a finite training data set. Because some regions of
the measurement space Υ may have few or no training samples,
we need to bound the region Υ̂ where generated samples can be
trusted. We define this region by its assumed properties.

Assumptions II.3. (Trusted Region):

A.7 Υ̂ ⊆ Υ is a connected and closed and bounded (hence
compact) set.

A.8 Υ̂ is large enough that for some chosen εr ≥ 0∫
r ∈Υ̂

pR (r;θ) dr ≤ εr ∀θ ∈ Θ.

A.9 pR(r;θ) > ε > 0 ∀r ∈ Υ̂.

To ensure that the computation of the GCRB is performed
using a sample generated on the trusted region, we add an op-
tional trimming step that removes un-trusted generated samples
γ = G(z) ∈ Υ̂. The trimming step ensures that only values of
z that correspond to trusted γ ∈ Υ̂ are used in the computation
of GCRB. By Assumptions II.3 the effect of this trimming on
the approximation quality should be a negligible. Furthermore,
Assumption A.9 enables all r ∈ Υ̂ to be present in the training
set with some non-vanishing probability. Algorithm 1 describes
the evaluation of the eGCRB, with the trimming step included.

The trimming step, in the spirit of standard trimmed mean
computation in robust statistics [22], is a kind of outlier removal
step, which is a well-studied but also active field of research
(cf. [23], [24] and the references therein). We propose a simple
heuristic trimming criterion; a more refined criterion may im-
prove the eGCRB accuracy when only limited training data is

Algorithm 1: eGCRB Sampling.

Require: G, ν, B, r̂, m, θ
S← ∅
while |S| < m do
z ∼ pz(z)
γ = G(z;θ) � Generator Step
if γ ∈ Υ̂ then � Timming Step
ŝ = sθ(z) � Compute score vector (5).
S← S ∪ {ŝ} � Append to ŝ to score set.
end if

end while
FG(θ) =

1
m

∑
ŝ∈S ŝŝ

T . � Compute eGFIM
GCRBG(θ) = FG(θ)

−1 � Invert eGFIM to obtain
eGCRB

available. The trimming process consist of two steps. First, we
evaluate the mean r̄ and an upper bound B on the spread of r
in the training set D:

r̄ =
1

|D|
∑
i

ri,

B = max
i
‖ri − r̄‖ .

Then, the trusted set is defined as

Υ̂ = {γ ∈ Υ : ‖γ − r̄‖ ≤ B}.
This trimming is designed to exclude samples γ = G(z)

generated in regions where no training samples were available
to train the normalizing flow. This will reduce the requirement
of the normalizing flow and generator to extrapolate during
inference outside the coverage of the training set. Note that
thanks to the adaptivity of Υ̂ to the training set, as the size of the
training set |D| → ∞, the “unrepresented probability” vanishes:
εr → 0.

III. THEORETICAL PROPERTIES

This section addresses three questions: (i) What are the errors
introduced into the GFIM by learning the measurement distribu-
tion? (ii) What is the error introduced by using an empirical mean
eGFIM to estimate the GFIM? (iii) When does the approxima-
tion eGCRB to the CRB computed using the learned generative
model in the proposed approach converge to the correct CRB?
Our key assumption in (iii) will be that the generative model
is expressive enough and the training data set has sufficient
size and diversity of values of θ and R that the training is
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successful, resulting in a generative model that simulates the
random mapping R(θ).

A. Learning Error

In this part we address the error induced by replacing the
true measurement distribution pR by the learned distribution
pΓ with trimming of the generator, meaning that Υ̂ is a strict
subset of Υ. We account for the deviation between pΓ and pR on
their common support Υ̂

⋂
Υ, as well as on the truncated region

Υ \ Υ̂ where pΓ = 0.
Define

F̂G (θ) �
∫
Ẑ
sθ (z) sθ (z)

T pZ (z) dz, (11)

as the result of the GFIM calculation over the trimmed latent
variable set Ẑ = {z : G(z;θ) ∈ Υ̂}. We begin by introducing
bounds on the generated and the true score vectors.

Lemma III.1: Let sθ(z) be a score vector computed using a
trimmed and differentiable G ∈ C2 generator G and it’s inverse
ν. Then ‖sθ(z)‖2 ≤ Cs(θ) <∞ ∀θ ∈ Θ, ∀z ∈ Ẑ .

This result (proved in Section VIII-A) shows that the score
vector is bounded in 2-norm. Next, we introduce an additional
assumption, that the true measurement distribution too has a
bounded score vector.

Assumption III.1. (Bounded True Score Vector):

‖∇θLR (θ)‖2 ≤ CR (θ) <∞ ∀θ ∈ Θ, ∀r ∈ Υ. (12)

Note that this assumption is a slightly more restrictive version
of Assumption A.2.

Then we have our main results.
Theorem III.2. (GFIM Learning Errors): Let G be a normal-

izing flow trained on R ∼ pR, where pR has a bounded score
vector (Assumption III.1). Then∥∥∥FR (θ)− F̂G (θ)

∥∥∥ ≤ η (θ) ∀θ ∈ Θ, (13a)

η (θ) � 2C2
R (θ)TV (pR, pΓ;θ)

+ 2
(∥∥∥F̂G (θ)

∥∥∥ IF (pΓ, pR;θ)
)1/2

+ IF (pΓ, pR;θ)

(13b)

where

TV (pΓ, pR;θ) �
1

2

∫
Υ

|pΓ (r;θ)− pR (r;θ)| dr

is the total variation distance [25] between the PDFs pΓ and pR,
and

IF (pΓ, pR;θ) �
∫
Υ

pΓ (r;θ)

∥∥∥∥∇θ log

(
pΓ (r;θ)

pR (r;θ)

)∥∥∥∥
2

2

dr

is the Fisher relative information [26], [27] between pΓ and pR.
Theorem III.2 (which is proved in Section VIII-B) bounds the

error in learning the FIM in term of the total variation (TV) dis-
tance and the Fisher relative information between the true and the
learned measurement distributions, pR and pΓ. The TV distance
term captures both the trimming error and sample generation
error, whereas the Fisher relative information term accounts

for the errors in learning the derivative of log pR, namely the
score vector. Both TV(pΓ, pR;θ) and IF(pΓ, pR;θ) are non-
negative and vanish if and only ifpΓ(r;θ) = pR(r;θ) ∀r ∈ Υ.
Furthermore, both metrics are bounded; the TV distance by
definition, and the Fisher relative information is bounded as a
direct consequence of Lemma III.1 and Assumption III.1

The impact of the learning error on the GCRB is given by the
following corollary, where we use Assumption A.3, that the FIM
is positive definite, to provide conditions in terms of its strictly
positive smallest eigenvalue λmin(FR(θ)) > 0.

Corollary III.2.1: Suppose that in addition to the assumptions
in Theorem III.2, we have η(θ) < λmin(FR(θ)). Then

‖F̂G (θ)−1 ‖ ≤ [λmin(FR (θ))− η(θ)]−1 (14a)

‖CRBR (θ)− GCRB(θ)‖ = ‖FR (θ)−1 − F̂G (θ)−1 ‖
≤ ‖FR (θ)−1 ‖ · ‖F̂G (θ)−1 ‖ · η(θ)

(14b)
Note that (14a) in Corollary III.2.1 (which is proved in Sec-

tion VIII-C) is a guarantee that the GFIM is positive definite, i.e.,
the GCRB is finite, if the condition of the Corollary is satisfied.
The second result, bounds the deviation of the GCRB from the
CRB in terms of the FIM learning error.

To help further interpret Corollary III.2.1, consider the rel-
ative (normalized) learning error in the FIM, η(θ)

‖FR(θ)‖ . The

condition of the Corollary then becomes κ(FR(θ))
η(θ)
‖FR(θ)‖ < 1,

where κ(FR(θ)) � ‖FR(θ)‖ · ‖FR(θ)
−1‖ is the 2-norm con-

dition number of FR(θ) (which is also equal to the condition
number of CRBR(θ)). Hence, the requirement of the corollary
on the learning error η(θ) is easy to satisfy for a well-conditioned
FIM (or CRB), and becomes more demanding with increasing
condition number.

Next, consider the case of small learning error, η(θ)
‖FR(θ)‖ � 1.

Then, by standard arguments, (14b) yields

‖CRBR (θ)− GCRB(θ)‖
‖CRBR (θ) ‖ ≤ κ(FR (θ))

η(θ)

‖FR (θ) ‖ + ε3 (15)

where ε3 = O(( η(θ)
‖FR(θ)‖ )

2), that is, the inequality is dominated
by the first term on the right hand side, with the remainder
ε3 of second order in the relative FIM learning error η(θ)

‖FR(θ)‖ ,
and hence negligible. By (15), the relative error in the GCRB
is bounded by the relative GFIM learning error, scaled by the
condition number of the FIM. Again, the better the conditioning
of the FIM, the lower the sensitivity of the GCRB to the GFIM
learning error.

Furthermore, using (13b) to express the relative error in
learning the GFIM for the case of small learning error yields
the simplified expression

η (θ)

‖FR (θ) ‖ ≈ 2
C2

R (θ)

‖FR (θ) ‖TV (pR, pΓ;θ) + 2

√
ĨF (pΓ, pR;θ)

(16)
where ĨF(pΓ, pR;θ) � IF(pΓ, pR;θ)/‖FR(θ)‖ is the Fisher
relative information between pΓ and pR normalized by the
Fisher information for pR. Now all terms in (16) are dimen-
sionless and naturally normalized. (Recall that C2

R(θ) and
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‖FR(θ)‖ scale similarly with the magnitude of the true score
vector.)

B. Sampling Error

Here, we study the effects of finite number of samples in (9)
on the accuracy of the estimation of F̂G(θ), by deriving an upper
bound on the error.

Theorem III.3. (Sampling Error): Let FG(θ)
−1 be the

eGCRB computed using a trimmed generator G ∈ C2 and its
inverse ν – the corresponding normalizing flow, trained on
R. Assume that Assumptions II.3, III.1 hold, and F̂G(θ) �
0 ∀θ ∈ Θ, which implies that ‖F̂G(θ)

−1‖ ≤ CG(θ). Then
there exist absolute constants C1, C2 > 0 such that provided
that m > C1(1 + u)CG(θ)

2, for any u > 0 we have, with prob-
ability at least 1− exp(−u):∥∥∥GCRBG (θ)− F̂G (θ)−1

∥∥∥
F
≤ Bs (θ) , (17)

where Bs(θ) � C2‖F̂G(θ)
−1‖2Cs(θ)

2
√

1+u
m .

Theorem III.3 (proved in Section VIII-D) is based on a bound
for the precision matrix [28] and properties of the score vector.
This result shows that the deviation of the eGCRB from the
GCRB is bounded in terms of the norm of the generator score
vector the GCRB itself, and the number of samples. Importantly,
Theorem III.3 shows that the error decreases (at the best possible
rate) as the number m of samples increases.

C. Convergence of the eGCRB

To study the convergence of the eGCRB to the true CRB,
we first bound the relative error of approximating CRBR by
GCRBG(θ)due to both empirical mean and learning errors using
Theorems III.3 and III.2 and Corollary III.2.1. Then we discuss
the conditions under which the eGCRB convergence to the true
CRB.

Corollary III.3.1: Suppose the assumptions in Theorem III.2
and Assumptions II.3, III.1 hold, and κ(CRBR(θ))

η(θ)
‖FR(θ)‖ < 1.

Then ‖F̂G(θ)
−1‖ ≤ CG(θ) and there exist absolute constants

C1, C2 > 0 such that provided that m > C1(1 + u)CG(θ)
2, for

any u > 0 we have, with probability at least 1− exp(−u):

RE (θ) �
∥∥GCRBG (θ)− CRBR (θ)

∥∥
‖CRBR (θ)‖

≤
∥∥∥F̂G (θ)−1

∥∥∥ [
B̃s + η (θ)

]
, (18)

where

CG (θ) � ‖CRBR (θ) ‖
1− κ(CRBR (θ)) η(θ)

‖FR(θ)‖
, (19a)

B̃s (θ) � C2

∥∥∥F̂G (θ)−1
∥∥∥∥∥∥FR (θ)−1
∥∥∥Cs (θ)

2

√
1 + u

m
. (19b)

In Corollary III.3.1 (proved in Section VIII-E), we observe
that the relative error in approximating the CRB using the
proposed approach decreases with decreasing FIM learning

error and increasing number of samples used to compute the
empirical mean in the evaluation of the GFIM. Similar to the case
of Corollary III.2.1, the interpretation of the result is facilitated
by considering the case of normalized learning error bounded
by κR

η(θ)
‖FR(θ)‖ < 0.5, where κR � κ(CRBR(θ)). (This is only

slightly more stringent than the requirement in Corollary III.3.1.)
Then, as shown in Appendix D.1, the following exact bound
holds.

RE (θ) ≤ κR

(
4C2

C2
R (θ)

‖FR (θ) ‖

√
1 + u

m
+

η(θ)

‖FR (θ) ‖

)
(20)

The bound on the relative error in the eGCRB in (20) (which
is proved in Appendix D1), is dimensionless, and shows clearly
the effect of the condition number κR of the CRB, the number of
samples used to compute the empirical mean, and the normalized
FIM learning error.

The eGCRB relative error (20) consists of two terms. The
first is the sampling error, which can be made arbitrarily small
by using a large enoughm. The second term is the learning error,
which we address next.

Assumption III.2: [Existence of well-trained generator] Let
G be the set of all generators representable by the chosen
architecture of the normalizing flow network, and defineG∗ to be
an optimal generator in the sense that if Γ∗(θ) = G∗(Z;θ) then
Γ∗(θ) is distributed the same as the measurement distribution
R, that is, Γ∗(θ) ∼ pR(γ;θ) ∀θ ∈ Θ. Then we assume that:

G∗ ∈ G, (21)

and the dataset D is rich enough such that the training is
successful and results in G = G∗ which yields:

TV (pR, pΓ;θ) = 0, (22a)

IF (pΓ, pR;θ) = 0. (22b)

Two conditions are required for a well-trained generator
(Assumption III.2) to be realizable: (i) the set of generators G
representable by the chosen architecture of the normalizing flow
network contains the optimal generator G∗ (21); and (ii) the
generator can be trained to achieve this approximation using the
training data.

Assuming that Condition (i) holds, then Condition (ii) can be
satisfied, i.e., a well-trained generator is realizable on a trusted
region (Assumption II.3) in the limit of infinite training data set
if Assumptions A.1 and A.6 on the measurement distribution
pR(r;θ) and Assumption A.4 on the training set distribution are
satisfied. Recall that TV(pR, pΓ;θ) includes the trusted region
truncation error, which must vanish for TV(pR, pΓ;θ) = 0. This
happens automatically when the true measurement distribution
is bounded Υ̂ = Υ, or thanks to the proposed adaptive trimming
criterion in the limit of an infinite training set, εr −→ 0 as |D| −→
∞.

Moreover, Condition (i) can be addressed in several ways.
Available prior knowledge of the problem can be incorporated
into the chosen architecture of the normalizing flow (e.g., Noise-
Flow [7], SineFlow [19]) to help satisfy Condition (i). Because
the very notion of parameter estimation requires some modeling
of the measurements, such prior knowledge is typically available
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in parameter estimation problems. Furthermore, following the
standard practice in deep learning, one can increase the repre-
sentation power of the network by increasing its size and number
of trainable parameters. In the extreme case of no domain
knowledge, this involves reliance on the ability of NF to provide
a universal approximation.

However, the question of universal approximations is an active
research area, with recent results [14], [29], [30], [31], [32]
showing that for certain architectural choices and under some
additional assumptions, normalizing flows can provide universal
approximations with arbitrarily small error. As the currently
available universal approximation conditions are sufficient con-
ditions, we expect that ongoing research will result in a further
relaxation of the conditions and a larger variety of architectural
choices.

Finally, we combine Corollary III.3.1 (equivalently, (20)) with
Assumption III.2 to state that if G is well-trained, then the
eGCRB converges almost surely to the data CRB.

Theorem III.4:

GCRBG (θ)
m−→∞−−−−→ CRBR (θ) a.s

Proof: By Assumption III.2 η(θ) = 0, so that by Corol-
lary III.3.1 the eGCRB converges to the CRB as m→∞. To
establish the type of convergence, note that E[FG] = F̂G(θ) By
the strong Law of Large numbers FG(θ) in (9) converges to
its expected value, limm−→∞ FG(θ) = F̂G(θ) a.s. Finally, by
Theorem III.2 for η(θ) = 0 we have F̂G(θ) = FR(θ). Inverting
yields the result.

It follows that if Assumptions III.1 and III.2 hold then the
eGCRB converges to the CRB almost surely as m −→∞.

IV. NORMALIZING FLOWS

We use a normalizing flow [13], [14], a class of (invertiable)
neural networks to obtainG andν. Here, we give a brief overview
of the normalizing flows utilized in this paper. Specifically,
we will present conditional normalizing flow (CNF) where the
normalizing flow is conditioned on the input parameter θ. A
CNF transforms a random variable with a known distribution
(typically Normal) through a sequence of differentiable, in-
vertible mappings. Let Z1, . . .,Znl

be a sequence of random
variables that are related as Zi = Gi(Zi−1;θ), where for each
θ ∈ Θ the function Gi(·;θ) : Rd −→ R

d is a differentiable and
bijective, nl is the number of flow layers, and Z = Z0 a random
variable with a known and tractable probability density function
pZ : Rd −→ R. Then defining Γ � G(z0;θ) = Gnl

◦Gnl−1 ◦
. . . ◦G1(z0;θ) as a composition of the Gi, the transformation
of a random variables formula says that the probability density
function for Γ is

pΓ (γ;θ) = pZ (ν (γ;θ)) |detJν (γ;θ)| ,

= pZ (ν (γ;θ))

nl∏
j=1

∣∣detJj

(
γj ;θ

)∣∣ , (23)

where for each fixed θ, ν = ν1 ◦ ν2 ◦ . . . ◦ νnl
and νi are the

inverses of G and of Gi with respect to their first argument and
Jj(γ;θ) =

∂νj(γ;θ)
∂γ is the Jacobian of the jth transformation

νj with respect to its input. We denote the value of the jth

intermediate flow as γj � Gj ◦ · · · ◦G1(z0;θ) = νj+1 ◦ · · · ◦
νnl

(γ;θ) and γ = γnl
.

Density Learning: A CNF can be used directly for density
learning by finding parameters that minimize the negative log-
likelihood (NLL) over a set of samples where the likelihood is
given by (23). Given a dataset D (see Problem 1) and the trans-
formations G1, . . ., Gnl

parameterized by Ω = (ω1, . . ., ωnl
)

respectively, the negative log-likelihood is given by:

L (Ω) = −
∑
i

log (pZ (ν (ri;θi|Ω)))

−
∑
i

nl∑
j

log (|detJj (uij ;θi|Ω)|) . (24)

where uij = νj+1 ◦ · · · ◦ νnl
(ri;θ) denotes the intermediate

flow of the ith sample and the jth layer. Note that the first
term is the negative log-likelihood of the sample under the base
measure (latent distribution) and the second term is a differential
volume correction, which accounts for the change of differential
volume induced by the transformations.

We use a CNF based on the Glow [11] architecture, which
includes the following flow steps: Activation Normalization,
Affine Coupling, and so-called 1x1 convolution (an invertible
matrix operation). These flow steps transport the base distribu-
tion into the target distribution. However, we take the SRFlow
approach [33] for the insertion of the conditioning parameter
using the Affine Inject flow step that modifies the transforma-
tion according to the conditional parameter θ. Furthermore,
in some cases (e.g., in the non-Gaussian measurement exam-
ple of Section V-A2), a more complex modification of the
base distribution is required, and this is achieved by replacing
the Affine Coupling with a Cubic Spline Coupling flow [34].
The flow steps mentioned above are detailed in Appendix B.

V. MEASUREMENTS MODEL EXAMPLES

First, we present two simple examples in which we can
compute both the CRB and GCRB analytically and obtain an
optimal generator. Note that by “optimal” we mean that the gen-
erator distribution pΓ(r;θ) is identical to the data distribution
pR(r;θ), meaning that Assumption III.2 holds with G = G∗.
Then in the second part, we present a real-world measurement
model of cameras, which will be used to demonstrate some of
the benefits of the GCRB.

A. Simple Measurement Models

1) Linear Gaussian: Let

R(θ) = Aθ + V , (25)

where matrix A ∈ R
d×k with d > k and V ∼ N (0,Cvv) is

an additive zero-mean Gaussian noise with positive-definite
covarianceCvv ∈ R

d×d. Then the measurement is distributed as
R(θ) ∼ N (Aθ,Cvv), which provides a complete description of
the measurement channel. The CRB for θ coincides with the ex-
pression for the covariance of the linear unbiased minimum vari-
ance estimator and is given by [3] : CRBR(θ) = [ATC−1vvA]−1.
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Now we present an optimal generator for this example. Let
G(Z;θ) = Aθ + LZ, where Z1 ∼ N(0, I) and L is a square
root (e.g, the Cholesky) factor of Cvv , that is, LLT = Cvv .
Then, as easily verified, G is an optimal generator, because for
any θ the distributionG(Z) ∼ N (Aθ,Cvv) coincides with that
of R(θ). The inverse function of G, the normalizing flow, is
ν(γ;θ) = L−1(γ −Aθ). We compute the score vector of the
optimal generator and normalizing flow in Appendix E, which
yields

sθ (z) = −AT
(
L−1

)T
z, (26)

and the GFIM corresponding to the optimal generator obtained
using (8) isFG(θ) = EZ [A

T (L−1)TZZTL−1A]. Simplifying
and taking the inverse results in FG(θ)

−1 = GCRBG(θ) =
CRBR(θ). This confirms that, as expected, an optimal generator
will yield the same CRB on the parameter vector θ as the correct
distribution.

2) Scale Non-Gaussian: Here, we consider a scale model
with a non-Gaussian distribution. Consider the data model

r = yθ, (27)

whereθ ∈ R
+ is the desired parameter andy is a random variable

with the PDF

py(y) =
1√
2πσ2

3y2 · exp
(
− 1

2σ2
y6

)
. (28)

Then, as shown in Appendix F, the FIM of θ is FR(θ) =

18θ−2 and CRBR(θ) =
θ2

18 . We show in Appendix F1 that

Γ(θ) = G(z; θ) = θz
1
3 is an optimal generator, that is Γ(θ) ∼

pR,θ(r; θ). The inverse function of the optimal generator is the
normalizing flow ν(γ; θ) = (γθ )

3. We compute the score vector
of the optimal generator and normalizing flow in Appendix F2,
which yields

sθ (z) = −θ−13
(
1− z2

)
. (29)

Finally, the FIM of the optimal generator obtained using
(8) is FG(θ) = EZ [(θ

−13(1− Z2))2] = 18θ−2, where the last
equality follows by the Gaussian moment property. Hence
GCRBG(θ) = CRBR(θ). This example demonstrates that an
optimal generator yields the correct CRB on the parameter in
a non-Gaussian case.

B. Image Processing

We consider two classical image processing problems, how-
ever with a real-world learned measurement model of 4-channel
(RGGB) color image sensors using NoiseFlow [7], a normaliz-
ing flow that models camera noise. Using this learned model,
we obtain the GCRB for these two problems.

1) Image Denoising: Image denoising is a well-known prob-
lem in signal processing, however modeling camera noise is
a challenging task [35], [36]. Due to the difficulty of noise
modeling, it is impossible to compute an analytical lower bound
for the denoising performance on a realistic model.

The denoising problem is defined as follows. Denoting by H
a clean 4-channel (RGGB) image patch and by V the camera

Fig. 2. Edges in a clean image.

noise, the noisy image tensor is defined as

H̃ = H+V. (30)

Our goal is to provide a lower bound on the performance of
any unbiased estimator that estimates the clean image H from
the noisy image H̃. Under this model, denoting by Vec(T)
the vectorization of tensor T, R = Vec(H̃) is the measurement
vector and θ = Vec(H) is the parameter vector.

2) Edge Detection: Another interesting image processing
task is edge detection. Here we describe the edge model used
in this work. Consider a c-channel image of width h pixels,
and let Hijc = fijc(θ) be a vertical edge function that maps
a continuous-parameter vector θ = [θp, θw] of edge position
θp ∈ [0, h− 1] and width θw ∈ R

+, to the image color values
at horizontal and vertical pixel position i, j and image channel
c. The edge function is specified in terms of a horizontal color
scaling function si(θ) : ([0, h− 1],R+) −→ [0, 1] as

fijc (θ) =
(
phc − plc

) · si (θ) + plc,

where ph and pl are the vectors of RGGB pixel values for high
and low intensities, respectively. The color scaling function is
defined as

si (θ) = φ

(
θp − i

θw

)
,

where φ is the Sigmoid function φ(x) = 1
1+exp (x) . Images with

edges of different position and width following the model above
are shown in Fig. 2.

In this example we want to estimate the edge position θp
from a noisy image H̃. We compare the GCRB with NoiseFlow
to the CRB derived for two well-known analytical Gaussian
noise models: (i) i.i.d, or white Gaussian noise (WGN); and
(ii) independent noise with image-dependent intensity - the so-
called noise level function (NLF) noise model. The WGN model
(Vijc ∼ N (0, σ2)) with i.i.d noise in each channel of each pixel
and variance σ2 has CRB

CRBW (θ) =
σ2θ2w (

∑
i Mi (θ))

−1

h ‖ph − pl‖22
, (31)

where Mi(θ) = s2i (θ)(1− si(θ))
2

[
1 − θp−i

θw

− θp−i
θw

(θp−i)2
θ2
w

]
.

The NLF model with Vijc ∼ N (0, α2fijc(θ) + δ2), where
α and δ are the noise parameters, has CRB

CRBNLF (θ)
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Fig. 3. NoiseFlow output: clean and noisy images. (a) Different ISO levels, for Camera Type=zero (Apple). (b) Different cameras at ISO level 100.

=

⎛
⎝∑

i,j,c

(
phc − plc

)2
Mi (θ)

(α2fijc (θ) + δ2)2 θ2w

(
α2fijc (θ)+δ2 +

α2

2

)⎞⎠
−1

.

(32)

A detailed calculation of CRBs is given in Appendix G.
3) Camera Noise Model: Several recent works [7], [37] have

used a data-driven approach to model camera noise. We use
NoiseFlow [7] to model a realistic camera noise V ∼ pV(v;H)
and similarly to model the noisy image H̃ ∼ pH̃(h̃;H). To
obtain a noisy image flow, we cascade to NoiseFlow an Ad-
ditiveNoise Flow layer corresponding to (30), defined as

zn+1 = H+ zn. (33)

The inverse of (33) is given by zn = zn+1 −H and the log-
determinant term is zero. Note that the ability to incorporate a
signal model into the normalizing flow is a well-known advan-
tage, which has also been exploited in NoiseFlow [7].

NoiseFlow is trained using the Smartphone Image Denois-
ing Dataset (SIDD) [38]. The SSID dataset consists of 150
noisy and corresponding clean images captured in ten differ-
ent scenes, with five smartphone cameras of different brands,
under several lighting conditions and ISO (sensitivity) levels.
Specifically, NoiseFlow is trained on hp = 32× wp = 32 pixel
RGGB patches of clean image and noise H,V ∈ R

hp×wp×4.
Fig. 3 shows examples of clean images and the corresponding

noisy images generated by NoiseFlow at different ISO levels
and for different camera devices. They illustrate the strong ISO,
device, and image dependence of the noise, which cannot be
captured by an analytical model, thus precluding traditional
calculation of estimation bounds. Instead, using this learned
model, we obtain the GCRB for the two problems of image
denoising and edge position detection.

VI. EXPERIMENTAL RESULTS

This section presents a set of numerical experiments for
assessing, analyzing, and demonstrating the GCRB. In the first

set of experiments, we determine the quality of the approxi-
mation provided by the GCRB by evaluating the eGCRB on
the examples in Section V-A and comparing to the true, an-
alytically derived CRB. In the second set of experiments, we
study, for the linear estimation problem, the approximation error
of the eGCRB due to imperfect training, and due to the use
of the sample mean to estimate the expected value. For the
last two experiments, we present the usage of GCRB on the
real-world examples of image denoising and edge detection in
a device-dependent noise. Unless stated otherwise, we evaluate
the eGCRB using m = 64 K generated samples in the sample
mean in all experiments. In all experiments, the computation is
done using Nvidia 1080Ti GPU running white PyTorch [21].

A. Approximation Quality

We evaluate the accuracy of the approximation to the CRB
provided by the GCRB using two kinds of normalizing flows:
(i) the optimal flow, which satisfies the condition of perfectly
matched distribution as G∗ in Assumption III.2; and (ii) a
standard/learned normalizing flow (see Section IV), which is
trained using the dataset D.

Unless stated otherwise, we use the following parameters in
the training process of all experiments For training a normalizing
flow, we use the conditional negative log-likelihood (NLL) of the
training set (24) as the loss function. We train each normalizing
flow using a dataset of 200 k samples for 90 epochs with batch
size 64. We use the Adam optimizer [39] with learning rate
1e− 4 and parameters β1 = 0.9 and β2 = 0.999. At the end
of training, we obtain the learned normalizing flow ν and it’s
inverse (the generator) G and evaluate the eGCRB at several θ
values using Algorithm 1. The latent variable is chosen to bez ∼
N (0, I) in all examples. We begin by showing the approximation
quality in the two examples presented in Section V-A, and then
investigate the source of approximation error.

Linear Example: For the linear model (25) we used = 8,σv =
2.0 and k = 2. Hence θ ∈ R

2 and R(θi) ∈ R
8. We generate the

training dataset D in the following manner. First, we generate
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Fig. 4. Trace of CRB and eGCRB for the linear measurement model (25).

matrices A and L using a standard normal distribution, and use
the same two matrices to generate all the samples inD. For each
sample (θi, R(θi)) ∈ D, the parameter vector θi ∈ R

2 is drawn
i.i.d from a uniform distribution θi ∼ U [−2, 2]2, V i ∈ R

8 is
drawn i.i.d Normal V i ∼ N (0,Cvv) with Cvv = LLT , and
R(θi) ∈ R

8 is computed using (25). Using this dataset, we train
a normalizing flow with the architecture shown in Appendix C3,
obtaining ν and G.

We chose an architecture with invertible 1x1 convolution and
affine inject since it can represent an optimal generator and
satisfies the G ∈ C2 condition.

Then, for each value of θ of interest, we use the trained
generator to generate samples of the score vector, and compute
the eGFIM using (9), which yields, upon inversion, the eGCRB.
For comparison, we repeat the generation of the score vector
using the optimal normalizing flow and generator instead of the
learned flow and generator.

In Fig. 4 we display the traces of the two eGCRBs, as well
as that of the analytical CRB, for θ = (ξ, ξ)T , with ξ on a
uniform grid on the interval [−2,2]. Fig. 4 shows that a learned
normalizing flow can estimate the true CRB to a good accuracy.
Because (as we verifed) the specific parameter values θ shown
in Fig. 4 are not present in the training set, this also demonstrates
that the GCRB works well for unseen examples. As expected,
on the average the eGCRB using the optimal flow has slightly
better accuracy than the one using the learned flow, because the
former only suffers from the finite sampling error in estimating
the GFIM using an empirical mean, whereas the latter is also
subject to the imperfectly learned flow model. The relative error
(18) of the eGCRB is displayed in Fig. 5 for both learned and
optimal flows, showing that both have comparable accuracy, of
within ≈ 0.5% from the true CRB.

Scale Example: In this example we generate the train-
ing dataset D in the following manner. For each sample
(θi, R(θi)) ∈ D, the parameter θi is drawn i.i.d from a uniform
distribution θi ∼ U [3, 6], Y is drawn i.i.d Y ∼ pY , where pY
is given by (28) and R(θi) = yθi, per (27). To produce a vector
input to the normalizing flow, as needed for the application of
affine coupling, we define a vector measurement of length 2,

Fig. 5. Relative error between the eGCRB and CRB for the linear measurement
model (25) at θ = (ξ, ξ)T as a function of ξ. The eGCRBs obtained using an
optimal and learned flow are compared.

Fig. 6. Analytical CRB and eGCRBs for the scale model (27),(28), using the
optimal flow and a learned flow.

composed of two i.i.d samples with the same parameter θi.2

Note that since this vector measurement corresponds to two i.i.d
measurements, by the additivity property of the FIM, this only
scales the resulting GFIM by a factor of 2. Using this dataset
D we train a normalizing flow with the architecture shown in
Appendix C. We chose an architecture with cubic-spline and
affine inject since it can locally represent an optimal generator
and satisfies the G ∈ C2 condition.

Then, we follow the same procedure as for the linear mea-
surement model to produce the eGCRB using both the learned
flow and the optimal flow. The two eGCRB values and the true
CRB are compared in Fig. 6. Fig. 6 demonstrates that a learned
normalizing flow can estimate the true CRB in the non-Gaussian
case, with accuracy comparable to that of the optimal flow. Sim-
ilar to the linear example, because (as we verified) the parameter
values θ used to plot Fig 6 are not present in the training set, this
again demonstrates the interpolation capability of the GCRB to
provide a good approximation for unseen examples.

2We use this form, rather than padding with an unrelated standard normal
random variable, to mitigate issues of exploding condition number [29].
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Fig. 7. Histogram of RE(θ) for the linear example using different number of
samples m ∈ {64 k, 128 k, 256 k, 512k}.

To summarize, Figs. 6 and 4 demonstrate Theorem III.2,
which states that given a well-trained generative model (As-
sumption III.2) the GCRB approximates well the CRB. Both
figures show random deviations of the eGCRB from the CRB
due to two reasons: (i) imperfectly trained generative model; and
(ii) a finite number of samples used to calcuate empirical mean,
as stated in Theorem III.3. Moreover, the eGCRBs in Figs. 4 and
6 are evaluated at points that are not present in the training set,
which shows the ability of GCRB to interpolate the CRB values
to those points.

B. Error Analysis

Here, we study further the approximation error due to the
empirical mean and imperfect training. We use two metrics for
the error:

MRE = max
θ∈ΘT

RE (θ) ,

MRE =
1

|ΘT |
∑
θ∈ΘT

RE (θ) ,

where MRE and MRE are the maximal and mean relative
norm error, respectively, ΘT ⊂ Θ is the set of θ value used
in the validation process, and |ΘT | is the cardinality of the
set ΘT . In this experiment, we verify Theorem III.3 using
the linear optimal model with the same parameters as above
and evaluate eGCRB with different number of samples m ∈
{64 K, 128 K, 256 K, 512K}. We repeat the evaluation for
each m 2000 times and and present the histogram of the relative
norm error RE(θ) in Fig. 7. In all the trials we use the same
parameter vector θ = (0.2, 0.2)T .

We see in Fig. 7 the effect of different m values on the
distribution of the relative error. This confirms, that as predicted
by Theorem III.3, for the optimal generator, we can make
the eGCRB error arbitrary small by increasing the number of
samples m to calculate the eGFIM (9). This addresses the error
due to sampling assuming a well-trained normalizing flow.

In the next experiment, we address the error due to imperfect
training. To focus on this aspect, we set m = 512 k, so that
the error due to the empirical mean is negligible. We train a

Fig. 8. MRE and MRE for the linear measurement model example vs. training
dataset size.

normalizing flow on the linear problem using various dataset
sizes, and report the maximal and mean relative error. To train a
normalizing flow with a small dataset size, we adjust the number
of epochs to have a constant number of gradient updates, by

setting the number of epochs to
⌈
90 200e3

|D|
⌉

where |D| is the

size of the dataset and �x� denotes the ceiling of x. In Fig. 8
we present the MRE for different dataset size and validation
parameter set Θ consisting of 20 points θ = (ξ, ξ)T with ξ ∈
[−2, 2] uniformly spaced.

Fig. 8 shows relative error decreasing with increasing training
set size, highlighting the importance of training to obtain a well-
trained generative model. However, increasing the dataset size
beyond some point (in this case, above 50 K samples) doesn’t
improve the results. To interpret this saturation effect, recall
that the normalizing flow used in this problem can represent the
optimal generator, hence a limitation in representation capacity
by the normalizing flow is not the culprit. Instead, comparison
with Fig. 7 suggests that for |D| > 5 · 104 the error in this learned
generator experiment is dominated by the empirical mean error
- with similar values as when using an optimal generator.

C. Image Denoising

Here, we study the GCRB for the Image denoising problem,
using the NoiseFlow [7] to model the image noise. Noise Flow is
composed of affine coupling, invertible 1× 1 convolution, gain
layer (which is a constant affine transformation), and signal-
dependent layer (which is similar to affine inject with a prede-
fined function). First, we replace the ReLU activation function
in the original NoiseFlow to Sigmoid Linear Unit (SiLU) [40],
to satisfy the requirement that G ∈ C2. Then, we train the
modified Noise-Flow from scratch using the authors’ original
code [41]. We obtained NNL of −3.528 which is a similarl
to that in the original NoiseFlow. Then, we add to NoiseFlow
an AdditiveNoise layer (see Section V-B3), which provides a
noisy image. We generate all the required derivatives using the
PyTorch built-in symbolic differentiation invoked using standard
PyTorch commands, and utilize our eGCRB computing forumu-
las to provide an approximation to the CRB. We compute the
eGCRB using (9) with m = 64 k.
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Note that for image visualization purposes only, we render
RGGB images through a color processing pipeline into sRGB
color space. Moreover, to visualize the eGCRB, we extract the
diagonal of the eGCRB matrix and present the lower bound for
each channels (R, G, G, B) separately. In all experiments we use
an image size of h = w = 32 and batch-size 32.

We present the bounds on the denoising performance in
normalized form, by computing the following metrics

NPRMSEijc �

√
g
(
diag

(
GCRB

))
ijc

Iijc
, (35a)

NRMSE �
√

1

hwc

∑
i,j,c

NPMSE2
ijc. (35b)

The NPRMSEijc is the normalized per pixel bound on the
error standard deviation error, diag(A) denotes the diagonal
vector of matrix A, g() : Rh·w·c −→ R

h×w×c is the reshaping of
vector to RGGB image, and i, j, c are the vertical, horizontal and
channel indices, respectively. In turn, NRMSE is the square of
the per pixel NPRMSE, averaged over the entire image followed
by a square root.

Note that the metrics in (35) take into account only the
diagonal elements of the eGCRB. However, both the eGFIM
and the eGCRB have off-diagonal elements thanks to the ability
of NoiseFlow to generate correlated noise that models the sensor.
This correlation is evident in the non-zero off-diagonals in the
eGFIM, and affects the diagonal elements of the eGCRB.

In this study, we perform several experiments. First, we
present several visual examples in Fig. 9. The top row shows
three clean images to which we refer, from left to right, as scene
one, two, and three. The second row shows the corresponding
noisy versions for Camera 0 (Apple) at ISO = 100. The next
four rows display (as images color-coded by magnitude) the
normalized lower bound on the denoising error standard devia-
tion for each pixel (i.e., the NPRMSEijc): one row for each
of the four channels c = 1, 2, 3, 4. We observe that pixels with
different colors have distinct lower bounds, showing the effect
of the Signal Depend Layer in NoiseFlow [7]. An analogous
behavior is seen in the NFL model which scales the noise by
the clean image values. It is also seen that brighter pixels have
a better (smaller) normalized lower bound than darker ones.

Next, in Fig. 10(a) we plot the normalized lower bound on
the denoising performance using Device=0 (Apple) on the same
three scenes as in Fig. 9. It is seen that a lower ISO level allows
better denoising than a higher one, and that different scenes have
different denoising lower bounds. For an insight as to whether
the difference is due to color level, scene structure, or both, we
refer to Fig. 3. It reveals that the noise level increases with ISO
level, and is relatively higher in darker (lower color level) areas.
The first property clearly accounts for the increase in the bound
vs. ISO level seen in Fig. 10(a), whereas the second property
explains the relative ranking of the bounds for the three scenes,
with increasing normalized bound for darker images.

Fig. 10(b) shows, for Scene 1, the effect of different mea-
surement devices. The relative ranking in terms of the denoising
bound cannot be inferred from the visual impression of the noise
for the different devices in Fig. 3. However, it remains the same

Fig. 9. GCRB for the denoising problem on three scenes (one per column). 1st
and 2nd rows: clean and noisy image, respectively. Last four last rows: NPMSE
of the R, G, G, B channels. Camera type zero (Apple).

Fig. 10. Lower bound on the denoising error vs. ISO levels. In Fig. 10(a) the
lines correspond to Scene 1 - Scene 3 on the first row of Fig. 9 and in Fig 10(b)
the lines represent different devices in Scene 1 of Fig. 9.

for Scene 2 and Scene 3, showing consistency of the bounds for
each device. These results demonstrates a unique advantage of
the GCRB, which can provide a bound specific to a measurement
device.

D. Edge Detection

We use the same parameters as used in the image denoising
problem. First, in Fig. 11, we present a lower bound on edge
position estimate vs. the position of the edge in the image,
for several different edge widths, using Device=0 (Apple) and
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Fig. 11. Lower bound on edge position with different edge widths using
Device=0 (Apple) at ISO 100.

ISO level 100. Fig. 11 reveals different behavior of the edge
localization bound for different edge widths. First, the bound
increases with increasing edge width. This is not surprising,
since a smooth edge can be expected to be harder localize in the
presence of noise than a sharp edge, and this also agrees with
the dependence of the CRB (31) on edge width for standard
Gaussian noise. Second, for small edge width, the bound shows
little dependence on position at the center of the image, but
increases slightly when the edge approaches the boundaries of
the image. This can be attributed to the truncation of some of the
edge transition when the edge approaches the image boundaries.
Third, for larger edge widths, the bound shows an asymmetric
dependence on the edge position relative to the image center.
This too can be explained by truncation of one side of the edge
transition: however, because the noise is signal-dependent, the
effect of truncating the bright side of the edge is opposite to that
of truncating the dark side. Moreover, a similar effect of edge
position is observed in the analytical CRB (32) for the NLF noise
model, which also has signal-dependent noise level.

To further demonstrate the advantages of the GCRB, we in-
vestigate in the next experiment the ability of a generative model
to capture the complex measurements distribution and produce
an accurate lower bound. To this end, we compare, in the context
of the edge detection problem, the three noise models: WGN,
NLF, and Noise-Flow. We do so for Device=2 (Samsung) (Fig. 3
at ISO level 100. For a quantitatively meaningful comparison,
we set the parameters σ2,α, and δ of the analytical noise models
to the maximum likelihood estimates obtained from the noisy
images that were used to train NoiseFlow [7]. These noisy
images are taken from the base SSID dataset [38], and were
preprocessed as in NoiseFlow.

Fig. 12 shows that (i) the WGN model misses altogether
the asymmetric behavior of the bound with respect to edge
position; and (ii) both Gaussian noise models have CRBs larger
than the eGCRB. Both (i) and (ii) are to be expected, since
the WGN model misses the signal-dependence of the noise,
and independent Gaussian noise yields the largest CRB for
given noise variance [42]. Finally, note the subtantial differ-
ence between the eGCRB for Device=2 (in Fig. 12) and the
eGCRB for Device=0 in Fig. 11 for the same edge width of

Fig. 12. Lower bound on variances of the edge detection parameters (Position
12(a) and Width 12(b)) over different edge positions, using different measure-
ment noise models for Device=2 at ISO 100 and edge width 8 pixels.

Fig. 13. Normalized off-diagonal elements of the eGCRB (correlation of
position and width estimation errors) for the edge detection problem over
different edge positions, using Device=2 at ISO 100.

8 and ISO 100. This again demonstrates the unique ability of
the GCRB to provide device-dependent bounds. Overall, these
results illustrate the importance of a learned model to capture
the complexity of the measurement distribution and obtain an
accurate lower bound.

In addition, in Fig. 13 we illustrate the ability of the GCRB
to study the correlation between estimation errors of different
parameters. Specifically, we present the normalized off-diagonal
of the eGCRB, namely the Pearson correlation. We observe that
whenever the edge is located at the boundaries of the image, θp =
0 or θp = 31, there is a high correlation between the position
and width parameter estimates. This correlation diminishes for
edge position at the center of the image. Moreover, in the center
region, the NLF and NoiseFlow have a different crossing point,
due to signal depend noise, the point at which the dark and light
pixels have the same SNR is shifted.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we use for the first time a generative model
to obtain a data-driven estimate of the Cramer-Rao bound,
which does not require access to an analytical model of the
measurement probability distribution. Specifically, we used a
normalizing flow and showed that this generative model provides
the same CRB as the measurement distribution if the generator is
well-trained. Moreover, we provided an error analysis bounding
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the inaccuracy due to the use of an empirical mean for the
well-trained case, and the error of the GCRB due to imperfect
learning. We validated the performance of this approach on
two simple signal models with known ground-truth CRBs. We
also studied the GCRB on two image processing tasks with a
complex learned measurement model. The results demonstrate
two advantages of the GCRB: the ability to obtain a highly
accurate performance bound for complex measurement distri-
butions without an analytical model; and the ability to obtain a
device-specific bound.

Questions for future research include quantifying the impacts
of limited representation power of the generative model and a
limited training data set on the accuracy of the GCRB. Another
direction is to ensure that GCRB is a valid lower bound (rather
than a good approximation to it) by utilizing methods for error
estimation and model selection [43]. On the practical side, it will
be interesting to study some of the many real-world applications
that can benefit from this approach, such as direction-of-arrival
estimation in sensor arrays with poorly characterized propaga-
tion models.

VIII. PROOFS

A. Proof of Lemma III.1

Proof: The generated samples γ = G(z;θ) ∈ Υ̂ retained af-
ter the trimming process correspond to z ∈ Z , where the set
Z � G−1(Υ̂;θ) is the pre-image of Υ̂ under G. Because Υ̂
is a compact set in metric space R

d (Assumption A.7) and
G−1 = ν : Rd → R

d is a continuous mapping, it follows that
as the image of a compact set by a continuous mapping, Z is a
compact set. Next, because G ∈ C2 and G is a diffeomorphism
wrt to z, it follows that each of the components sθ(z) is a
continuous function of z on the compact set Z . Hence (by
pseudocompactness) sθ(z) is bounded componentwise, and
thus also in norm: ‖sθ(z)‖ ≤ Cs(θ). �

B. Proof of Theorem III.2

We use the following result, proved in Section D4 of the
Appendix.

Lemma VIII.1. (Matrix Cauchy-Schwartz Inequality): Let
X,Y ∈ R

n be random vectors with correlation matrices RX

and RY and cross correlation RXY = E[XY T ]. Then,

‖RXY ‖ ≤ (‖RX‖ ‖RY ‖)1/2 . (36)

For conciseness, in the proof of Theorem III.2 below we
omit the integration variable r and the parameter vector
θ from integrals. Thus, the PDFs of the true and learned
measurement distributions are abbreviated as pR = pR(r;θ)
and pΓ = pΓ(r;θ), respectively, and the corresponding score
vectors sR = sR(r;θ) � ∇θLR(r;θ) and sΓ = sΓ(r;θ) �
∇θLΓ(r;θ), where LR(r;θ) LΓ(r;θ) are the corresponding
negative log-likelihoods.

Proof:

FR (θ) − F̂G (θ) = FR (θ)− FΓ (θ)

=

∫
Υ\Υ̂

sRs
T
RpRdr +

∫
Υ̂

sRs
T
RpRdr − FΓ (θ)

= P1 +P2

P1 �
∫
Υ\Υ̂

sRs
T
RpRdr +

∫
Υ̂

sRs
T
RΔpdr

P2 �
∫
Υ̂

sRs
T
RpΓdr − FΓ (θ) (37)

Δp � pR − pΓ (38)

Because pΓ(r;θ) = 0 ∀r ∈ Υ \ Υ̂,θ ∈ Θ,

P1 =

∫
Υ

sRs
T
RΔpdr +

∫
Υ\Υ̂

sRs
T
RpΓdr =

∫
Υ

sRs
T
RΔpdr

which, by Assumption III.1, is bounded in terms of the total
variation distance as

‖P1‖ ≤ 2C2
R (θ)TV (pR, pΓ;θ) . (39)

Turning to P2, we have

P2 = EΓ

[
sRs

T
R − sΓs

T
Γ

]
= EΓ

[
(sΓ −Δs) (sΓ −Δs)

T − sΓs
T
Γ

]
= EΓ

[
ΔsΔ

T
s

]− EΓ

[
sΓΔ

T
s +Δss

T
Γ

]
, (40)

whereΔs � sR − sΓ is the score difference vector. Considering
the first term in (40):∥∥EΓ

[
ΔsΔ

T
s

]∥∥ ≤ Tr
(
EΓ

[
ΔsΔ

T
s

])
= EΓ

[
ΔT

s Δs

]
= EΓ

[
‖Δs‖2

]
≤

∫
Υ

pΓ ‖Δs‖2 dr � IF (pΓ, pR;θ) . (41)

Next, applying Lemma VIII.1 to the norm of the second term in
(40), yields∥∥EΓ

[
sΓΔ

T
s +Δss

T
Γ

]∥∥ ≤ 2
∥∥EΓ

[
Δss

T
Γ

]∥∥
≤ 2

(∥∥EΓ

[
sΓs

T
Γ

]∥∥ ∥∥EΓ

[
ΔsΔ

T
s

]∥∥)1/2
= 2

(∥∥∥F̂G (θ)
∥∥∥ IF (pΓ, pR;θ)

)1/2

. (42)

Now combining (41) and (42) yields:

‖P2‖ ≤ 2
(∥∥∥F̂G (θ)

∥∥∥ IF (pΓ, pR;θ)
)1/2

+ IF (pΓ, pR;θ) .

(43)
In the last step we combine (39) and (43), which yields Theo-
rem III.2. �

C. Proof of Corollary III.2.1

Proof: By definition (11), we have F̂G(θ) � 0. Combining
with (13a), we haveλmin(F̂G(θ)) ≥ λmin(FR(θ))− η(θ) > 0,
where the positivity is by the assumption of the Corollary. Hence
F̂G(θ) � 0. It then follows that

‖F̂G (θ)−1 ‖ = λmax

(
F̂G (θ)−1

)
= 1/λmin

(
F̂G (θ)

)
≤ [λmin(FR (θ))− η(θ)]−1
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which, establishes (14a). To establish (14b), we have

‖FR (θ)−1 − F̂G (θ)−1 ‖

= ‖FR (θ)−1
(
FR (θ)− F̂G (θ)

)
F̂G (θ)−1 ‖

≤ ‖FR (θ)−1 ‖ · ‖F̂G (θ)−1 ‖ · ‖FR (θ)− F̂G (θ) ‖
and the result follows by applying (13a) to the last factor in the
product. �

D. Proof of Theorem III.3

First we establish that the generated score vector has zero
mean.

Lemma VIII.2. Let sθ(z) be a score vector computed using a
trimmed and differentiable G ∈ C2 generator G and it’s inverse
ν. Then EZ [sθ(Z)] = 0.

The proof of Lemma VIII.2 is given in Section D2 of the
Appendix. Now we present a bound on the estimation of the
precision matrix (inverse of a covariance matrix).

Theorem VIII.3. [Theorem 13 in [28], specialized for E[x] =
0.] Let x ∈ R

D be a random vector with E[x] = 0 and
covariance matrix Σ = E[xxT ]. Assume ‖AΣ−1x‖2 ≤ CA,
‖BΣ−1x‖2 ≤ CB , ‖

√
Σ−1x‖2 ≤ Cx almost surely, where

A ∈ R
d1×D,B ∈ R

d2×D are known matrices. Let x1, ..,xm be
a set ofm independent copies ofxwith Σ̂ = 1

m

∑m
j=1 xjx

T
j the

finite sample estimator of Σ. Then there exist absolute constants
C1 > 0 and C2 > 0 such that provided m > C1(1 + u)C2

x, we
have with probability at least 1− exp(−u) for any u > 0 that∥∥∥A(

Σ̂−1 − Σ−1
)
BT

∥∥∥
F
≤ C2CACB

√
1 + u

m
.

The proof of Theorem VIII.3 is given in Section D3 of the
Appendix.

Proof of Theorem III.3: By Lemma III.1 ‖sθ(z)‖ ≤ Cs(θ)
and by Lemma VIII.2 we have Ez[sθ(z)] = 0. It follows that
Theorem VIII.3 is applicable to the score vector x = sθ(z)
satisfying E[x] = 0 and ‖x‖ ≤ Cs(θ). Making the identifica-
tions Σ = F̂G, and Σ̂ = FG(θ) and setting A = B = I, and
CA = CB = ‖Σ−1‖Cs(θ) results in:∥∥∥FG (θ)−1 − F̂G (θ)−1

∥∥∥
F

≤ C2

∥∥∥F̂G (θ)−1
∥∥∥2

Cs
2 (θ)

√
1 + u

m
.

�

E. Proof of Corollary III.3.1

Proof:

E (θ) �
∥∥∥FG (θ)−1 − FR (θ)−1

∥∥∥
≤

∥∥∥FG (θ)−1 − F̂G (θ)−1
∥∥∥+

∥∥∥F̂G (θ)−1 − FR (θ)−1
∥∥∥

≤ Bs (θ) +
∥∥∥FR (θ)−1

∥∥∥ ∥∥∥F̂G (θ)−1
∥∥∥ η (θ) (44)

The first step follows by the triangle inequality, and the second
by applying Theorem III.3 to the first term and upperbounding

the spectral norm by the Frobenius norm, and applying Corol-
lary III.2.1 to the second term on the second line in (44). Finally,
dividing (44) by ‖FR(θ)

−1‖ yields the Corollary. �
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