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Abstract—This paper considers a formulation of the robust
adaptive beamforming (RAB) problem based on worst-case signal-
to-interference-plus-noise ratio (SINR) maximization with a non-
convex uncertainty set for the steering vectors. The uncertainty set
consists of a similarity constraint and a (nonconvex) double-sided
ball constraint. The worst-case SINR maximization problem is
turned into a quadratic matrix inequality (QMI) problem using the
strong duality of semidefinite programming. Then a linear matrix
inequality (LMI) relaxation for the QMI problem is proposed,
with an additional valid linear constraint. Necessary and sufficient
conditions for the tightened LMI relaxation problem to have a rank-
one solution are established. When the tightened LMI relaxation
problem still has a high-rank solution, the LMI relaxation problem
is further restricted to become a bilinear matrix inequality (BLMI)
problem. We then propose an iterative algorithm to solve the BLMI
problem that finds an optimal/suboptimal solution for the original
RAB problem by solving the BLMI formulations. To validate our
results, simulation examples are presented to demonstrate the
improved array output SINR of the proposed robust beamformer.

Index Terms—Worst-case SINR maximization, nonconvex
uncertainty set, robust adaptive beamforming, quadratic matrix
inequality, bilinear matrix inequality relaxation.

I. INTRODUCTION

ADAPTIVE beamforming has been widely employed in
many applications to radar, sonar, communications, mi-

crophone array speech/audio processing, medical imaging, radio
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astronomy, and others [1]. Since traditional adaptive beamform-
ing approaches have weak immunity against even a small mis-
match between the presumed and actual signal steering vectors,
many robust adaptive beamforming (RAB) techniques have been
developed and substantial progress has been made in this area
in recent years (see e.g. [2], [3], [4], [5], [6], [7] and references
therein). The mismatch may result from look direction errors,
imperfect array calibration, distorted antenna shape, and other
reasons [2]. Facilitated by the recent development of convex
optimization and robust optimization [8], [9], new powerful
RAB methods have been proposed with significantly improved
performance.

Among all proposed RAB techniques, the approach based on
the concept of worst-case performance optimization has drawn
much attention [2], [3], [4], [10], [11], [12], [13]. Particularly
in [10], the actual signal steering vector is modelled as a sum
of the presumed steering vector and a norm bounded mismatch
vector, and the worst-case signal-to-interference-plus-noise ra-
tio (SINR) maximization problem is formulated. It turns out
that this problem can be reformulated as minimization of the
denominator of the SINR subject to infinitely many nonconvex
quadratic constraints over a spherical uncertainty set of the mis-
match vectors. The (robust) minimization problem can be further
transformed equivalently into a second-order cone programming
(SOCP) problem, and consequently solved via an interior-point
method (see e.g. [14]). Both uncertainties in the signal steering
vector and in the array signal matrix are considered in [11], and
RAB technique based on the worst-case performance optimiza-
tion is obtained via an SOCP problem, which is a reformulation
for the worst-case SINR maximization over the two (convex)
uncertainty sets. In [13], under the assumption that the steering
vector and covariance matrix are mismatched, but known to
belong to a general convex compact subset, the problem of
finding a beamforming vector that maximizes the worst-case
SINR over the uncertainty set is studied. It has been shown that
when the uncertainty set can be represented in terms of linear
matrix inequalities (LMIs), the worst-case SINR maximization
problem can be solved via semidefinite programming (SDP).

In many practical scenarios, it is inadequate to describe the
uncertainty sets of steering vectors by only convex constraints.
Indeed, some important constraints are nonconvex by nature
(e.g., the unit norm constraint). Therefore, it is necessary to study
the worst-case SINR maximization problem with nonconvex
uncertainty sets, which have practical significance. It can also
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be viewed as a desired and technically advanced and nontrivial
generalization of the work in [13].

In this paper,1 we propose a RAB technique that maximizes
the worst-case SINR over a nonconvex uncertainty set of the
signal-of-interest (SOI) steering vector, with a similarity con-
straint and a (nonconvex) double-sided ball constraints. The sim-
ilarity constraint is a spherical constraint, ensuring the desired
steering vectors to be sufficiently close to a presumed steering
vector, while the ball constraints are imposed to account for the
steering vector gain perturbations caused, for example, by the
sensor amplitude and phase errors as well as the sensor position
errors (cf. [16, pp. 2408 and 2414]). Since the uncertainty set
is nonconvex, the solution methods proposed herein to the new
worst-case SINR maximization problem are very different from
that in [13]. In particular, the contributions of this paper are the
following.
� We reformulate the worst-case SINR maximization RAB

design problem over the aforementioned nonconvex uncer-
tainty set as a semi-infinite program, namely, a quadratic
minimization problem with infinitely many constraints
over the nonconvex uncertainty set. Mathematically, the
constraints for the uncertainty set consist of an inhomo-
geneous quadratic constraint and a double-sided quadratic
constraint. In this case, a quadratic optimization over such
uncertainty set is hidden convex, and its SDP relaxation
is tight [17]. Then the constraint set of the semi-infinite
program can be represented by a single quadratic matrix
inequality (QMI) constraint by applying the strong duality
theory of SDP. The quadratic minimization problem with
such QMI constraint is called a QMI problem. Thus, our
worst-case SINR maximization problem is also shown to
be a QMI problem.

� For the QMI problem, we establish an LMI relaxation
problem. Often there is a gap between an LMI relaxation
and a QMI problem. In order to narrow or close the gap, in
our case, a valid linear constraint is added to the LMI prob-
lem, which means that the relaxation problem is further
tightened. Some necessary and sufficient conditions for
the tightened LMI problem to have a rank-one solution is
presented. If the tightened LMI relaxation problem admits
a rank-one solution (output by an interior-point method),
then the solution is globally optimal for the QMI problem,
and thus, for the original worst-case SINR maximization
problem.

� When the tightened LMI relaxation problem however has
a high-rank solution, we impose to the problem an addi-
tional rank-one condition, which is characterized by the
constraint requiring second largest eigenvalue of a positive
semidefinite (PSD) beamforming matrix to be nonpositive.
This is a novel approach, and such characterization is
universal, thus, such constraint can be added to any prob-
lem where one seeks a nonzero rank-one solution. In this
way, the tightened LMI relaxation problem can be further
restricted. Moreover, the tightened LMI relaxation problem

1Some preliminary results without detailed proofs along this line of research
have been initially presented in [15].

after the restriction is shown to be equivalent to a bilinear
matrix inequality (BLMI) problem, which follows from an
SDP representation for the sum of K largest eigenvalues
of a Hermitian matrix. Such BLMI problem is nonconvex
in general. Nevertheless, we propose an iterative algorithm
to solve it, which finds an optimal/suboptimal solution for
the original QMI problem associated with the worst-case
SINR maximization problem.

� In addition to the aforementioned uncertainty set, we
consider another nonconvex uncertainty set of practical
significance, which is comprised of a double-sided ball
constraint and a quadratic constraint that prevents the
SOI’s direction-of-arrival (DOA) from converging to the
set of DOAs characterized by all linear combinations of
the interference steering vectors (cf. [18], [19]). Then,
the worst-case SINR maximization problem over the new
uncertainty set is formulated in order to compute a RAB
weight vector, and an approach similar to the previous
one is developed to find an optimal/suboptimal solu-
tion of the problem. This approach includes the steps
of QMI problem reformulation, solving a tightened LMI
relaxation problem, BLMI problem reformulation, and
developing an iterative algorithm for solving the BLMI
problem.

The remainder of this paper is organized as follows. Sec-
tion II is devoted to signal models and problem formulation.
In Section III, we consider the scenario with the uncertainty
set consisting of a similarity constraint and a double-sided
ball constraint. In Section IV, we then handle the case with
the uncertainty set comprised of a quadratic constraint and the
double-sided ball constraint. Numerical examples are presented
in Section V. Finally, conclusions are drawn in Section VI.

Notation: We adopt the notation of using boldface for vectors
a (lower case), and matrices A (upper case). The transpose
operator and the conjugate transpose operator are denoted by
the superscripts (·)T and (·)H , respectively. The notation tr(·)
stands for the trace of a square matrix argument; I and 0 denote
respectively the identity matrix and the matrix (or the row vector
or the column vector) with zero entries (their size is determined
from the context). The letter j represents the imaginary unit
(i.e., j =

√−1), while the letter i often serves as an index.
For any complex number x, we use �(x) and �(x) to denote
respectively the real and imaginary parts of x, |x| and arg(x)
represent the modulus and the argument of x, and x∗ (x∗ or
X∗) stands for the component-wise conjugate of x (x or X).
The Euclidean norm of vector x is denoted by ‖x‖, and the
Frobenius norm (the spectral norm) of matrix X by ‖X‖F
(‖X‖2). The curled inequality symbol � (and its strict form �)
is used to denote generalized inequality: A � B meaning that
A−B is a Hermitian positive semidefinite matrix (A � B for
positive definiteness). The space of Hermitian N ×N matrices
(the space of real-valued symmetricN ×N matrices) is denoted
by HN (SN ), and the set of all positive semidefinite matrices
in HN (SN ) by HN

+ (SN
+ ). The notation E[·] represents the

statistical expectation. The notation Rank (X) stands for the
rank of a matrix. All eigenvalues λn(X), n = 1, . . . , N of
Hermitian matrix X are placed in a descending order, namely,
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λ1(X) ≥ λ2(X) ≥ · · · ≥ λN (X). Finally, v�(·) represents the
optimal value of problem (·).

II. SIGNAL MODELS AND PROBLEM FORMULATION

Let the narrowband signal received by an N -sensor array be
given by

y(t) = s(t) + i(t) + n(t),

where s(t), i(t), and n(t) are statistically independent vectors
corresponding to the SOI, interference, and noise, respectively.
In the point signal source case, s(t) is expressed as

s(t) = s(t)a

where s(t) is the SOI waveform and a is its steering vector
(the actual array response or spatial signature of the SOI). The
receive beamformer outputs the signal

x(t) = wHy(t)

where w is the N × 1 vector of beamformer complex weight
coefficients (called a beamvector). The beamforming problem
is to find an optimal beamvector w maximizing the beamformer
output SINR

SINR =
σ2
s |wHa|2

wHRi+nw
(1)

where σ2
s is the SOI power and Ri+n is the interference-

plus-noise covariance matrix. In practical applications, the true
covariance matrix Ri+n is unavailable and, consequently, the
data sample estimate

R̄ =
1

T

T∑
t=1

y(t)y(t) (2)

is used instead, with T being the number of available snapshots
and y(t) being the beamformer training data. The SINR maxi-
mization problem is equivalent to the following convex problem

minimize
w

wHR̄w subject to |wHa| = 1, (3)

and its solution is

w� =
R̄

−1
a

aHR̄
−1
a
. (4)

This is the well-known minimum variance distortionless re-
sponse (MVDR) beamformer (see e.g. [12]) or Capon beam-
former (see e.g. [16]).

In practical scenarios (e.g., multi-antenna wireless communi-
cations and passive source localization), the beamformer suffers
from dramatic performance degradation due to mismatch be-
tween the actual steering vector a and the presumed steering
vector â. To mitigate the degradation, many robust adaptive
beamforming techniques have been proposed in the past two
decades (see e.g. [2], [10], [12], [13], [16], [18], [19] and
references therein).

A popular robust beamforming design is the so-called MVDR
robust adaptive beamforming (RAB), based on the optimal
estimate of the actual SOI’s steering vector a in accordance to

some criterion (for instance, maximizing the beamformer output
power subject to some constraints on a, see e.g. [18], [19], [20]
and references therein). Note that the beamformer output power
can be expressed as

E
[|x(t)|2] = E

[
wHy(t)y(t)Hw

]
= wHE

[
y(t)y(t)H

]
w

≈ wHR̄w.

Using the MVDR beamformer formula (4), the array output
power at w� can be found to be

w�HR̄w� =
1

aHR̄
−1
a
.

In order to maximize the array output power, we just can mini-
mize the denominator subject to a set of constraints on the actual
steering vector. In other words, the following optimal steering
vector estimation problem needs to be solved

minimize
a∈A

aHR̄
−1
a, (5)

where A is a constraint set for the actual steering vector. Once
an optimal solution a� is obtained, we get an optimal MVDR
RAB vector w� by substituting a� into (4). The uncertainty set
A here can be a nonconvex, for example, (cf. [19])

A1 = {a | ‖a− â‖2 ≤ ε, N − η1 ≤ ‖a‖2 ≤ N + η2}. (6)

Note that the MVDR RAB vector w� (cf. [19]) can be also
interpreted as a solution for the minimax problem:

minimize
a∈A

maximize
w =0

|wHa|2
wHR̄w

= minimize
a∈A

aHR̄
−1
a. (7)

In the literature, another interesting robust adaptive beam-
former is based on the worst-case SINR maximization design.
Specifically, the maximization problem of the worst-case SINR
is formulated as

maximize
w =0

minimize
a∈A,Δ∈B

|wHa|2
wH(R̄+Δ)w

, (8)

where B is the uncertainty set for matrix error term Δ. The
robust beamforming problem can be equivalently transformed
into

maximize
w =0

minimizea∈A |wHa|2
maximizeΔ∈B wH(R̄+Δ)w

, (9)

which can be further reexpressed as

min
w =0

max
Δ∈B

wH(R̂+Δ)w subject tomin
a∈A

|wHa|2 = 1. (10)

In other words, if a vector w� is optimal for (10), then it is also
optimal for (9), and thus, for (8). Therefore, the worst-case per-
formance optimization design takes the following formulation

min
w =0

max
Δ∈B

wH(R̄+Δ)w subject to |wHa|2 ≥ 1, ∀a ∈ A,

(11)
since both problems (11) and (10) are tantamount to each other.
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In the seminal paper [10], the following robust adaptive
beamforming problem has been studied

minimize
w

wHR̄w subject to |wHa|2≥1, ∀a : ‖a−â‖2≤ε.

(12)
In words, the set A = {a | ‖a− â‖ ≤ √

ε} is convex and it is a
ball centered at a presumed steering vector â (with ‖â‖2 = N ).
It turned out that the robust optimization problem (12) can be
equivalently transformed into an SOCP of the form

minimize
w

wHR̂w subject to�(wH â) ≥ √
ε‖w‖+ 1. (13)

In this paper, we focus on the robust adaptive beamforming
problem (11) with a nonconvex set of possible steering vectors
and a convex set of perturbations of the interference-plus-noise
covariance matrix, which generalizes the works in [10], [13].
Specifically, the uncertainty set B is defined as

B1 = {Δ | ‖Δ‖2F ≤ γ, R̄+Δ � 0}. (14)

Therefore, problem (11) is rewritten as

min
w =0

wH(R̄+
√
γI)w subject to |wHa|2 ≥ 1, ∀a ∈ A,

(15)
since

wHΔw = tr (ΔwwH) ≤ ‖Δ‖F ‖wwH‖F ≤ √
γ‖w‖2,

(16)
and the equalities hold as long as Δ =

√
γwwH/‖w‖2 ∈ B1.

For notational convenience, we let

R̂ := R̄+
√
γI, (17)

then the robust adaptive beamforming problem (15) can be recast
into

minimize
w =0

wHR̂w subject to |wHa|2 ≥ 1, ∀a ∈ A. (18)

As for A in (18), we first assume that it is specified to

A1 = {a | ‖a− â‖2 ≤ ε, N − η1 ≤ ‖a‖2 ≤ N + η2}, (19)

namely, (6) is considered, where user parameters η1 and η2
control the norm bounds of perturbation. In particular, when
η1 = η2 = 0, the set of the desired steering vectors reduces to

A′
1 = {a | ‖a− â‖2 ≤ ε, ‖a‖2 = N}. (20)

Also, we assume subsequently that ‖â‖2 = N > ε (for ε ∈
[N, 2N ], the discussion is similar).

Second, we assume (cf. [18], [19]) that

A2 = {a |aHC̄a ≤ Δ0, N − η1 ≤ ‖a‖2 ≤ N + η2}, (21)

and

A3 = {a |aHCa ≥ Δ1, N − η1 ≤ ‖a‖2 ≤ N + η2}. (22)

Here, the matrix parameter in (21) C̄ =
∫
Θ̄ d(θ)dH(θ)dθ, d(θ)

is the steering vector associated with direction θ that has the
structure defined by the antenna array geometry, and Θ̄ is the
complement of an angular sector Θ, where the desired signal is
located. Also, parameter Δ0 is equal to maxθ∈Θ dH(θ)C̄d(θ).
Similarly, matrix parameter C =

∫
Θ d(θ)dH(θ)dθ, and the

threshold value Δ1 = minθ∈Θ dH(θ)Cd(θ). Both the first con-
straint in (21) and that in (22) are used to avoid the convergence
of the steering vector a to any linear combinations of the
interference steering vectors (see e.g. [19, Fig. 2]). For more
motivations and interpretations of the uncertainty sets in (21)
and (22), we refer respectively to [18] and [19], where MVDR
RAB designs have been studied. In this paper, we will consider
the maximization of the worst-case SINR over nonconvex un-
certainty sets (21) and (22).

We remark that a trivial upper bound for problem (8) is the
optimal value for the following minimax problem (due to the
weak duality theorem):

minimize
a∈A,Δ∈B

maximize
w =0

|wHa|2
wH(R̄+Δ)w

. (23)

It follows from [13] that if bothA andB are compact and convex
sets, then the two problems (8) and (23) are equivalent to each
other, and can be solved via convex optimization. However,
when A and B are specified to A1 (or A2 or A3) and B1,
respectively, (8) and (23) are not equivalent any more since the
uncertainty sets Ai, i = 1, 2, 3, are nonconvex.

III. SOLVING ROBUST OPTIMIZATION PROBLEM (18) WITH

UNCERTAINTY SET A1 IN (19)

In this section, we show how to convert robust adaptive
beamforming design problem (18) into a QMI problem, and
present a method for finding a solution for a tightened LMI
relaxation for such QMI problem.

A. QMI Reformulation for Optimization Problem (18) With
Uncertainty Set A1

Since the original worst-case SINR maximization problem (8)
is equivalent to problem (18), we need only to focus on solving
(18) with a specific uncertainty set A.

To begin with, let us look into the minimization problem for
the feasible set in (18) with A = A1, that is,

minimize
a∈CN

aHwwHa

subject to ‖a− â‖2 ≤ ε,
N − η1 ≤ ‖a‖2 ≤ N + η2.

(24)

The optimization problem (24) amounts to the follow-
ing homogeneous quadratically constrained quadratic program
(QCQP) (see, e.g., [17, eq. (32)])

minimize
x∈CN+1

xHA0x

subject to xHA1x ≤ 0,
N − η1 ≤ xHA2x ≤ N + η2,
xHA3x = 1,

(25)

with the matrix parameters being

A0 =

[
wwH 0
0 0

]
, A1 =

[
I −â

−âH ‖â‖2 − ε

]
,

and

A2 =

[
I 0
0 0

]
, A3 =

[
0 0
0 1

]
.
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The equivalence between (24) and (25) is in the sense that they
share the same optimal value and if x� = [w�T , t�]T ∈ C

N+1

solves (25), then w�/t� solves (24).
Accordingly, the conventional SDP relaxation of (24) is

minimize
X∈HN+1

tr (A0X)

subject to tr (A1X) ≤ 0,
N − η1 ≤ tr (A2X) ≤ N + η2,
tr (A3X) = 1,
X � 0.

(26)

Moreover, the dual problem is the following SDP:

maximize
{yi}4i=1

(N − η1)y2 + (N + η2)y3 + y4

subject to A0 − y1A1 − (y2 + y3)A2 − y4A3 � 0,
y1 ≤ 0, y2 ≥ 0, y3 ≤ 0, y4 ∈ R.

(27)
Given the primal and dual SDPs, we claim strict feasibility of

both SDPs in the following lemma.
Lemma III.1: It holds that the primal SDP (26) and the dual

SDP (27) are strictly feasible.
Proof: See Appendix A.
It follows then from the strong duality theorem (see, e.g., [21,

Th. 1.4.2]) that both SDPs are solvable.2 Furthermore, one can
always find a rank-one solution for (26) (see e.g. [17]). In other
words, all the optimal values are equal, that is,

v�((24)) = v�((25)) = v�((26)) = v�((27)).

Accordingly, the robust adaptive beamforming problem (18)
with A = A1 is recast into the following QMI problem

minimize
w, {yi}4i=1

wHR̂w (28a)

s.t. (N − η1)y2 + (N + η2)y3 + y4 = 1, (28b)[
wwH − (y1 + y2 + y3)I y1â

y1â
H −y4 − y1(‖â‖2 − ε)

]
�0,

(28c)

w ∈ C
N , y1 ≤ 0, y2 ≥ 0, y3 ≤ 0, y4 ∈ R. (28d)

The conventional LMI relaxation problem can be formulated as

minimize
W , {yi}4i=1

tr (R̂W ) (29a)

s.t. (N − η1)y2 + (N + η2)y3 + y4 = 1, (29b)[
W − (y1 + y2 + y3)I y1â

y1â
H −y4 − y1(‖â‖2 − ε)

]
� 0,

(29c)

W � 0, y1 ≤ 0, y2 ≥ 0, y3 ≤ 0, y4 ∈ R. (29d)

Suppose that problem (29) is solvable, and that
(W �, {y�i }4i=1) is an optimal solution. If W � is of rank
one, then we claim that robust adaptive beamforming problem
(18) is solved and the optimal beamforming vector is w� such

2Here by “solvable,” we mean that the minimization (or maximization)
problem is feasible, bounded below (above) and the optimal value is attained [21,
p. 13].

that W � = w�w�H . If rank of W � is larger than one, then we
have to find another rank-one solution for (29).

B. Tightened LMI Rlelaxation by Adding One More Valid
Linear Constraint

In this subsection, we study how to impose one more con-
straint to (29), such that the feasible region of the LMI relaxation
problem is reduced and it is more likely that the optimal solution
is of rank one. First, observe the lemma below.

Lemma III.2: The second constraint of (28) implies that

y1 + y2 + y3 ≤ 0. (30)

The proof is immediate, and thus, is omitted.
In other words, the set of optimal solutions for (28) will not be

altered if one enforces the linear constraint (30) to the problem,
that is,

minimize
w, {yi}4i=1

wHR̂w

subject to (28b), (28c), (28d) satisfied,
y1 + y2 + y3 ≤ 0.

(31)

This problem shares the same optimal value with problem (28).
The LMI relaxation problem for (31) can be written as

minimize
W , {yi}4i=1

tr (R̂W )

subject to (29b), (29c), (29d) satisfied,
y1 + y2 + y3 ≤ 0.

(32)

Clearly, the difference between (32) and (29) lies in the ad-
ditional linear constraint. Therefore, LMI relaxation (32) ap-
pears tighter than (29). More importantly, if a rank-one solution
W � = w�w�H is optimal for (32), then w� is optimal for (31),
and thus, also for (28). Therefore, let us focus hereafter on
tightened LMI relaxation problem (32).

It is not hard to derive the dual problem of (32) as

maximize
Z,z1, z0, x

z0

subject to R̂−Z � 0,

trZ − 2�(âHz1) + z0(‖â‖2 − ε) ≤ x,
trZ − (N − η1)z0 ≥ x,
trZ − (N + η2)z0 ≤ x,[
Z z1

zH
1 z0

]
� 0, x ≤ 0.

(33)

Suppose that the primal and dual SDPs are solvable, and
possess the same optimal value. Thus, the complementary con-
ditions include

tr ((R̂−Z)W ) = 0 (34)

y1(trZ − 2�(âHz1) + z0(‖â‖2 − ε)− x) = 0 (35)

y2(trZ − (N − η1)z0 − x) = 0 (36)

y3(trZ − (N + η2)z0 − x) = 0 (37)

(y1 + y2 + y3)x = 0 (38)

tr

(
Q

[
Z z1

zH
1 z0

])
= 0, (39)
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where

Q =

[
W − (y1 + y2 + y3)I y1â

y1â
H −y4 − y1(‖â‖2 − ε)

]
. (40)

It follows from (34)–(39) that

tr (R̂W ) = z0, (41)

i.e., the primal optimal value is equal to the dual optimal value.
Suppose that (W �, y�1 , y

�
2 , y

�
3 , y

�
4) and (Z�, z�

1, z
�
0 , x

�) are
the primal and the dual SDP solutions, respectively. They clearly
comply with the complementary conditions (34)–(39). In order
to make the notations simpler and clearer, we drop the super-
script � for the optimal solutions, without leading to confusion.
The following propositions are in order.

Proposition III.3: Suppose that (W , y1, y2, y3, y4) and
(Z, z1, z0, x) are the solutions for primal SDP (32) and dual
SDP (33), respectively. Then, it holds that

1) y1 < 0;
2) y2y3 = 0;
3) if y1 + y2 + y3 = 0, then y1 = −y2 and y3 = 0.
Proof: See Appendix B.
Proposition III.4: Suppose that (W , y1, y2, y3, y4) and

(Z, z1, z0, x) are the solutions for primal SDP (32) and dual
SDP (33), respectively. Then, it holds that

1) z0 = 2�(âHz1)−(trZ−x)
‖â‖2−ε or z0 = y1x+(y2+y3)trZ

1−y4
for

y4 = 1;
2) −y4 − y1(‖â‖2 − ε) > 0;
3) if y1 + y2 + y3 = 0, then y2 > 1

2N−ε−η1
.

Proof: See Appendix C.
Note that the second constraint (the LMI constraint) in (32)

can be recast into

W − (y1 + y2 + y3)I � āāH , (42)

where

ā =
y1â√−y4 − y1(‖â‖2 − ε)

. (43)

Accordingly, a necessary condition for the existence of rank-one
solution for problem (32) can be established as follows.

Theorem III.5: Suppose that (wwH , y1, y2, y3, y4) and
(Z, z1, z0, x) are the solutions for primal SDP (32) and dual
SDP (33), respectively. Then, it holds that

1) (R̂−Z)w = 0;

2) y1+y2+y3 ≤−‖ā‖2−‖w‖2+
√

(‖ā‖2+‖w‖2)2−4|āHw|2
2 <0, if

ā and w are linearly independent.
Proof: See Appendix D.
In what follows, we present sufficient conditions for the

existence of rank-one solution for problem (32). To facilitate
our analysis, we cite a special rank-one matrix decomposition
lemma as follows.

Lemma III.6 (Theorem 2.1 in [22]): Suppose that X is an
N ×N complex Hermitian PSD matrix of rankR, andA andB
are given N ×N Hermitian matrices. Then, there is a rank-one
decomposition X =

∑R
r=1 xrx

H
r such that

xH
r Axr=

tr (AX)

R
and xH

r Bxr=
tr (BX)

R
, r=1, . . . , R.

The rank-one decomposition synthetically is denoted as x =
D1(X,A,B).

Suppose that y1 + y2 + y3 < 0. We have the following theo-
rem.

Theorem III.7: Suppose that (W , y1, y2, y3, y4) and
(Z, z1, z0, x) are the solutions for primal SDP (32) and
dual SDP (33), respectively. Suppose that Rank (W ) is higher
than one and y = y1 + y2 + y3 < 0. Suppose also that

y2 + y(‖ā‖2 − trW ) + āHWā− ‖ā‖2trW ≥ 0. (44)

Then there is a rank-one optimal solution for SDP problem (32).
Proof: See Appendix E.
Suppose y1 + y2 + y3 = 0. Eq. (42) reduces to

W � āāH .

Therefore, we have tr (R̂W ) ≥ āHR̂ā. It is known that if w
satisfies

wwH � āāH ,

then there is λ ∈ C with |λ| ≥ 1 such that w = λā, and vice
versa. Hence, the optimal value is equal to |λ|2āHR̂ā, provided
that w is an optimal solution. Observe that our goal is to
minimize wHR̂w, and therefore, the optimal value is āHR̂ā
when |λ| = 1. Then we obtain the following proposition.

Proposition III.8: Suppose that (W , y1, y2, y3, y4) and
(Z, z1, z0, x) are the solutions for primal SDP (32) and dual
SDP (33), respectively. Suppose that Rank (W ) is higher than
one and y1 + y2 + y3 = 0. Then w = ā is optimal for (31), and
thus, for (28).

C. BLMI Approximation Approach

Note that if the optimal solution W � of (32) is of rank one,
then we claim that the solution w� with W � = w�w�H is
optimal for (31), and thus, for (28). If the solution W � is of
higher rank, we need to build another method to solve (31).

In this subsection, we present a BLMI reformulation for QMI
problem (31) and propose an approximation algorithm for such
BLMI problem.

Note that for a nonzero W � 0, the statement that W is of
rank one is equivalent to that λ2(W ) ≤ 0 (recall that throughout
the paper, we place the eigenvalues of a matrix in a descending
order, e.g., λ1(W ) ≥ λ2(W ) ≥ · · · ≥ λN (W )). Note that an
optimal solution for the relaxation problem (32) cannot be zero.
In fact, if an optimal solution for (32) is the zero matrix, thenw =
0 is optimal for (31), and thus, for (28), which is a contradiction
since we maximize the worst-case SINR (it is always assumed
to be positive and finite).

Clearly, we have that for the nonzero PSD matrix W , the
following statement is true.

Rank (W )=1 ⇔ λ2(W )≤0⇔λ1(W )+λ2(W )≤λ1(W ).

Therefore, we can put the new rank-one constraint λ1(W ) +
λ2(W ) ≤ λ1(W ) into (32), and obtain a reformulation for (31),
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that is,

minimize
W , {yi}4i=1

tr (R̂W )

subject to (29b), (29c), (29d) satisfied,
y1 + y2 + y3 ≤ 0,
λ1(W ) + λ2(W ) ≤ λ1(W ).

(45)

It is worth highlighting that this method is universal, namely,
the constraint λ1(W ) + λ2(W ) ≤ λ1(W ) can be added to an
LMI relaxation problem for which one seeks a nonzero rank-one
solution. Note that this approach based on adding the constraint
λ1(W ) + λ2(W ) ≤ λ1(W ) to an LMI relaxation problem is
different from another approach in [23, pp. 11, Algorithm 2.1],
where the rank reduction algorithm for SDPs is developed based
on the observation that updated solution with reduced rank can
be obtained by multiplying on the middle the factorized higher
rank solution by a non-negative definite and singular matrix
I + αΔ. Here Δ and α are unknowns, which need to be found
so that the non-negative definiteness and singularity of I + αΔ
are guaranteed. Thus, the approach in [23] is also based on
factorization of the general rank solution, but the rank reduction
is achieved in a different manner from that of solving (45).

In order to represent the constraint λ1(W ) + λ2(W ) ≤
λ1(W ), we invoke a result in [21, Sec. 4.2, Example 18c], which
states the equivalence between the sum of K largest eigenvalues
of a real symmetric matrix and a finite LMI representation. For
the completeness, we cite the result as follows.

Lemma III.9: Suppose that SK(W ) is the sum of K largest
eigenvalues of the Hermitian matrix W (K ≤ N ). Then the
epigraph{(W , t) |SK(W ) ≤ t}of the function admits the LMI
representation

t−Ks− tr (Z) ≥ 0 (46)

Z −W + sI � 0 (47)

Z � 0, (48)

where Z is an N ×N Hermitian matrix and s is a real number.
We note that the original result [21] holds for a symmetric

matrix W , but it can be extended to a Hermitian matrix straight-
forwardly, as already stated in the previous lemma.

Therefore, it follows from Lemma III.9 that the constraint
λ1(W ) + λ2(W ) ≤ λ1(W ) has the following LMI represen-
tation.

λ1(W )− 2s− tr (Z) ≥ 0, Z −W + sI � 0, and Z � 0,
(49)

where Z and s are additional variables. Considering that

λ1(W ) = maximize tr (WX) subject to trX = 1, X � 0,

we can reexpress QMI problem (45) into the following problem

minimize
W ,X,Z,{yi}4i=1,s

tr (R̂W )

subject to (29b), (29c), (29d) satisfied,
y1 + y2 + y3 ≤ 0,
tr (WX)− 2s− tr (Z) ≥ 0,
Z −W + sI � 0,
trX = 1,
Z � 0, X � 0, s ∈ R.

(50)

Algorithm 1: Procedure for Solving Problem (28).

Input: R̂, â, η1, η2, ε, ξ;
Output: A solution w� for problem (28);
1: solve (32), returning W �;
2: if W � is of rank one then
3: output w� with W � = w�w�H , and terminate;
4: end if
5: let k = 0; let W 0 be the optimal solution W � for (32);
6: repeat
7: solve (50) with the fourth constraint changed to

tr (W kX)− 2s− tr (Z) ≥ 0, obtaining the solution
W k+1;

8: k := k + 1;
9: until ‖W k −W k−1‖2 ≤ ξ

10: output w� =
√
λ1w1, where λ1 is the largest

eigenvalue of W k and w1 is a corresponding
eigenvector.

Suppose that W � is the optimal solution of (50). It is noticed
that W � must be a rank-one since λ2(W

�) ≤ 0 (or λ1(W
�) +

λ2(W
�) ≤ λ1(W

�)) has been fulfilled automatically in (50).
Therefore, the vector w� with W � = w�w�H is optimal for
(28), and thus, for original RAB problem (10) with A = A1.

We observe that the only difficulty in (50) is the bilinear term
tr (WX) in the fourth constraint (for this reason, the problem
is called a BLMI problem). To overcome the aforementioned
difficulty with (50), we take the high-rank solution W � for
(32) as an initial point W 0, and solve LMI problem (50) with
the fourth constraint changed to tr (W 0X)− 2s− tr (Z) ≥ 0,
obtaining W 1. Set W 0 = W 1 and repeat the step of solving
(50) with the fourth constraint changed, obtaining W 2. Re-
peat the previous two steps, until a stopping criteria (for ex-
ample, ‖W k −W k−1‖2 ≤ ξ, or |λ1(W k)− λ1(W k−1)| ≤ ξ)
is satisfied. We summarize the procedure for solving (28) in
Algorithm 1.

If the rank of W k in Step 10 of Algorithm 1 is one, then w�

with W � = w�w�H is the solution for (28). Otherwise, the so-
lution is w� =

√
λ1w1 as stated in Step 10. The computational

cost of Algorithm 1 is dominated by solving the SDP problem
in Step 7 of each iteration.

The complexity of Algorithm 1, if W � has rank 1, is equiv-
alent to the complexity of solving SDP problem (32) with
N(N + 1)/2 + 3 optimization variables. Then the worst-case
complexity of solving (32) by standard interior-point methods
is of O((0.5N2)4.5) [14], [24]. If W � has a higher rank, SDP
problem (50) with 3N(N + 1)/2 + 5 optimization variables
needs to be solved additionally. The worst-case complexity of
solving (50) is of O((1.5N2)4.5). Thus, the order of complexity
is comparable to that of the MVDR robust adaptive beamfomer
of [19] where the constraints are convex, but also SDPs with
N(N + 1)/2 optimization variables need to be solved. There
is only a constant factor difference of complexities in different
cases.

Note that it is possible that LMI problem (50) with the fourth
constraint changed to tr (W kX)− 2s− tr (Z) ≥ 0 leads to
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infeasibility due to several constraints added. In this case, we set
W k := 2W k and repeat Step 7. By doing so, we wish to provide
a way to enlarge the feasible set of (50). Our simulations show
that a rank-one solution W � := W k in Step 10 can always be
obtained.

IV. SOLVING ROBUST OPTIMIZATION PROBLEM (18) WITH

UNCERTAINTY SET A2 IN (21)

In this section, we study robust adaptive beamforming prob-
lem via worst-case SINR maximization with nonconvex uncer-
tainty set A2 and its extensions.

A. Robust Optimization Problem (18) With Uncertainty Set A2

Let us first look into the minimization problem in the con-
straint of robust optimization problem (18), when A = A2. The
problem then can be written as

minimize
a∈CN

aHwwHa

subject to aHC̄a ≤ Δ0,
N − η1 ≤ ‖a‖2 ≤ N + η2.

(51)

From the feasibility of (51), we have

λN (C̄) ≤ aHC̄a

‖a‖2 ≤ Δ0

N − η1
;

in other words,

λN (C̄)(N − η1) ≤ Δ0. (52)

On the other hand, if Δ0 is sufficiently large, then the constraint
aHC̄a ≤ Δ0 vanishes in the feasible set since it is fulfilled
always. We claim that if Δ0 ≥ λ1(C̄)(N + η2), then it follows
that aHC̄a ≤ Δ0 always holds. In fact, Δ0 ≥ λ1(C̄)(N +
η2) ≥ λ1(C̄)‖a‖2, which means that Δ0/‖a‖2 ≥ λ1(C̄) ≥
aHC̄a/‖a‖2. In other words,Δ0 ≥ aHC̄a. Therefore, in order
to make the first inequality constraint in (51) hold, it should be
satisfied that

λN (C̄)(N − η1) ≤ Δ0 ≤ λ1(C̄)(N + η2), (53)

considering (52).
Suppose that there is a vector a0 such that aH

0 C̄a0 < Δ0 and
‖a0‖2 = N . In other words, problem (51) is strictly feasible.

The SDP relaxation for (51) is

minimize
X∈HN

tr (wwHX)

subject to tr (C̄X) ≤ Δ0,
N − η1 ≤ trX ≤ N + η2,
X � 0

(54)

and its dual problem can be written as

maximize
x,y1,y2

Δ0x+ (N − η1)y1 + (N + η2)y2

subject to wwH − xC̄ − (y1 + y2)I � 0,
x ≤ 0, y1 ≥ 0, y2 ≤ 0.

(55)

It can be seen easily that the dual SDP is strictly feasible. The
primal SDP is also strictly feasible since the point εI + (1−
ε)a0a

H
0 is a strictly feasible point for a sufficiently small ε >

0. Therefore, it follows again from the strong duality theorem

that problems (54) and (55) are solvable and there is zero gap
between them. In addition, there are only two constraints in the
primal SDP, and then a rank-one solution for it can be always
constructed efficiently (see, e.g., [22]). Thereby, SDP relaxation
(54) is tight, and we have v�((51)) = v�((54)) = v�((55)).

Therefore, robust beamforming problem (18) with A2 can be
recast into the following QMI problem:

minimize
w,x,y1,y2

wHR̂w (56a)

subject to Δ0x+ (N − η1)y1 + (N + η2)y2 = 1, (56b)

wwH − xC̄ − (y1 + y2)I � 0, (56c)

x ≤ 0, y1 ≥ 0, y2 ≤ 0. (56d)

Its LMI relaxation can be written as

minimize
W ,x,y1,y2

tr (R̂W ) (57a)

subject to Δ0x+ (N − η1)y1 + (N + η2)y2 = 1, (57b)

W − xC̄ − (y1 + y2)I � 0, (57c)

W � 0, x ≤ 0, y1 ≥ 0, y2 ≤ 0. (57d)

If the solution of LMI problem (57) is of rank one, then problem
(56) is solved. Otherwise, we consider a tightened LMI relax-
ation by adding one more valid linear constraint, applying the
similar idea demonstrated in the previous section.

B. Tightened LMI Relaxation

The second constraint of (56) implies

xλN−1(C̄) + (y1 + y2) ≤ 0, (58)

due to x ≤ 0. Therefore, putting the additional linear constraint
(58) into (56) does not change the set of optimal solutions.
Namely, the following problem

minimize
w,x,y1,y2

wHR̂w

subject to (56b), (56c), (56d) satisfied,
xλN−1(C̄) + y1 + y2 ≤ 0,

(59)

shares the same optimal solution set and the same optimal value
with problem (56). Thus, we obtain the following restricted LMI
relaxation problem

minimize
W ,x,y1,y2

tr (R̂W )

subject to (57b), (57c), (57d) satisfied,
xλN−1(C̄) + y1 + y2 ≤ 0.

(60)

Hence, if rank-one solution w�w�H is optimal for (60), then the
vector w� is optimal for (59), and thus, for (56).

Clearly, the dual of LMI problem (60) is

maximize
Z, z1, z2

z1

subject to R̂−Z � 0,
tr (C̄Z)−Δ0z1 + λN−1(C̄)z2 ≤ 0,
trZ + z2 ≤ z1(N + η2),
trZ + z2 ≥ z1(N − η1),
Z � 0, z1 ∈ R, z2 ≥ 0.

(61)
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Suppose that the primal and dual SDPs are solvable, and possess
the same optimal value (assumed to be positive and finite). Thus,
the complementary conditions include

tr ((R̂−Z)W ) = 0 (62)

x(tr (C̄Z)−Δ0z1 + λN−1(C̄)z2) = 0 (63)

y1(trZ + z2 − (N − η1)z1) = 0 (64)

y2(trZ + z2 − (N + η2)z1) = 0 (65)

z2(xλN−1(C̄) + y1 + y2) = 0 (66)

tr (Z(W − xC̄ − (y1 + y2)I)) = 0. (67)

It follows that tr (R̂W ) = z1 (i.e., the duality gap is zero).
Based on the complementary conditions, we claim some nec-
essary optimality conditions for (60) and (61).

Proposition IV.1: Suppose that (W , x, y1, y2) and
(Z, z1, z2) are the solutions for primal SDP (60) and dual
SDP (61), respectively. If xλN−1(C̄) + y1 + y2 < 0, then it
holds that

1) x < 0;
2) z1 = tr (C̄Z)

Δ0
and z2 = 0;

3) y1 + y2 > 0.
Proof: See Appendix F.
Proposition IV.2: Suppose that (W , x, y1, y2) and

(Z, z1, z2) are the solutions for primal SDP (60) and dual
SDP (61), respectively. If xλN−1(C̄) + y1 + y2 = 0, then the
following statements are true:

1) x < 0;
2) z1 = tr (C̄Z)+z2λN−1(C̄)

Δ0
;

3) y1 + y2 > 0;
4) λ1(W ) ≥ −x(λN−1(C̄)− λN (C̄));
5) if W = wwH , then the optimal value wHR̂w ≥

−x(λN−1(C̄)λN (R̂)− λN (R̂C̄)).
Proof: See Appendix G.
In particular, when the solution W = wwH is of rank-one,

the fourth statement of Proposition IV.2 implies that ‖w‖2 has
the lower bound −x(λN−1(C̄)− λN (C̄)), and when R̂ = I ,
the fifth statement means the same lower bound for ‖w‖2.

To establish a sufficient condition for (60) to have a rank-one
solution, we give the following theorem.

Theorem IV.3: Suppose that (W , x, y1, y2) and (Z, z1, z2)
are the solutions for primal SDP (60) and dual SDP (61),

respectively. If tr (R̂
−1
Z) ≤ 1, then W must be of rank one.

Proof: See Appendix H.

C. BLMI Approximation Approach

Suppose that the solutionW for (60) has rank higher than one.
Therefore, we can apply the BLMI approximation method to
obtain a solution for (59), i.e., also (56). Evidently, QMI problem
(59) can be rewritten as

minimize
W ,x,y1,y2

tr (R̂W )

subject to (57b), (57c), (57d) satisfied,
xλN−1(C̄) + y1 + y2 ≤ 0,
λ1(W ) + λ2(W ) ≤ λ1(W ).

(68)

Algorithm 2: Procedure for Solving Problem (56).

Input: R̂, C̄, Δ0, η1, η2, ξ;
Output: A solution w� for problem (56);
1: solve (60), returning W �;
2: if W � is of rank one then
3: output w� with W � = w�w�H , and terminate;
4: end if
5: let k = 0; let W k be the optimal solution W � for (60);
6: repeat
7: solve (69) with the fourth constraint changed to

tr (W kX)− 2s− tr (Z) ≥ 0, obtaining the solution
W k+1;

8: k := k + 1;
9: until ‖W k −W k−1‖2 ≤ ξ

10: output w� =
√
λ1w1, where λ1 is the largest

eigenvalue of W k and w1 is a corresponding
eigenvector.

Moreover, problem (68) can be further recast into

minimize
W ,X,Z,x,y1,y2,s

tr (R̂W )

subject to (57b), (57c), (57d) satisfied,
xλN−1(C̄) + y1 + y2 ≤ 0,
tr (WX)− 2s− tr (Z) ≥ 0,
Z −W + sI � 0,
trX = 1,
Z � 0, X � 0, s ∈ R.

(69)

This problem can be solved in a similar way as problem (50) is
solved. We summarize the procedure in Algorithm 2.

If the solution in Step 10 W k = w�w�H is of rank one, then
w� is a solution for (56). Otherwise, we regard

√
λ1w1 as a

solution for (56), where λ1 is the largest eigenvalue and w1 is
a corresponding eigenvector. If the problem solved in Step 7 is
infeasible, we adopt the same strategy as in Subsection III-C to
enlarge the feasible set and continue to solve it in an approximate
way. Similar to Algorithm 1, the complexity of Algorithm 2,
if W � has rank 1, is equivalent to the complexity of solving
SDP problem (56) only with N(N + 1)/2 + 3 optimization
variables. If W � has a higher rank, SDP problem (69) with
3N(N + 1)/2 + 4 optimization variables needs to be solved
additionally.

In order to solve robust problem (10) with the uncertainty set
A3, we note that

A3 = {a |aHCa ≥ Δ1, N − η1 ≤ ‖a‖2 ≤ N + η2}
is equivalent to

A3 = {a |aH(−C)a ≤ −Δ1, N − η1 ≤ ‖a‖2 ≤ N + η2}.
(70)

In this case, the valid linear constraint is

−xλ2(C) + y1 + y2 ≤ 0,

which can be added to enhance the LMI relaxation problem.
Therefore, Algorithm 2 can be applied to solve the problem as
well.
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By adding one more similarity constraint, the uncertainty set
A2 can be generalized to the following set

A4 = {a |aHC̄a ≤ Δ0, N − η1 ≤ ‖a‖2 ≤ N + η2,
‖a− â‖2 ≤ ε},

(71)
and the uncertainty set A3 can be extended as the following set

A5 = {a |aHCa ≥ Δ1, N − η1 ≤ ‖a‖2 ≤ N + η2,
‖a− â‖2 ≤ ε}.

(72)
In [19], MVDR RAB problems with A4 and A5 have been
studied. However, robust beamforming problem (10) with either
A4 or A5 can be discussed as well, according to the same vein
applied herein. Then, Algorithm 2 modified accordingly can also
be employed to solve it.

V. NUMERICAL EXAMPLES

Let us consider a uniform linear array with N = 12 omni-
directional sensors spaced half a wavelength appart from each
other, and the array noise is a spatially and temporally white
Gaussian vector with zero mean and covariance matrix I , which
is an adequate assumption in radar and wireless communi-
cations. Two interferers with the same interference-to-noise
ratio (INR) of 30 dB are assumed to impinge upon the array
from the angles θ1 = −15◦ and θ2 = 15◦ with respect to the
array broadside, and the desired signal is always present in
the training data cell. The training sample size T is preset
to 100 snapshots. The signal of interest impinges upon the
array from the direction θ = 7◦ while the presumed direction
is θ0 = 5◦ (thus â = d(θ0)). The norm perturbation parameters
η1 and η2 are both set to 0.2N , and ε = 0.3N . All results are
averaged over 200 simulation runs. Parameter γ in (14) satisfies√
γ = 0.1λN (R̂), where the data sample covariance matrix R̄

is different in each run.
In addition to the signal look direction mismatch, we take

into account mismatch caused also by wavefront distortion in
an inhomogeneous medium [18]. That is, we assume that the
signal steering vector is distorted by wave propagation effects
in the way that independent-increment phase distortions are ac-
cumulated by the components of the steering vector. We assume
that the phase increments are independent Gaussian variables
each with zero mean and standard deviation 0.02, and they are
randomly generated and remain unaltered in each simulation
run.

A. Example 1: Uncertainty Set A1 (i.e., (19))

In this example, the three problems, i.e., problem (28) (via
Algorithm 1), problem (13) (also cf. [10]) and MVDR RAB
problem (5) with uncertain set A1 (via, e.g., [19, Algorithm 1]),
are solved in every simulation run. The beamformers obtained
from the aforementioned three methods are termed respectively
as “Proposed QMI beamformer 1,” “SOCP beamformer,” and
“MVDR RAB beamformer 1” in our figures. The standard CVX
toolbox [25] is used for solving the corresponding optimization
problems. Since the solver used for solving SOCP and SDP prob-
lems in CVX is SeDuMi [26], which is based on interior-point

Fig. 1. Average beamformer output SINR versus SNR with T = 100. Pro-
posed QMI beamformer 1 corresponds to problem (28) (via Algorithm 1),
MVDR RAB beamformer 1 corresponds to problem (5) with uncertainty set
A1 (via, e.g., [19, Algorithm 1]), and SOCP beamformer corresponds to prob-
lem (13) (also cf. [10]).

Fig. 2. Average array output power versus number of snapshots with SNR
equal to 23 dB. Proposed QMI beamformer 1 corresponds to problem (28)
(via Algorithm 1), MVDR RAB beamformer 1 corresponds to problem (5)
with uncertainty set A1 (via, e.g., [19, Algorithm 1]), and SOCP beamformer
corresponds to problem (13) (also cf. [10]).

methods, the worst-case complexities are O(N3.5) for SOCP
beamformer and O((N2)4.5) for MVDR RAB and proposed
QMI beamformers. The factor differences of complexities for
different instances of MVDR RAB and QMI beamformers are
negligible even for N = 12 since the number of optimization
variables is dominated by N2 = 122 = 144 as a result of SDP
relaxation for MVDR RAB and QMI beamformers. Thus, the
constant factor differences between different instances of these
problems account in all cases for less than a small fraction of
1% of all computations required for finding the corresponding
solutions.

Fig. 1 demonstrates the beamformer output SINR versus the
signal-to-noise ratio (SNR). As we can see, the output SINR
obtained through (28) is better than that obtained through the
other two beamformers, especially at moderate and high SNRs.
Fig. 2 depicts the output SINR versus the number of snapshots
with SNR equal to 23 dB (= 10 log10(200)). From the figure, we
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Fig. 3. Average beamformer output SINR versus SNR with Θ = [0◦, 10◦]
and T = 100. Proposed QMI beamformer 2 corresponds to problem (10) with
A = A2 (i.e., QMI problem (56), via Algorithm 2), Proposed QMI beamformer
2 corresponds to problem (10) with A = A3 (i.e., QMI problem (56) with (70),
via Algorithm 2), MVDR RAB beamformers 2 and 3 correspond to problem (5)
with A = A2 and A = A3, respectively, solved via [19, Algorithm 1].

observe that our proposed beamformer always provides higher
SINR than the other two beamformers.

B. Example 2: Uncertainty Sets A2 (i.e., (21)) and A3 (i.e.,
(22))

Suppose that the angular sectorΘ of interest is [0◦, 10◦]. Prob-
lem (10) withA = A2 (i.e., QMI problem (56), via Algorithm 2),
and problem (10) with A = A3 (i.e., QMI problem (56) with
(70), via Algorithm 2) are solved, as well as MVDR RAB prob-
lems (5) with A = A2 and A = A3 are solved via [19, Algo-
rithm 1] in a similar way. The corresponding beamformers from
the previous four problems are called respectively, “Proposed
QMI beamformer 2,” “Proposed QMI beamformer 3,” “MVDR
RAB beamformer 2,” and “MVDR RAB beamformer 3” in
our figures. Fig. 3 displays the array output SINR versus the
SNR. We can observe from the figure that the output SINR
through the worst-case SINR maximization based beamformer
(the proposed QMI beamformer 2 or 3) is higher than that
obtained through the MVDR RAB beamformer 2 or 3. Also,
it can be seen that the beamformer (either the QMI or MVDR
RAB beamformer) obtained by corresponding robust problem
with A3 has better performance than the beamformers obtained
by solving the robust problem with A2. Fig. 4 shows the output
SINR versus the number of snapshots when SNR= 23 dB.
From the figure, we can clearly confirm similar behaviors to
those in Fig. 3 for the four different beamformers. Moreover,
as the number of snapshots increases the performance of the
proposed QMI beamformers 2 and 3 also improves by 2–3 dB.
Note that by the classic Reed-Mallett-Brennan rule [27], the
number of snapshots required for the date covariance matrix
estimation which would guaranteed the performance loss of no
more than 3 dB is T = 2N . In our example, T = 24 snapshots
is sufficient, and 2–3 dB improvement when the number of
snapshots increases to 100 is the possible improvement with

Fig. 4. Average array output power versus number of snapshots with
Θ = [0◦, 10◦] and SNR equal to 23 dB. Proposed QMI beamformer 2 corre-
sponds to problem (10) withA = A2 (i.e., QMI problem (56), via Algorithm 2),
Proposed QMI beamformer 2 corresponds to problem (10) with A = A3 (i.e.,
QMI problem (56) with (70), via Algorithm 2), MVDR RAB beamformers 2 and
3 correspond to problem (5) with A = A2 and A = A3, respectively, solved
via [19, Algorithm 1].

respect to the number of snapshots. Only the proposed QMI
beamformers 2 and 3 demonstrate this improvement.

VI. CONCLUSION

We have considered the RAB problem by maximizing worst-
case SINR with two types of nonconvex uncertainty sets for
steering vectors. We have reformulated the SINR maximization
problem as QMI problems, and proposed tightened LMI relax-
ations for them. Some necessary and sufficient conditions for the
LMI relaxation problems to admit a rank-one solution have been
established. Then the LMI problems with the rank-one constraint
have been further recast into corresponding BLMI problems, and
an algorithm to solve such BLMI problems has been proposed,
returning an optimal/suboptimal solution for the original RAB
problem. The improved performance of the proposed robust
beamformers has been demonstrated by simulations in terms
of the array output SINR.

Future related research topics include a general form of the
uncertainty set for steering vectors (with, e.g., three or four
double-sided quadratic constraints), general-rank useful sig-
nal models (rather than the rank-one signal model considered
herein), and other efficient methods to deal with the problem of
a rank-one solution for the LMI relaxation problems.

APPENDIX

A. Proof of Lemma III.1

Proof: It can be easily seen that â is an interior point of the
uncertainty set A1. Let

X(λ) = (1− λ)

[
ââH â

âH 1

]
+ λ

[
I 0
0 1

]
, λ ∈ (0, 1).

It can be seen that X(λ) � 0 for 0 < λ < 1. It is also easy
to check that tr (A1X(λ)) = −(1− λ)ε+ λ(‖â‖2 − ε+N),
tr (A2X(λ)) = N , and tr (A3X(λ)) = 1 for any λ ∈ (0, 1).
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Therefore, for sufficiently smallλ > 0, we have tr (A1X(λ)) <
0, and the matrix X(λ) � 0 is strictly feasible for SDP (26).

To construct a strictly feasible point for the dual SDP (27),
we note the constraint[

wwH − (y1 + y2 + y3)I y1â

y1â
H −y4 − y1(‖â‖2 − ε)

]
� 0.

Let y2 = 1, y3 = −1, y1 be any negative number, and y4 be such
that

−y4 > y1(‖â‖2 − ε) + y21â
H(wwH − y1I)

−1â.

Then such a feasible point is strictly feasible for dual SDP (27).
Thus, we complete the proof.

B. Proof of Proposition III.3

Proof:
1) Suppose that y1 = 0. Then we have y2 + y3 ≤ 0, and[

W − (y2 + y3)I 0
0 −y4

]
� 0,

which implies that −y4 ≥ 0. From the first constraint for
the primal SDP, it follows that

(N − η1)y2 + (N + η2)y3 − 1 = −y4 ≥ 0,

which means further that

0 ≥ η2y3 ≥ 1 + η1y2 −N(y2 + y3) ≥ 1.

This is a contradiction, and thus, we have y1 < 0.
2) The third and the fourth constraints of problem (33) allow

for the constraints
trZ − x

N + η2
≤ z0 ≤ trZ − x

N − η1
. (73)

Therefore, on one hand, trZ − x > 0 (otherwise z0 ≤ 0,
which clearly is impossible according to (41)) while on
the other hand, at least one of the two inequality in (73) is
strict. It follows from complementary conditions (36) and
(37) that at least one of the two numbers y2 and y3 is zero.
In other words, y2y3 = 0.

3) It follows from the assumption that y2 + y3 = −y1 > 0.
Considering y2 ≥ 0 and y3 ≤ 0, we have y2 > 0. There-
fore, it holds that y3 = 0, since y2y3 = 0.

C. Proof of Proposition III.4

Proof:
1) According to (35) and the established fact that y1 < 0

(the first claim in Proposition III.3), we immediately have
trZ − 2�(âHz1) + z0(‖â‖2 − ε) = x, and then obtain

z0 =
2�(âHz1)− (trZ − x)

‖â‖2 − ε
.

In addition, it follows from (34), (35), (39), (40) and (41)
that

z0 =
y1x+ (y2 + y3)trZ

1− y4
,

as long as y4 = 1.

2) If

−y4 − y1(‖â‖2 − ε) = 0,

then y1 = 0 since Q in (40) is positive semidefinite. This
is a contradiction to the established fact that y1 < 0 (the
first claim in Proposition III.3), and therefore, we have

−y4 − y1(‖â‖2 − ε) > 0.

3) From the first constraint in problem (32) and the earlier
established fact that y3 = 0 (the third claim in Proposi-
tion III.3), we have

−y4 = y2(N − η1)− 1.

According to the previous claim, we obtain

y2(N − η1)− y1(‖â‖2 − ε) > 1.

It follows from the fact that−y1 = y2 (also the third claim
in Proposition III.3) that

y2 >
1

2N − ε− η1
.

D. Proof of Theorem III.5

Proof:
1) It follows from (34) that wH(R̂−Z)w = 0, which im-

mediately implies that (R̂−Z)w = 0 since R̂−Z � 0.
2) Recalling (42), we obtain

−(y1 + y2 + y3)I � āāH −wwH . (74)

It can be verified that if ā and w are linearly independent,
then āāH −wwH is a rank-two indefinite matrix with
eigenvalues

λ =
‖ā‖2 − ‖w‖2 ±

√
(‖ā‖2 + ‖w‖2)2 − 4|āHw|2

2
.

(75)
Therefore, due to (74), we have

−(y1 + y2 + y3) ≥ ‖ā‖2−‖w‖2+
√

(‖ā‖2+‖w‖2)2−4|āHw|2
2 ,

which is the positive eigenvalue of āāH −wwH , and
thus, the proof is complete.

E. Proof of Theorem III.7

Proof: Let (tr (R̂W ), tr (W ), tr (āāHW )) = (z0, z1, z2),
where in fact z0 is the optimal value. Observe that

tr

((
R̂− z0

z1
I

)
W

)
= 0

and

tr

((
āāH − z2

z1
I

)
W

)
= 0.

It follows from Lemma III.6 that there exists a rank-one matrix
decomposition W =

∑R
r=1 wrw

H
r such that

tr

((
R̂− z0

z1
I

)
wrw

H
r

)
= 0



230 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

and

tr

((
āāH − z2

z1
I

)
wrw

H
r

)
= 0, ∀r.

Let

w =
√
z1

w1

‖w1‖ . (76)

Then, it is not hard to verify that(
wHR̂w, ‖w‖2, |āHw|2

)
= (z0, z1, z2). (77)

Therefore, we claim that assumption (44) leads to

y2 + y
(‖ā‖2 − ‖w‖2)− (‖w‖2‖ā‖2 − |āHw|2) ≥ 0.

(78)
Hence, it follows that

āH
(−(y1 + y2 + y3)I +wwH

)−1
ā ≤ 1. (79)

In other words,[
wwH − (y1 + y2 + y3)I y1â

y1â
H −y4 − y1(‖â‖2 − ε)

]
� 0.

(80)
This fact together with (77) implies that wwH (with w defined
by (76)) is optimal for SDP problem (32).

As for how to get (79) from (78), we calculate it as follows.
Using the equality

(−(y1 + y2 + y3)I +wwH)−1

= −1
y1+y2+y3

I −
−1

y1+y2+y3
wwH

−(y1+y2+y3)+wHw
,

it is straightforward to see that (79) is equivalent to (78).

F. Proof of Proposition IV.1

Proof:
1) Suppose that x = 0. Then y1 + y2 < 0. From (62) and

(67), we then can see that

(y1 + y2)trZ = tr (WZ) = tr (R̂W ) > 0,

which is a contradiction. Here we use the fact that the opti-
mal values tr (R̂W ) = z1 > 0. Therefore, we necessarily
have x < 0.

2) Using the assumption that xλN−1(C̄) + y1 + y2 < 0, it
follows from (66) that z2 = 0, and it also follows from
(63) and the above established fact that x < 0 that z1 =
tr (C̄Z)

Δ0
.

3) From (67), we have

(y1 + y2)tr (Z) = tr (ZW )− xtr (C̄Z)

= z1 − xΔ0z1

= z1(1− xΔ0)

> 0,

where we apply tr (ZW ) = tr (R̂W ) = z1 and
tr (C̄Z) = z1Δ0. Hence, y1 + y2 > 0.

G. Proof of Proposition IV.2

Proof:
1) It follows from (62) and (67) that

0 < tr (R̂W ) = tr (ZW ) = tr ((xC̄ + (y1 + y2)I)Z)

= xtr ((C̄ − λN−1(C̄)I)Z).

Since x ≤ 0, hence we have x < 0, and

tr (C̄Z) < λN−1(C̄)trZ. (81)

2) According to (63), the optimal value is

z1 =
tr (C̄Z) + z2λN−1(C̄)

Δ0
> 0.

3) From the previous statement, we have

0 < z1 =
tr (C̄Z) + z2λN−1(C̄)

Δ0

<
λN−1(C̄)trZ + z2λN−1(C̄)

Δ0

=
λN−1(C̄)(trZ + z2)

Δ0

≤ λN−1(C̄)z1(N + η2)

Δ0
,

where the first inequality is due to (81) and the second
inequality is due to the dual feasibility (the third constraint
of (61)). Therefore, it follows that

0 < Δ0 ≤ λN−1(C̄)(N + η2),

which means that λN−1(C̄) > 0. Thereby, y1 + y2 =
−xλN−1(C̄) > 0.

4) By the assumption, we have y1 + y2 = −xλN−1(C̄).
From the second constraint of (60), it follows that

W − xC̄ + xλN−1(C̄)I � 0,

which implies that

W − xC̄ � −xλN−1(C̄)I. (82)

Therefore, we can write that

λ1(W )− xλN (C̄) ≥ λN (W − xC̄) ≥ −xλN−1(C̄),

where we use the property λ1(A) + λn(B) ≥ λn(A+
B) in the first inequality and apply the fact that λn(A) ≥
λn(B) for A � B to (82) in the second inequality. In
other words,

λ1(W ) ≥ −x(λN−1(C̄)− λN (C̄)).

5) It follows from (82) that

wwH − xC̄ � −xλN−1(C̄)I, (83)

which implies that

R̂
1/2

wwHR̂
1/2 − xR̂

1/2
C̄R̂

1/2 � −xλN−1(C̄)R̂.
(84)
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Therefore, we have

λN

(
R̂

1/2
wwHR̂

1/2 − xR̂
1/2

C̄R̂
1/2

)

≥ −xλN−1(C̄)λN (R̂). (85)

Note that

λ1(R̂
1/2

wwHR̂
1/2

) = wHR̂w, λN (R̂
1/2

C̄R̂
1/2

)

= λN (R̂C̄).

Hence,

wHR̂w − xλN (R̂C̄)

≥ λN

(
R̂

1/2
wwHR̂

1/2 − xR̂
1/2

C̄R̂
1/2

)

≥ −xλN−1(C̄)λN (R̂),

which means that

wHR̂w ≥ xλN (R̂C̄)− xλN−1(C̄)λN (R̂)

= − x(λN−1(C̄)λN (R̂)− λN (R̂C̄)).

H. Proof of Theorem IV.3

Proof: It can be observed that if Z is a rank-one matrix, then
it follows from (62) that W must be of rank one (since R̂ is
positive definite and W = 0). Now, we suppose that the rank

of Z is greater than one. Let (tr (R̂
−1
Z), tr (C̄Z), tr (Z)) =

(δ1, δ2, δ3). Then, we have

tr

((
R̂

−1 − δ1
δ3

I

)
Z

)
= 0, tr

((
C̄ − δ2

δ3
I

)
Z

)
= 0.

From Lemma III.6, it follows that there is a rank-one matrix
decomposition Z =

∑R
r=1 zrz

H
r (where R is the rank of Z)

such that

tr

((
R̂

−1− δ1
δ3

I

)
zrz

H
r

)
=0, tr

((
C̄− δ2

δ3
I

)
zrz

H
r

)
=0,

r = 1, . . . , R.
Define

z =
√
δ3

z1

‖z1‖ .

It can be verified that

(zHR̂
−1
z, zHC̄z, zHz) = (tr (R̂

−1
Z), tr (C̄Z), tr (Z)).

(86)

Since tr (R̂
−1
Z) ≤ 1, hence zHR̂

−1
z ≤ 1, which implies that[

R̂ z
zH 1

]
� 0,

which in turn means that R̂− zzH � 0. Therefore, it follows
from (86) that (zzH , z1, z2) is an optimal solution for problem
(61), and thus, the optimal solution (W , x, y1, y2) for primal
problem (60) fulfills the complementary conditions (62)–(67).
Again from (62), we claim that the rank of W is one.
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