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Localizing Unsynchronized Sensors With
Unknown Sources

Dalia El Badawy *“, Viktor Larsson

Abstract—We propose a method for sensor array self-
localization using a set of sources at unknown locations. The sources
produce signals whose times of arrival are registered at the sensors.
We look at the general case where neither the emission times of
the sources nor the reference time frames of the receivers are
known. Unlike previous work, our method directly recovers the
array geometry, instead of first estimating the timing information.
The key component is a new loss function which is insensitive
to the unknown timings. We cast the problem as a minimization
of a non-convex functional of the Euclidean distance matrix of
microphones and sources subject to certain non-convex constraints.
After convexification, we obtain a semidefinite relaxation which
gives an approximate solution; subsequent refinement on the pro-
posed loss via the Levenberg-Marquardt scheme gives the final
locations. Our method achieves state-of-the-art performance in
terms of reconstruction accuracy, speed, and the ability to work
with a small number of sources and receivers. It can also handle
missing measurements and exploit prior geometric and temporal
knowledge, for example if either the receiver offsets or the emission
times are known, or if the array contains compact subarrays with
known geometry.

Index Terms—Localization, calibration, array signal processing,
wireless sensor networks, convex optimzation.

1. INTRODUCTION

N MIMO radar [1], ultrasound imaging [2], underwater
I acoustics [3], time-reversal [4], [5], and room acoustics [6],
[7] a collection of sources emit signals that are then captured by
the receivers. In these applications, we often need an accurate
knowledge of the geometry of the source and receiver positions
to proceed with common array processing algorithms such as
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beamforming and source localization. Knowing the sensor array
geometry similarly enables the reconstruction of physical fields
in environmental monitoring using ad hoc sensor networks [8],
[9]. Further, knowing device locations enables a host of location-
based services in the context of the Internet of Things [10]. The
recurring quintessential problem is thus to efficiently estimate
the geometry of a set of nodes.

We study estimating the geometry of the nodes from the
times of arrival (TOAs) of the source signals. The setup is
illustrated in Fig. 1 where receivers register TOAs of source
events. Some events can be (near-)collocated with the nodes,
such is the case with transceivers. If the sources are anchors
with known positions, locating the nodes becomes an exercise
in geometry: intersecting spheres or hyperboloids depending on
whether or not the devices are synchronized. However, the most
general and practically appealing setup is when the sources
are at arbitrary, unknown locations. This enables one to use
signals of opportunity such as speech, transient sounds, or radio
signals [11]. But it also means that receivers are no longer
synchronized with the sources. To complicate things further,
receivers themselves do not have to be mutually synchronized.
While in many audio applications, microphones are connected to
a common interface, we are also surrounded by ad hoc networks
of smartphones and voice-based assistants. Thus, not only do
we measure times of arrival as opposed to absolute times of
flight, but those registered times of arrival further depend on the
unknown time reference frame of each receiver. In this paper, we
introduce an algorithm for jointly localizing a set of receivers and
a set of sources from measured TOAs in the general case when
all nodes are not synchronized: sources go off at unknown times
and the reference time frame of each receiver can be different
and unknown.

A. Notation

We denote matrices with capital letters (S, R) and vectors
with lowercase letters (s, 7). Uppercase subscripts indicate the
size, e.g., Jp is an L x L matrix, and Ry/«x is an M x K
matrix. Lowercase subscripts d;; indicate the element at the i
row and j™ column of a matrix. A superscript 7" as in J 7 denotes
the matrix transpose. Lowercase superscripts z(*) denote the
k™ iteration. The real d-space is denoted R%. The vectorization
operator is denoted vec(x). We use the diagonalization operator
where diag(QG) is a vector of the elements on the diagonal of the
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The problem setup addressed in this paper. Source events (such as sounds in the environment produced by people or loudspeakers, or electromagnetic

signals of opportunity) are captured by the receivers. In this illustration, there are three loudspeakers (sources) with emission times {7, }izl. We also have three

microphones (receivers) numbered 1, 2, 3 with internal times of reference {o, }

m=

| relative to a global reference (not numbered). The time of arrival ¢,,,, at each

microphone depends on the source’s emission time 7y, and the microphone’s offset o,,,. Not all source events reach all receivers, thus some entries t,,,;, might be

missing.

TABLE I
OVERVIEW OF RELATED WORK WITH RESPECT TO THE SETUP

Approach Input

Unknowns Challenges

Multidimensional scaling (MDS)  Pairwise distances
[17], [18], [19], [20]
Multidimensional unfolding [21],

[22], ML optimization [14]

SDP relaxations [23], [24], [25], Distances/TDOA/FDOA
[26], [27], [28], [29]

Majorization [30], Two-stage [31], TDOA

[32], [33], [34]

Two-stage [16] TDOA

Proposed TOA/TDOA

Distances between nodes/events

- Requires full synchronization

- Requires full synchronization, Bad
local minima

- Requires anchor nodes or positions

of the sensor nodes

Bad local minima, cannot handle

near-minimal configurations

Slow, cannot handle near-minimal

configurations

Source & receiver offsets -

Source or receiver offsets

Source & receiver offsets

matrix. Similarly, diag(oq, . .
01,...,0n on the diagonal.

.,on) is an N x N matrix with

B. Related Work

Among the earliest work on self-localization are the papers
of Rockah and Schultheiss [12], [13] and Weiss and Friedlan-
der [14] from the 1980 s. Plinge et al. [15] provide an in-depth
overview of microphone array localization techniques. A sys-
tematization of existing approaches to self-localization is also
given by Wang et al. [16]. In the following, we review some of
the major points, related to localization in different setups. An
overview is also shown in Table I.

In some cases, the pairwise distance between all the nodes
can be estimated. This happens for example when the nodes can
both send and receive [35] or by measuring the diffuse noise
coherence [36]. Localization then amounts to multidimensional
scaling (MDS) [17], [18], [19], [20].

A more common situation in audio applications is that the
nodes can only receive or only send. The “sending” nodes need
not be real devices; they can be any acoustic events or signals of
opportunity. We can distinguish the case when the sources and
the receivers are synchronized so we can estimate the source—
receiver distances, or the various cases when sources, receivers,
or both sources and receivers are not synchronized.

a) Known Source Emission Times and Receiver Offsets: 1f
the emission times happen to be known and the nodes and
events all have a common time reference (that is, they are

synchronized),' then the TOAs correspond to times of flight and
directly give the distances between the nodes and the events.
Given these distances, the joint localization problem reduces
to multidimensional unfolding [21], [22]. Some methods are
based on direct optimization of the maximum likelihood (ML)
criterion [14], but these often fail due to the non-convexity
of the objective and the existence of bad local minima [16].
Other methods are based on Euclidean distance matrices and
semidefinite programming (SDP) [37].

Crocco et al. [22] proceed by constructing a certain low-rank
matrix of differences of squared TOAs from which the positions
can be recovered by solving a low-dimensional non-convex
optimization problem as follows. The low-rank matrix of dif-
ferences of squared TOAs [22] is related to the (translated)
source positions S and receiver positions R as H =~ RTS’,
where the latter is the matrix of inner products between centered
receiver points and centered source points. The estimated H
is decomposed using singular value decomposition as H =
UXVT. Up to a translation due to centering, the source and
receiver locations are then S = Q'XV7” and R = (UQ)”
for some unknown invertible 3 x 3 matrix Q. Since we have
that H = R"QQ'S, finding the correct relative geometry
(between R and S) amounts to identifying the right @ and
the difference vector between the center of R and the center
of S which is done via non-convex optimization and can suffer
from local optima, especially in the presence of noise. In our

! Additionally, the internal delays of the receivers are known.
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approach, we avoid the need to estimate @ to stitch R and S
together by working with the full point set X = [R; S| and
the corresponding Gram matrix, instead of splitting X into R
and S. The Gram matrix and its constraints then automatically
encode the relative geometry and glue together the sources and
the receivers (see Section III-A).

b) When One Set of Times is Known: A more realistic sce-
nario is when the source emission times are unknown and
different but the microphones are synchronized. The reverse case
is also relevant: when the receivers are not synchronized but the
source emission times are known. This is the case if we use a
distributed sensor array.

The two unknowns (geometry and one set of times) can
be estimated by directly optimizing an objective, for example
using majorization [30]. Again, this often fails due to the non-
convexity of the problem and cannot work with near-minimal
configurations.

An alternative approach is to estimate the unknowns sequen-
tially, first recovering the unknown times, and then using them
to recover the geometry [31], [32]. Early work of Pollefeys and
Nister [38] exploits the low rank of a certain matrix of squared
TOA differences. Their work is a near-field generalization of
the work of Thrun [33], which was also adapted to work with
missing measurements [34]. Heusdens and Gaubitch propose a
more robust scheme based on structured total-least-squares [39]
to reconstruct the times.?

¢) Unknown Emission Times and Receiver Offsets: The clos-
est to our work is the method of Wang et al. [16] who treat
the most general case with unknown source emission times and
receiver offsets. Same as the methods that address the case of one
unknown set of offsets [39], Wang et al. proceed in two stages.
The timing information is estimated via structured least-squares
(Gauss—Newton), noting that with the correct timing estimates a
certain matrix computed from the measured T(D)OA measure-
ments must become low rank. This timing estimation procedure
may require numerous random restarts. Once the timings are
estimated, they proceed as Crocco et al. [22] to recover the
geometry.

d) Convex Relaxations: In the context of sensor network
localization (with fixed anchor nodes), Biswas et al. [23], [24]
proposed to use SDP relaxations [28], [29] to handle the non-
convexity introduced by the square root in the distance measure-
ments. Similar relaxations have since also been used for source
node localization from TDOA measurements (see e.g. Yang
et al. [25], Vaghefi and Beuhrer [26]) and mixed TDOA/FDOA
measurements (Wang et al. [27]). Yang et al. [25] also proposed
a SOCP relaxation; however, it requires that the target node lies
within the convex hull of the anchors. Jiang et al. [40] propose to
use Truncated Nuclear Norm Regularization (TNNR) to solve
the TDOA self-calibration problem. Their optimization scheme
consists of solving a sequence of convex surrogate problems

2Heusdens and Gaubitch in fact address the case when the microphone delays
are unknown and the source is periodic; this is equivalent to only having unknown
microphone delays; see Section IV-C.

based on the (convex) nuclear norm. We propose SDP relax-
ations for the full self-calibration problem, where both senders
are receivers are unknown and not synchronized.

e) Minimal Estimation Problems: A series of work considers
minimal problems in TOA, where the goal is to estimate the
unknowns from as few measurements as possible. Following up
on their work on minimal problems for TOA measurements [41],
Kuang et al. [42] propose a stratified approach for estimating
the unknown time offsets from TDOA measurements. Once the
offsets are recovered, the solvers from their previous work [41]
can be applied to recover the sender and receiver positions.
Zhayida et al. [43] (and later Farmani et al. [44]) considered
the minimal solutions to the special case of dual microphone
setups. Burgess et al. [45] proposed solutions for settings where
either the sender or the receivers lie in a lower dimensional
space. Batstone et al. [46] consider the case of constant offset
TDOA self-calibration (i.e. transmissions have a known period
but unknown offset); this is also a stratified approach which
first solves for the unknown time offset [42]. We show that our
approach can also succeed in near-minimal configurations.

C. Contributions

Our work is motivated by the fact that the two-stage procedure
is suboptimal. The (valid) reason to adopt sequential estimation
are poor local minima in the loss function which involves both
the times and the positions. From a statistical point of view,
however, joint estimation is preferred. Further, timing estimation
can fail or require many random restarts; the same holds for the
non-convex optimization to recover the relative configurations
from R" S. The two-stage procedure also makes it challenging
to exploit prior geometric information such us known distances
or distance bounds.

In light of related work and the above discussions, we sum-
marize our contributions as follows:

e What we are usually interested in are the sensor positions.
We thus formulate a new self-localization loss which is
invariant to offsets and delays. The proposed loss uses
non-squared distances as opposed to the usual squared; we
prove that minimizing this objective yields the maximum
likelihood estimate of the positions under Gaussian noise.
It enables us to recover the geometry without worrying
about the times and without random restarts.

e We formulate a non-convex semidefinite optimization
problem in terms of this new loss. We work with the
full point set X = [R;S] and the corresponding Gram
matrix. The Gram matrix and its constraints intrinsically
glue together the sources and the receivers and thus obviate
the need for the non-convex optimization step of Crocco
et al. [22] (see Section I1I-A).

e Although our method does not require synchronization, it
can leverage synchronization among the receivers or the
sources if it is fully or partially present [39], [47], [48].
It can further leverage geometric side information such as
when the receivers contain subarrays with known relative
geometry or some sources and receivers are collocated.
Finally, it can handle missing measurements.
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The proposed method achieves state-of-the art results, not
only in terms of localization accuracy, runtime, or exploiting
side information, but also in the ability to solve near-minimal
problems with few nodes. Finally, we note that as suggested
by Ono [30], our method can also be interpreted as a virtual
synchronization method.

II. PROBLEM STATEMENT

We wish to localize a set of M receivers with unknown posi-
tions 71,...,ry € RY using a set of K sources with unknown
positions 81,...,8k € R?. We assume that the sources emit
pulses whose times of arrival (TOA) can be measured at the
receivers.> Since we do not assume synchronization between
the sources and the receivers, the absolute emission time 73, of
the kth source is unknown. Since the sources are not necessarily
synchronized among themselves, the differences 7, — 73/ are
also unknown. Similarly, since we do not assume synchroniza-
tion among receivers (nor knowing their internal delays), the
temporal frames of reference of each receiver are shifted by an
unknown o,,, with respect to some reference clock. The times of
arrival of the kth source signal at the mth receiver thus become

timk = U_l ||”'m - SkH + om + Tk, (1)

where for simplicity we let both o, and 7 have arbitrary sign.
We assume the transmission speed v to be known and w.l.o.g.
let v = 1 for the remainder of the paper.

Note that if we instead use the time-difference-of-arrival
(TDOA), then with the first sensor as the reference, the TDOA
is

ik = tmk — 1k
= |rm — skl + (om —o1) — |71 — skl
= ||’I"m — SkH + 0 + Tk

And so we can still think of the TDOA ¢,,,;. as a TOA but with
modified emission times and offsets.

A. Minimal Number of Sources and Receivers

Common sensor localization scenarios are either in the hor-
izontal plane (d = 2) or in 3D space (d = 3). The number of
the degrees of freedom in the positions of sources and receivers
is then d(M + K'). However, since rigid motions of the entire
setup cannot be distinguished from TOA data, we can choose the
associated d(d + 1) /2 degrees of freedom freely (d translational
and (g) rotational). Each source and receiver come with an ad-
ditional unknown time, which gives another M + K degrees of
freedom. However, we can choose a global time offset arbitrarily,
which is another gauge of invariance and subtracts one degree
of freedom. The total number of the degrees of freedom is thus

#(DOF) = (d+1) (M + K —4) -1
As measurements we get MK TOAs. In order to get a

dimension-zero solution set (a solution set that is a finite or

3Note that these measurements can be obtained without physically emitting
pulses. In audio, for example, one often emits long chirps which is followed by
pulse compression.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

countable set of points, but not necessarily unique), this number
should at least match the number of the degrees of freedom.
Solving for the minimal number of sources as a function of the
number of receivers, we obtain the following relation

(d+1)M —d(d+1)/2—1

K >
= M—(d+1)

Ford = 3this gives K > (4 M — 7)/(M — 4) implying that the
smallest number of receivers that can be localized is M = 5 for
which at least K = 13 sources are required to get a dimension-
zero solution. Some other minimal cases are: (M =7, K =
7, (M =13,K =5).

As we demonstrate with real and numerical experiments in
Section VI, our algorithms can operate in the vicinity of this
minimal regime, where previous methods either fail or perform
poorly.

III. A LOSS INSENSITIVE TO OFFSETS AND DELAYS

Instead of proceeding sequentially by first estimating the
unknown times as in the case of the state-of-the-art methods [16],
[39], we note that the primary task is usually position estimation
rather than timing estimation. Besides, when the positions are
known, estimating the timings {o,,}2_, and {7}/, boils
down to a simple algebraic exercise (see Section II1I-D). We thus
devise a data fidelity metric which is insensitive to the unknown
timings, yet is only minimized with the correct positions.

We begin by writing (1) in matrix form as

T=A+0l}+1y7", (2)

where T € RM*K A = (§,,1) and 0,p = || — sk, o0 =
[01,...,00]T and 7 = [r,...,7k]T. Now we make the key
observation: multiplying (2) on both sides by a matrix which has
an all-ones vector in the nullspace will annihilate the two terms
that depend on the unknown times.

Given an integer L, let J 1, be a geometric centering matrix of
size L, *

Jp=1I,—+1,17. (3)

Itis easy to verify that J 3y 13, = 0 and 1IT<JK = O}F( so that
the matrix

P=JyTJx=JuAJk (€]

does not depend on the unknown times. In fact, we can say more.

Proposition 1: Wehave J p;T1J g = J T2 ¢ if and only
if there exist o/ and 7/ such that Ty = Ty + /1% + 1,77
In particular, for T as in (2), we have J T J x = Jpy Ad kg
4).

Remark: 1f A happened to be a Euclidean (squared) distance
matrix (EDM) of a point set X, for example D = (dfj) di; =
|z; — x;|, then —2JyDJ N would equal the Gram matrix
of the (centered) X. No similar statement can be made here

4We often indicate matrix and vector sizes in subscripts. While making the
notation a bit clunkier, it helps keep track of dimensions.
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simply because A holds non-squared distances, and because it
only corresponds to one off-diagonal block of D.
Proof: The nullspace of the linear operator

j:RMXK%RMXK

AL TyATk
is spanned by
N(J) = span{1e;,..

Note that not all of those M K matrices are linearly independent,
but the argument does not hinge on independence. Every matrix
in the argument of span correspond to adding a constant offset
to either a source or a receiver. As a consequence, any nullspace
vector can be written as a linear combination of source / receiver
offsets which proves the proposition. (]

What Proposition 1 says is that Jy; AJ g is sufficient to
determine the positions in the sense that the only locations such
that this transformation matches the measurements are the true
ones (if the original problem is solvable).

We can then propose the following timing-invariant objective
for localization

T T T
'711\/16K’611K7"'6M1K}'

1
min 5 170 (AR, 8) = T)J i[5 )
where || - || denotes the Frobenius norm, R € R>*M are the
receiver positions, and S € R¥*X are the source positions.
This objective is justified by the following direct corollary of
Proposition 1.

Corollary 1: If the unsynchronized localization problem has
a unique solution (up to a rigid transformation), then vanishing
loss in (5) implies correct localization.

Further, the loss (5) is in fact equivalent to the ML loss given
the offsets o and T. Namely, assuming i.i.d. Gaussian noise on
the TOA measurements we have

fur(A,o,7) = ||A+ o1k + 177 — T %,
and the loss in (5) is simply
f(A) = min farr(4,0,7).
To see this note that
Vofur =2(A+ 0ol +1ym" —T)1x =0 (6)
1
1114

Inserting into the original cost we get

1
fML(A7O'*,T):H(A + 1MTT - T) (IK — K]-Kl,l[;) ||%~

Jr

Solving for 7* similarly yields fy/r.(A,0*,7) = f(A).

A. Characterization in Terms of the Full Gram Matrix

As described in Section I-B, a number of state-of-the-art meth-
ods based on low-rank matrix decompositions recover the matrix
H=R"S, with R and S being some translated (centered)

versions of R and S [16], [22], [39]. Matrix factorizatigns sucll
as singular value decomposition can only determine R and S
up to a multiplication by an arbitrary invertible matrix @, since

onr any such @ we have that H = IA{T./S\’ with R = QTR,
S = @Q'S. Finding the right Q (which can be assumed to
be upper-triangular which fixes the rotational gauge freedom)
and the (one) translation vector is then achieved via direct non-
convex optimization, though over a lower dimensional space
than the original problem.

We sidestep this problem of having to determine @ in order
to stitch together R and S by writing the measurements in terms
of the full point set

X :=[R, 8] € RN,

where N = M + K, and always working with the entire X . We
denote the corresponding full Gram matrix by G = X7 X ¢
RN >N The off-diagonal blocks of the Gram matrix G' encode
the relative geometry between R and S—by recovering G, we
know that relative geometry. Note that this only resolves the
relative ambiguity between R and S which is an artifact of the
previous methods. The inherent invariance of localization from
distances to Euclidean motions remains.

The matrix of squared distances (the EDM) between the
column vectors in X can be written as a linear function of the

Gram matrix. Letting D = (||, — ./[|*)},,,_,, one has

D = D(G) := diag(G)1% — 2G + 1y diag(G), (8)

with diag(G) = [g11, - -.,9nn]T. This means that the matrix
of distances A between sources and receivers can be written as
an entrywise square root of a linear function of G, since

def

A.Q = £(G) - Srow D(G) SC017 (9)

where Siow := [Iar, Onrxx] and Seop := [Oxxar, I are
the appropriate row and column selection matrices, and ( - )*
denotes an entrywise square. In view of Proposition 1, this leads
us to the first reformulation of the original problem:

2 (V@ 1)l o
subjectto G > 0, (10b)
Gly =0, (10¢)

rank(G) = d. (10d)

The constraint (10c) resolves the translation ambiguity; it is
equivalent to the point set being centered around the origin
LY, 20 =0,

Note that now the receivers and sources are being translated
together, unlike in earlier work where they were split. Further,
the estimated locations are directly read out from a factorization
of G, without the need for stitching.

B. Semidefinite Relaxation

The formulation (10a) remains nonconvex. Thus, direct ap-
proaches such as randomly-initialized first-order methods (e.g.,
projected gradient descent) are likely to get stuck in a local
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minimum. We thus propose to instead solve a convex relaxation
of the problem.

There are two sources of nonconvexity: the entrywise square
root in the objective, and the rank constraint on the Gram matrix.
We begin by replacing the entrywise square root v/ L(G) by
a new matrix variable B, and adding the constraint that the
entrywise square of B must equal £(G).

Concretely, we write the objective as

. 2
win |13:(B = T)T il

and ask that B*?2 = £(G)) to obtain an equivalent formulation.
We now proceed by reformulating the added constraint as a rank
constraint on some semidefinite matrix (or matrices). Since the
entrywise square does not mix the entries of B, we can add such
constraints on a per-entry basis. This is computationally more
efficient (and empirically works better) than working with the
entire vectorization of B at once.

We can equivalently write the constraint b2, = L(G)n, as

Loy = [ﬁ(G)mk b’”’“] =0 (11)
bk 1

by > 0 (12)

rank(L,,,x) = 1. (13)

All the non-convexity is now lumped into the rank constraints,
rank(G) = d and rank(L,,;) = 1 for 1 <m,k < M, K. The
final step is to relax all of the rank constraints to get

win [T (B = T)J (142)
subjectto G > 0, (14b)
Gly =0, (14c)

L, >0, foralll <m,n< M, K, (14d)

B> 0. (14e)

We can finally reconstruct the point set from the recovered
G using singular value decomposition. We have G = UAV T,
where A = diag(oy,...,on) with the singular values o; as-
sumed to be sorted in decreasing order. We reconstruct the point
set using X = [diag(oy, ..., 04), OdX(N_d)]VT. If the rank of
the estimated G'is truly d, as itideally should be since it describes
a d-dimensional point set, then the trailing singular values would
be zero anyway.

C. Refinement by Levenberg-Marquardt

In general, solving the above semidefinite program gives point
configurations which are good coarse approximations to the
true geometry, although they are not good enough for most
applications. The reason can be tracked down to the fact that
after relaxing the rank constraints, the estimated matrices have
higher rank than desired. Still, the positive semidefinite con-
straints constrain geometry sufficiently to get decent estimates
in many situations. One strategy would be to employ various
rank minimization strategies. Informally, we tried this and it
works decently but it is very slow.
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Instead, we propose to refine the output of the SDR using the
Levenberg-Marquardt (LM) algorithm. It is fast, accurate, and
it works better. We have also empirically observed that simple
gradient descent is much slower requiring more iterations to
converge.

To derive the LM updates, we need to compute the Jacobian
of the loss in order to linearize it. The loss

J(R,S) = Ju(A(R,S) - T)Jkl},
can be written as
J(R,S) = f(R,S)|3,
where f(R,S) = Ad(R, S) — t,
A=JL @ Jy, t=Ave(T),

and 0 = vec(A) with ® denoting the Kronecker product.
Since A : R&>(M+EK) _y RM*K the Jacobian is a tensor in
RM > Exdx(M+K) \We can compute

Tm — Sk
—m Ok =y,
[7m — skl
DALk e=q - "5k y_ g
7 — skl
0 otherwise.

with the understanding that the first M slices in the last index of
D correspond to the receivers and the last K to the sources. Note
that the Jacobian is not well defined at r,,, = s. In that case, it
would be possible to remove the corresponding variables from
the optimization and adjust the Jacobian accordingly.

To make things easier to compute with, we rewrite 1" as a
function of a single vector

vec(R)

=R, vec(S)

S) =

and rearrange the output into a vector so that d(x) =
vec(A(R, S)). The Jacobian DJ is obtained from DT by col-
lapsing the first two dimensions and the last two dimensions so
that D§ € RMKxd(M+K) Finally the Jacobian of f is computed
as

Df = A DS,

and we have an affine approximation of f as (with some abuse
of notation)

f(@;@0) = f(wo) + Df(@)(@ — w0).
This leads to the LM update,

2 2
zF+Y) = argmin Hf(z; :B(k))H + A Hz - m(k)H

which is solved by
et =gV — (Df (") Df(x*) + A 7' Df ()" f (™).

The full localization algorithm is summarized in Algorithm 1.

We use the SeDuMi solver [49] for the optimization problem
(14). It has a O(y/nlogl) worst-case time complexity per
iteration where n = d(M + K) is the number of variables. The
LM refinement is O(d*(M + K)*M K) per iteration.
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Algorithm 1: Unsynchronized Sensor Localization.

Require: TOA T ¢ RM*K

Ensure: Positions of receivers R €
= Rde

Initialize R and S using SDR (14).

Update R and S using LM.

R4M and sources

D. Estimating Offsets and Delays

Once an estimate A of A is computed, we can also compute
the unknown offsets T and delays o. We start by noting from
(2) that

T-A=01% + 1,77,

where the right hand side is linear in (o, 7). We exploit it by
vectorizing both sides:

e=vec(T-—A)=1xkRc+7R1y
=Vo+Wr

-v w7,

withV := 1 @ Iy, W := I ® 1),. From here, estimating
the times vector amounts to solving an overdetermined system
of linear equations. Note that the system matrix has a nullspace
of dimension one (spanned by al) due to the global offset
ambiguity. To eliminate the offset ambiguity we arbitrarily set
o1 =0, and let V' be V' with the first column removed. The
least-squares estimate of the unknown timings is then given as

15)

- .

with &' = [Ga,...,0a)" and (-)! denoting the Moore-Penrose
pseudoinverse.

IV. VARIANTS

In many cases, we have some prior information about the
distances or offset times. The proposed method makes it straight-
forward to leverage this prior knowledge. In the following, we
explain how by describing several typical scenarios.

A. Localization of Subarrays

Suppose that some distances are known. It is often the case that
the set of receivers consists of several compact subarrays with
known geometry (voice-based assistants, smart phones). These
compact subarrays are then distributed in the space of interest at
unknown positions and with random orientations, together with
discrete microphones.

Since the EDM is a linear function of the Gram matrix, this
prior knowledge corresponds to simple linear constraints on G.
We thus augment the original program with a set of known inter-
sensor distances for microphone pairs

M= {(my,m2)

distance d,y,, m, between 7,,,, and r,,, is known} ,

mp < ma,

Then we add the following set of constraints to our optimization:

D(G)m1mz =d,

mi1msa?

for all (mq, ma) € M,my # ma.
(16)
If the set of receivers is partitioned as

R =[Ri,Rs,...,Ry],

with the distances within the jth subarray R; known, these
constraints correspond to knowing the diagonal subblocks of
the upper-left block of D.

We can again proceed with an LM refinement step. In this
case, we consider the following objective

min  [|£(0)[* (17a)
subjectto g(0) =0, (17b)
(17¢)

where ¢ : RUM+E)  RIMI s the known-distances residual
defined as

Imimo (X) = edm(X, X)mlmz _ d2

mims

with edm(X, X).,m, = ||Zm, — @m,||? being the entries of
the EDM of the point set X . We solve (17) using the Augmented
Lagrangian algorithm [50]. The corresponding update is given
in Appendix A.

In some cases the distances may not be known exactly, but
we might have access to good bounds. We once more leverage
the linearity of D in the Gramian by adding the following linear
constraints to the program,

d? <D(G)mym, < d?

=mimsz — mimsz*

(18)

where Jmlmz and d
distance d,y,, .-

Finally, we note that priors might be available not only for
inter-receiver distances but also for inter-source distances and
the distances between the sources and the receivers (we often
have a coarse idea about how far the source events are from the
microphones). These can be added to the constraints completely
analogously.

my.m, &r¢ upper and lower bounds on the

B. When One Set of Times is Known

When one set of timings is known (either the source emission
times or the receiver offsets), it would still be possible to use
the general formulation with the derived loss (10a) designed for
the case when both sets of times are unknown (2). Though that
would require more measurements than necessary given such
prior knowledge as we show next.

Both cases (unknown emission times or unknown offsets) are
captured by the simplified measurement model

T=A+1y7", (19)

up to atransposition as necessary (exchanging the role of sources
and receivers). From here, it follows that the influence of the
timings can be eliminated simply by one left multiplication by
J pr so that

P =JguT=JuA
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does not depend on 7. We can thus replace the loss (10a) by
| T2 (B =T (20)

To see how this reduces the minimal required number of mea-
surements (sources or sensors), recall the degrees-of-freedom
count from Section II-A. Concretely,

#(DOF) =d (M + K — 44) + M
gives

(d+1)2M —d)
K="—=or—a

For d = 3, this becomes K > /=5 5o that the minimal num-
ber of receivers is now M = 4 and the minimal cases for the
dimension-zero solution are M =4, K =10, M =5, K =7,
M =6,K =6,and M =9, K = 5. Another way to see this is
by noting that the operator A — .J ;A has a smaller nullspace
than A — JyAJ .

C. Sources With Known (Constant) Offset

As alast example of prior information that is easily handled,
we mention the practically relevant case where the source is for
example a smartphone emitting periodic pulses. More generally,
the source is emitting signals at known (not necessarily regular)
intervals. The phone is not synchronized with the receivers, so
the emitting times are strictly speaking unknown, but only up to
one unknown offset—the start time of the emissions. This case
has been studied in previous work [39], [46].

‘We show how to incorporate this using our proposed method.
We have that

Tk = To + Ok,

with Jy, is the known offset of the kth emission with respect to
the unknown time 7,. When the emissions are periodic, we have
0, = k - 9, but for simplicity we keep the notation more general.

Note that in general, the vectors o and 7T can never be
recovered uniquely, unless one of the times is known. The reason
for this is that the global time reference can be decided arbitrarily
(we used this fact when counting the degrees of freedom in
Section II-A).

It then follows that the case of sources with known offsets is
mathematically equivalent to the case when only the receivers’
offsets are unknown. Concretely, first write

T="7,1g +9,
where 6 is a known vector. Then note that
0'1%; —+ 11ijT = (U‘ -+ TolM)lg -+ lA,[(sT.

Since 18 " is known it can be absorbed in the measurements; the
one unknown offset 7, can then be absorbed in receiver offsets.

D. Missing Measurements

One upshot of our formulation is that it allows localization
even when some sensor—receiver measurements are unavailable.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

TABLE II
PARAMETERS FOR THE SETUP AND ALGORITHMS

Dimension d=3

Volume I0m x 10m X 3 m
M sensors 7to 12

K sources 7to 12

Time offset [-1,1] s

Speed of sound 343 m/s

Solver SeDuMi

LM iterations At most 1000

We denote the set of missing entries by

M = {(m, k) : distance between m™ receiver and
k™ source is missing} .

We then replace the objective (14a) with

2
min
Gva{O‘mk}

)

F

(21)
where e,, denotes the canonical basis, and the coefficients «,,,
account for the missing entries.

‘JM (B -T+ Z amk€m€;> J K
(m,k)eM

vec(R)
vec(S) | €
vec(ax)
RAM+E)+IM| The Jacobian now includes the derivative with
respect to o as well

The LM refinement then proceeds with 6 =

1 (myk)eM, i=m,j=k,

. (22)
0 otherwise.

[Daf]mk,ij - {

Note that this approach can be used in the presence of outliers
by first estimating them using RANSAC for instance. Then those
outliers can be treated as missing entries.

V. NUMERICAL SIMULATIONS

In this section, we evaluate our approach on synthetic data.
We implemented our algorithms in Matlab and used the CVX
package for specifying convex programs [51], [52] with the
SeDuMi solver. For reverberation simulations, we use the Py-
roomacoustics [53] package in Python. In the following, we
describe the setup and present a series of results for different
scenarios showcasing the accuracy and flexibility of our method.

A. Setup

We consider an equal number of sensors and sources M = K
in the range of 7 to 12. For each pair, we generated 200
configurations of points randomly distributed in a volume of
dimensions 10 m x 10 m x 3 m. The time offsets are uni-
formly generated in the range [—1, 1] s. The TOAs were finally
corrupted by zero-mean random Gaussian noise with standard
deviationo € {1072,107*,107%,107%,0} sorequivalently o €
{34.3,3.4,0.3,0.03,0} cm. The parameters are summarized in
Table II.
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Localization results for an unsynchronized setup comparing our approach (SDR+LM) to the two-stage baseline (Wang et al. [16]). We also show the

results before the LM refinement (SDR). Results are shown at different noise levels and for M = K in the range of 7 to 12.

B. Evaluation

The reconstructed points are first optimally aligned using
Procrustes analysis [54]. The localization error between the true
[R, S] and reconstructed [R, S] points is then

M N K
Yomet ITm = Pl + > ISk —
M+ K

We present the results using box plots depicting the median, first
quartile, and third quartile. The whiskers correspond to 1.5 times
the inter-quartile range. Values over or below this are shown as
outliers.

To facilitate comparison, we will also present the median and
the 95% confidence interval. In all figures, we clip the errors
to a minimum of 10~2 which we assume is sufficient for most
applications.

2
E = I .

(23)

C. Results

As a baseline algorithm, we choose to compare to the two-
stage approach of Wang et al. [16]. We consider two aspects in
our comparison: localization error and runtime. Note that we
only report the results of Wang et al.’s approach without the
further third-stage refinement using Ono et al.’s [30] algorithm.
We had observed that the refinement takes a long time due to the
required number of iterations and did not improve the results in
thecase M = K = 7.

The localization results comparing our approach (SDR+LM)
to the two-stage baseline are shown in Fig. 2. We also show our
SDR results before the LM refinement. Note that while the SDR-
only results are poor, they indeed provide a good initialization
for the subsequent LM refinement as evidenced by the SDR+LM

200

e SDR+LM
A Wang
150
1]
el
& 100
(8]
o]
2]
50
0 [ < = * ®  J
7 8 9 10 1 12

Fig. 3. Average runtime of our approach (SDR+LM) compared to the two-
stage baseline (Wang et al. [16]). Results are for M/ = K in the range of 7 to 12.
The noise standard deviation is fixed ¢ = 10~°. The runtime of our approach
is consistently less than 5 seconds.

results. We further note that the outlier errors correspond to geo-
metrically unfavorable source/receiver configurations that have
attractive local minima. As can be seen, our timing-invariant
approach outperforms the two-stage method, especially in the
near-minimal configurations. As for the runtime, we show in
Fig. 3 a comparison of the average runtime over 20 runs as
we increase the number of sensors and receivers for a fixed
noise standard deviation ¢ = 10~°. The runtime of our approach
is consistently less than 5 seconds, whereas the runtime for
the two-stage approach increases significantly with the number
of sensors. Thus, our timing-invariant approach avoids both
having timing-estimation errors that propagate to the position
estimation as well as the need for multiple random initializations
that increase the runtime.
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Localization errors for an unsynchronized setup in different scenarios. Results are shown at different noise levels and for M/ = K in the range of 7 to

12. In the case without any synchronization, our approach (SDR+LM) outperforms the two-stage baseline (Wang et al. [16]). Side information such as partial

synchronization or knowledge of some distances improves the results.

We now evaluate the case when the microphones are syn-
chronized but the source emission times are still unknown.
The results are shown in Fig. 4 along with the results of the
fully unsynchronized case. As can be seen, the localization
performance with partial synchronization is better, especially
for (M =7,K =7)and (M =8, K =8).

Next, we test the case when the inter-microphone distances
are known, but the whole setup is still fully unsynchronized. The
localization errors are shown in Fig. 4. As would be expected,
having side information significantly improves the localization
performance.

For the last experiment, we attempt localization when some
TOA data is missing. We test a range of missing entries from 4%
to 20% of the total. Fig. 5 shows the results for M = K = 12
where we also compare the performance to the complete data
case. We can see that we are still able to localize when few entries
are missing. However, as we have found some intrinsically bad
configurations that cannot be accurately localized with complete
data, it is expected that the problem would be exacerbated when
some TOA entries are further missing.

In summary, our approach (SDR+LM) outperforms the two-
stage baseline (Wang et al. [16]) in terms of localization er-
ror and runtime. Additional side information such as partial
synchronization or knowledge of some distances can be easily
accommodated in our formulation, and as expected improve the
localization results compared to the fully unsynchronized case.

D. Reverberation Results

We now evaluate the localization performance of our approach
in the presence of reverberation.

TABLE III
PARAMETERS FOR THE REVERBERATION SIMULATION

Room dimensions 10m x 10m x 3 m
M=K sensors and sources 12

Time offset [0,2] s

Source duration 05s

Speed of sound 343 m/s

Sampling rate 48000 Hz for noise and 16000 Hz for speech
Reverberation time 0to0.5s

SNR 15 dB

We consider a room of dimensions 10 x 10 x 3. The M =
K = 12 sensors and sources are randomly placed in the room.
The sources are random Gaussian noise and do not overlap such
that the segmentation at each microphone is known. We also test
with speech sources from the Speech Commands dataset [55].
The SNR is set to 15 dB.

We vary the reverberation time by adjusting the wall ab-
sorption coefficients and maximum order for the image-source
method. For each reverberation time, we simulate 20 realiza-
tions. While the desired reverberation times are 0's, 0.1 s, 0.2 s,
0.3 s, 0.4 s, and 0.5 s, the actual reverberation times obtained in
simulation are slightly different but close. The parameters are
summarized in Table III.

The TDOA are estimated using the method of Yamaoka
et al. [56]. The error between the true ¢,,; and estimated &,
TDOA is calculated as

M K -
D ome1 Dkt [tmk =tk

E:
! MK

(24)

We then use the estimated TDOA as input to our localization
algorithm as well as the two-stage baseline of Wang et al. [16].
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entries are missing. The whole setup is unsynchronized. The results are plotted against those without any missing data.
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Fig. 6. (Reverberation.) Results with noise sources as the reverberation time
increases. (a) Median TDOA estimation error. (b) Median localization error. Our
timing-invariant approach outperforms the two-stage baseline.

The results are shown in Figs. 6 and 7. In Fig. 6(a), we show
the median TDOA estimation error. As expected, the errors are
larger as the reverberation time increases. Subsequently, this
affects the localization errors as shown in Fig. 6(b). A similar
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Fig. 7. (Reverberation.) Results with speech sources as the reverberation time
increases. (a) Median TDOA estimation error. (b) Median localization error.
The TDOA estimation errors are larger with speech compared to noise sources.
The subsequent localization is also worse. Our timing-invariant approach out-
performs the two-stage baseline.

trend is observed with the speech sources in Fig. 7(a). For both
source types, our timing-invariant approach still outperforms the
two-stage baseline.
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Fig. 8. (Real Data.) Data from a real experiment carried out in an office
environment. (a) True positions of 12 microphones. (b) Mask showing outliers
in the TOA data.

VI. EXPERIMENTS

In this section, we evaluate our approach on real data [46]
recorded in an office with most of the furniture removed. A
loudspeaker played a chirp from 65 positions. We have access
to the ground truth positions for 12 microphones measured using
a laser, the 12 x 65 TOA matrix, and a mask indicating the
positions of outlier TOA entries. While the TOA was extracted
from the recordings knowing the chirp, our algorithms also work
for TDOA matrices which could have been extracted without any
assumption on the source as shown in Section V-D.

A. Setup

Fig. 8 shows the TOA matrix, outlier positions, and the true
microphone positions. A total of 23 loudspeakers provide clean
data without outliers. Thus, for the first experiments, we will use
the 12 x 23 subset of TOAs. Then, for the full 12 x 65 TOAs,
we will use our missing data approach to handle the outliers. We
report results over 200 runs where we randomly choose a subset
of the loudspeakers to localize the 12 microphones.

Since we only have the ground truth for the microphone
positions, we calculate the localization error between the true
R and reconstructed R microphone positions as

g, = Szl = 7l

i (25)
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Fig. 9. (Real Data.) Localization errors for localizing 12 microphones using
6 to 11 sources. We compare our approach (SDR+LM) to a two-stage approach
(Wang). The minimum error with our approach is consistently less than 5 cm.
The input TOA matrix is a subset of the 12 x 23 outlier-free TOA matrix.
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Fig. 10. (Real Data.) Localization errors for localizing 12 microphones using
6 to 21 sources. We compare using subsets of the available 12 x 65 TOA matrix
(Full Data) to using subsets of the 12 x 23 outlier-free TOA matrix (Outlier-
Free). For the former, we use the missing data approach where we treat outliers
as missing entries.

B. Results

We first test our approach on subsets of the 12 x 23 TOA ma-
trix that is outlier-free. We also compare to the Wang et al. [16]
two-stage baseline. In Fig. 9(a), we show the errors for localizing
all 12 microphones using a varying number of loudspeakers
from 6 (the minimal case for M = 12) to 11. Once again, our
approach significantly outperforms the two-stage baseline. Also
similar to what we observed in the numerical simulations, while
using more loudspeakers improves the average error, for each K,
there are a number of large errors corresponding to intrinsically
difficult configurations that have attractive non-global minima.
However, the minimum error is consistent for all X and is less
than 5 cm.

Next, we use subsets of the entire 12 x 65 TOA that contains
outliers but assume knowing where the outliers are. We can
thus use the missing data approach described in Section IV-D.
Fig. 10 shows the errors for localizing the 12 microphones
using 6 to 21 sources. On one hand, the average error is larger
compared to the outlier-free case. On the other hand, the best
case scenarios that result in minimum errors are comparable to
the outlier-free case. The smallest localization error is 4 cm and
corresponds to K = 16 loudspeakers.
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VII. CONCLUSION

We formulated a timing-invariant objective that allows us
to localize sensors and sources in an unsynchronized setting.
Based on this objective, we proposed an SDP relaxation using
the full Gram matrix of the point set and then a subsequent
refinement step using the LM algorithm. We have thus elimi-
nated the need for having to first estimate the unknown timings
as well as avoided the multiple initializations required when
solving non-convex problems. We also proposed an approach to
handle missing data and showed how to seamlessly incorporate
additional information such as knowledge of some distances or
partial synchronization.

Using numerical simulations, we demonstrated the feasibility
of the approach in different scenarios and in near-minimal
configurations. We compared our approach to a two-stage state-
of-the-art method [16]. Not only did our approach outperform
the two-stage algorithm in terms of localization error, but also
in terms of runtime. We also tested our algorithms on real times
of arrival measured in an office environment. We were able to
localize the 12 microphones to within 0.04 m average error.

Future work could focus on dealing with outliers which arise
in the presence of multipath, for example. The method could be
similar to our missing data approach except that the positions of
the outliers are not known and need to be determined.

APPENDIX A
LOCALIZATION OF SUBARRAYS

The LM refinement proceeds by iteratively minimizing the
augmented Lagrangian over 6
2 T 2
LA +9(0) 2+ ullg@O)]”, (26)

where z is the Lagrange multiplier and x4 > 0. Minimizing (26)
is equivalent to minimizing [50]
LF O + 1 llg(0) + =2/ 21 27

Since (27) is nonlinear in #, the LM algorithm is once again used
in which the update is

pli+1) — pli) _ (Df(g(i))TDf<9(i))
+uDg(8) " Dg(pD) + A“)I)_1
x (DAE")T£(61) + uDg(6) (g9 + 2/ (20))

where Dg € RIMIXd(M+K) jg the Jacobian defined as

T; — 2T p =1,
Dgijp = —2xi+x; p=], (28)
0 otherwise.
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