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Abstract—The increasing availability of 10G Ethernet network
capabilities challenges existing transport layer protocols. As
10G connections gain momentum outside of backbone networks,
the choice of appropriate TCP congestion control algorithms
becomes even more relevant for networked applications running
in environments such as data centers. Therefore, we provide an
extensive overview of relevant TCP congestion control algorithms
for high-speed environments leveraging 10G. We analyzed and
evaluated six TCP variants using a physical network testbed,
with a focus on the effects of propagation delay and significant
drop rates. The results indicate that of the algorithms compared,
BIC is most suitable when no legacy variant is present; CUBIC
is suggested otherwise.

I. INTRODUCTION

The concept of layering separates concerns on different

levels of network protocols. However, there are obvious and

less obvious dependencies between different layers. While

higher layers build on the services of lower layers, the ac-

tual characteristics of the lower layers also influence those

higher layers. The transport layer is responsible only for

providing end-to-end communication services between remote

applications. Idealy, characteristics of lower layers should not

influence its behavior. However, congestion avoidance, one of

the common services of transport layer protocols, relies on a

set of properties of the underlying network links, primarily

latencies, drop rates, error rates, and bandwidth.

Due to this fact, advances in network technologies also

have an effect on the behavior of higher protocols. For the

predominantly TCP/IP-based stack of the Internet, continuous

advances over the past decades have led to an increase of avail-

able bandwidth by several orders of magnitude, significantly

affecting the performance of congestion control algorithms.

The interplay of bandwidth, latency, and packet loss is key to

all congestion control algorithms when balancing optimal link

utilization while still preventing network congestion. When the

increasing link bandwidth raises the bandwidth-delay product

(BDP), the effects of occasional packet loss impacts the

utilization disproportionally and requires counter-measures by

extending TCP [6].

Furthermore, specific TCP congestion control algorithms

have emerged to address the challenges introduced by high-

speed networks. By adapting behavior and optimizing window

parameters, these TCP variants aim for better and faster utiliza-

tion while still remaining fair to unmodified TCP connections.

With the advent of widely available 10G Ethernet networks,

the current state of the art of TCP comparisons primarily

focusing on 1G becomes outdated. In this paper, we provide

an in-depth comparison of various different TCP variants in a

physical 10G network testing environment.

The remainder of this paper is organized as follows. Sec-

tion II introduces the TCP variants to be evaluated and points

to previous work that also compared TCP in high speed

networks. In Section III, we present our methodology and the

metrics used for our comparison. Section IV illustrates our

test setup for the evaluation. In Section V, we discuss our

results, and summarize take aways in Section VI, followed by

a conclusion in Section VII.

II. BACKGROUND

In this section we give background information about the

evaluated TCP variants. Furthermore, the related work section

summarizes other relevant papers comparing TCP variants and

their results.

A. TCP Congestion Control Algorithms

The following provides a brief overview of these widely

known TCP congestion control algorithms: TCP Reno, Scal-

able TCP, HS-TCP, H-TCP, BIC and CUBIC. Here, we

only provide the additive increase and multiplicative decrease

(AIMD) parameters, which are of particular interest for our

analysis. The reader is referred to the original literature

for more detailed information. The AIMD behavior can be

described with an additive parameter (ACK received) and a

multiplicative parameter (triple duplicate ACK, packet lost):

ACK : cwnd← cwnd+ α (1)

LOSS : cwnd← cwnd · β (2)

Note that for small congestion windows (cwnd), all of these

variants fall back to behave like Reno.
a) TCP Reno: TCP Reno is the most common TCP

variant, and is also referred to as standard TCP. This variant

initially uses slow start (α = 1, β = 1
2 ); after the first loss, α

is set to 1
cwnd .

b) Scalable TCP: Scalable TCP [8] is designed to

achieve high throughput more quickly than Reno by making

the recovery time independent of window size, which is

beneficial for high bandwidth, high latency links. The AIMD

parameters for Scalable TCP are α = 0.01 and β = 0.875.
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c) HighSpeed TCP: HighSpeed TCP (HS-TCP) [2] is

designed to increase robustness of the transmission rate against

packet loss, which is especially important for networks with

long links. For this algorithm, the following AIMD parameters

apply: α = fα(cwnd)/cwnd and β = gβ(cwnd), where gβ
(decreasing) and fα (increasing) are logarithmic functions.

d) H-TCP: H-TCP [9] is designed to provide a better use

of bandwidth for long, high-speed links with high BDP, while

maintaining backwards compatibility with regular TCP flows.

Unlike previous approaches, the authors use the time (Δ)

since the last congestion event to set the AIMD parameters,

which can be summarized as follows: α = 2(1−β)fα(Δ)
cwnd

and β = RTTmin

RTTmax
, unless the measured throughput changes

significantly (controlled with a parameter ΔB = 0.2). fα(Δ)
is 1 for backwards compatibility (below a threshold ΔL);

fα(Δ) = 1 + 10(Δ − ΔL) + 0.25(Δ − ΔL)
2 is suggested

to achieve high utilization quickly.

e) BIC TCP: BIC TCP [13] was developed to address

the observed suboptimal RTT fairness of earlier congestion

control algorithms. RTT fairness refers to fairness between

flows with different RTTs. The authors point out that the

problem is inherent to the increased utilization, due to the

way earlier algorithms are designed, and develop BIC to solve

this challenge. Their algorithm uses two phases to update the

bandwidth; linear increase to approach a fair window size,

and binary search to improve RTT fairness. Linear increase

is similar to additive increase, while binary search essentially

uses two window sizes (Wmax and Wmin) that updates these

windows and the actual window size to approximate the

optimal window size. Once Wmax and Wmin are converging,

BIC falls back to linear increase.

f) TCP Cubic: CUBIC TCP [3] is an improvement of

BIC, which aims to compensate the aggressive behavior of

BIC to more reasonable levels, and simplifies the algorithm.

The impact of this aggressive behavior was especially notable

in networks with low RTT. Like BIC, CUBIC uses the Wmax

window; however, it sets the window size using a cubic

function that plateaus at Wmax:

W (t) = C · (t−K)3 +Wmax (3)

where C is a scaling factor, t the time since the last window

reduction and K = 3
√
Wmax · β/C. This results in a window

increase that is similar to BIC’s binary search.

B. Related Work

There are many TCP performance evaluation papers that

cover environments with link speeds up to 1 Gbps [4], [12],

but there are very few that look at 10 Gbps transmission rates.

In the following, we briefly review two relevant studies from

this body of work.

Li et al. [10] measured the performance of Scalable TCP,

HS-TCP, H-TCP, BIC and FAST-TCP on the basis of fairness,

backward compatibility, efficiency, and responsiveness includ-

ing convergence time. All tests were performed in a test setup

based on the dumbbell topology with two competing flows

starting at different points. The authors varied the parameters

of propagation delay (up to 320 ms), the bottleneck bandwidth

(up to 250 Mbps) and different numbers of parallel web

traffic flows. The tested TCP variants provide poor fairness

but better link utilization than standard TCP. Beyond that,

the algorithms Scalable TCP, HS-TCP and BIC suffer from

high convergence times. While this paper provides a detailed

overview and a comprehensive analysis of the different TCP

congestion control algorithms and their performance, the re-

sults are not transferable to high-speed networks because

congestion control algorithms behave differently depending

on bandwidth. For example, the additive increase function

changes linearly with the bandwidth in Scalable TCP and

Reno, but logarithmically in HS-TCP as we describe in more

detail in the following section. Similarly, the behavior of BIC

and CUBIC depends on time and bandwidth differently than

the other variants. Therefore, results of lower bandwidth tests

do not apply to networks with higher bandwidth.

Arokkiam et al. [14] evaluated the performance of the

TCP variants Reno, BIC and H-TCP over XG-PON. The

authors assess the results on the basis of efficiency, fairness,

responsiveness and convergence. One single or two competing

highspeed flows were induced, alternately with or with no

competing UDP background traffic, into a 10 Gbps XG-

PON network. All algorithms show good link utilization in

a single flow environment with very small RTTs, but the link

utilizations decreases with increasing round-trip times. With

two competing flows with different starting times the authors

were not able to achieve a proper convergence between the

flows. With existing background traffic, two new TCP flows

show varying convergence behavior. This paper provides an

extensive analysis of the mentioned TCP variants. However,

key variants such as CUBIC and HS-TCP are missing.

III. METHODOLOGY

We chose an experimental approach for our comparison.

Utilizing a dedicated testbed, we conducted a large number of

measurements of the different TCP variants recording various

metrics.

A. Use Cases

Because we focus on high-speed networking, we motivate

our tests with a traffic pattern and workload typical for data

centers. For economic reasons, Ethernet has been replacing

more specialized link layer technologies within data centers

for TCP/IP-based networks. Alizadeh et al. [1] analyzed large

amounts of data center traffic and identified two major traffic

types: (i) relatively short flows with low latency requirements

and (ii) large flows requiring high throughput. The former type

is primarily a result of web application requests, database

queries, and similar interactions within distributed applica-

tion architectures. The latter type is based on long-running

interactions, such as software updates, continuous database

replications, data-intensive application workloads, or backup

processes.

For our own experimental setup, we concentrate on this

second traffic type, as it is more interesting to consider for

707707707



high-speed networks. When long-running, latency-insensitive

flows concurrently compete for utilization on a shared high-

speed network, characteristics of different congestion control

algorithms become apparent.

Furthermore, we include network traffic both inside and

between data centers. The intra-data center traffic is the more

obvious use case and is characterized by shorter physical

links and corresponding lower end-to-end latencies between

nodes. The inter-data center traffic represents communication

between geographically separated data centers, yielding much

higher latencies. This use case includes the usage of multiple

data centers for higher availability, increased locality, and

improved resilience. Still, the traffic patterns between sites

yielded by continuous data synchronization, database repli-

cation, and periodically disseminated backup remains very

similar to traffic within a single data center site. Note that

we expect data centers to have dedicated remote connections,

as we do not take into account background Internet traffic for

our tests.

Although we motivate our experiments with large flows

between and within data centers, we believe that results can

be generalized to many other use cases with similar traffic and

network infrastructure properties.

B. Criteria

We used the five criteria used by Li et al. [10] and adapted

them to the aforementioned use cases where necessary.

Responsiveness describes the ability of the algorithms to

recover quickly from random packet loss. We measure the av-

erage throughput at different drop probabilities for a packet in

the network. We also measured this with different propagation

delays as this has a major impact on the recovery speed.

Efficiency is the utilization of the network resources. A

protocol is efficient if the available bandwidth at the bottleneck

is utilized as fully as possible. In some applications — in

addition to this metric — not only the average utilization is

important but also the maximum and minimum utilization.

For instance, when incoming data is processed immediately,

applications will be slowed down if the bandwidth fluctuates

heavily. Therefore, we chose to also assess the quantiles to

measure if high throughput at its peaks can be accomplished

(Q 0.75), if the average throughput is acceptable (Q 0.5)

and if the throughput has an acceptable minimum (Q 0.25).

In addition to the responsiveness, which shows the average

throughput, this metric shows how stable the algorithms are.

We measure Fairness with Jain’s fairness index [7]:

J(x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n ·∑n
i=1 x

2
i

with xi being the mean of flow i with n flows overall. We

analyze two flows running in parallel, each with the same

configuration, e.g. TCP variant and parameters. A perfect

algorithm would result in J = 1, worst case would be J = 1
n .

Backwards compatibility is a measurement of fairness

within networks where older systems are still in use. We

adapted our fairness test by using Reno for congestion control

Sender Receiver

Fig. 1: Standard Dumbbell Topology.

Ring

NetFPGA

Sender Receiver

Fig. 2: Extended Dumbbell Topology.

in one of the two flows to evaluate how the congestion control

algorithms behave in networks with legacy systems. Reno was

chosen as it is the most common legacy variant still in use.

ε-Convergence time tc was defined by Li et al. [10] as the

time required for the short-term average throughput to achieve

ε · ūi, where ūi is the long-term average throughput of stream

i. Here, the short-term average throughput is defined as:

ui(t+ δ) = (1− λ) · ui(t) + λ
Δu

δ

Where Δu is the number of bytes transferred, and λ is a

parameter that specifies how quickly the short-term average

throughput changes. In practice, we observe that the new

stream always takes a longer period of time to converge to

its long-term average throughput; results from [10] suggest

that convergence time should be measured by analyzing this

new stream. Extending the metric provided in prior work,

we compute the average distance from the long-term average

throughput after the convergence time is reached, in order to

quantify the stability of this convergence, which we refer to

as spread (where T is the number of measurements):

s =

∑T
t=tc
|ūi − ui(t)|
T

For every TCP variant, we conducted tests for each afore-

mentioned metric using the test setup described in the follow-

ing section. Every test was conducted five times over a period

of 15 min to ensure that measurement errors can be ruled out

and random deviations do not distort the results.

IV. TEST SETUP

Our test setup is based on the standard dumbbell topology

with two senders and two receivers (Figure 1). Each of them is

equipped with HP NC523SFP Dual 10 Gbps NICs and Ubuntu

14.04.1 (Linux 3.16). We used 10G Ethernet with IPv4 on the

lower layers as these are the most common protocols in our

use cases. For the efficiency and responsiveness measurements,

only one sender and one receiver were active. Two HP 5920

JG296A switches (Firmware HPE Comware Software, Version

7.1.045, Release 2422P01) were used to combine and separate

the flows. Flow control in the switches was turned off. The

program iperf3 was used to produce TCP traffic with up to
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TABLE II: Test overview; every listed parameter permutation was tested.

Criterium Metrics Parameters # of Tests

Responsiveness Average throughput
Variant:

Reno,
Scalable,
HS-TCP,
BIC, CUBIC,
H-TCP

RTT:

0.2 ms,
6.2 ms,
12.2 ms,
24.2 ms

Drop rate:

0 or 10−i,i ∈ {7, 6, 5, 4, 3, 2} 840
Efficiency Throughput distribution

Fairness Jain’s Fairness Index,
Link utilization

x x 120

Downwards compatibility 110

Convergence time Convergence time, Spread
Variant for 2nd flow:
same as first variant or Reno

220

Σ 1,280

Karlsruhe

Stuttgart

Ulm
Tübingen

100
km

117 km

50
km

Fig. 3: Ring configuration in the state-owned research network.

TABLE I: Used TCP parameters.

TCP variant Parameters

Scalable α = 0.02, β = 0.875,
Low Window = 50

HS-TCP Low Window = 38,
High Window = 83000,
High P = 10−7, High Decrease = 0.1

BIC Smax = 16, B = 4, β = 819
2014

,
Low Window = 14

CUBIC β = 717/1024,
legacy if cwnd < Wtcp(t)

H-TCP ΔL = 1s,ΔB = 0.2

10 Gbps for each sender. Several adjustments in the software

settings were necessary to enable the senders to satisfy the

bandwidth requirements. For example, Large Receive Offload
(LRO) and Generic Receive Offload (GRO) had to be turned

off. LRO and GRO merge packets in the NIC upon receiving

them. As the loss of one packet means that the whole group has

to be resent, this can lead to very low link utilization. The TCP
Window Scaling Option had to be turned on to allow bigger

window sizes exceeding the default maximum of 65535 bytes

to a maximum of 1 GiB. The TCP Timestamp which extends

the TCP header by 8 bytes was deactivated as it is not used

in our scenarios and the bandwidth can therefore be used

for payload instead. TCP selective acknowledgement (TCP
SACK) was activated to accommodate the high number of

packets in 10 Gbps networks and to avoid retransmissions. The

Nagle Algorithm to facilitate groupings of small data amounts

to bigger segments was also turned on to allow for higher

throughput. Table I shows our settings for the TCP variants

and when they fall back to legacy mode. These values are the

default values of Linux 3.16 and are predominantly based on

the parameters set by the original developers of the congestion

control algorithms. For further details on how to facilitate

such tests and which points to consider when setting up a

TCP benchmarking environment, we refer to our extensive

discussion in [11].

To test our criteria, the test network had to fulfill two

essential requirements: Variable propagation delay and an

adjustable drop rate. To achieve this, the dumbbell topology

was extended as described in the following.

We used a dedicated, state-owned research network which is

equipped with configurable 10x10 Gbps connections between

research institutions in Ulm, Tübingen, and Karlsruhe to

achieve variable propagation delay, as shown in Figure 3. The

connections between the universities were used to form 4 ring

structures between the locations. The rings begin and end in

Ulm at the patch panel directly connected to the switches used

for the tests. There are 38 transceivers but no switches within

one 534 km long ring yielding a delay of 6 ms. Connecting all

four rings therefore enables us to induce up to 24 ms of real

physical delay in our tests. This network setup experiences

rare bit flips, which in turn cause retransmissions of TCP

packets. Those retransmissions can be observed 15 times on

average with a standard deviation of 2.8 within a 15 min test

at 10 Gbps. Therefore, the likelihood of a loss to occur is

2.2× 10−8 for every packet. For comparison: to comply with

802.3ae [5], the error rate of optical fiber connections cannot

exceed 1× 10−12. At the time of writing, the cause of these

errors could not be found. However, in the following sections,

we clearly document when this error has an impact on the

quality of the results.

A NetFPGA 10G Card as a standalone bump-in-the-wire

device was used to realize the adjustable drop rate. The refer-

ence NIC implementation of the NetFPGA project was used

and adjusted to our needs1. In its standard configuration the

card is a simple forwarding device at linespeed. Our extension

makes it possible to set an evenly distributed likelihood for a

packet to be dropped.

The NICs are able to send 9.5 Gbps without using jumbo

frames and are only able to send full 10 Gbps with jumbo

1https://github.com/NetFPGA/
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frames activated. Unfortunately, jumbo frames are not sup-

ported by the NetFPGA. Therefore, all tests were conducted

with a maximum throughput of 9.5 Gbps per NIC.

Table II shows an overview of all undertaken tests and the

achieved results. As every permutation of variant, RTT, and

drop rate or second variant was tested and every test was

conducted five times, a total of 1,280 tests were undertaken.

V. RESULTS

Testing the responsiveness and efficiency at an RTT of

0.2 ms and without packet drops, every TCP congestion

control algorithm fully utilizes the link, as can be seen in

Figure 4a. Even with drop rates of up to 1× 10−6, the average

path utilization does not fall under 9.48 Gbps. At a drop

rate of 1× 10−5, however, Reno and CUBIC show significant

performance losses. CUBIC shows the same behavior as Reno

because it operates in legacy mode and thus behaves just like

Reno in this scenario. The other variants perform significantly

better with a cwnd that is at least 10 times bigger. At a drop

rate of 1× 10−4 packets, it can clearly be seen that BIC works

best in lossy networks with low latency and reaches 8.3 Gbps.

Without additional delay in the network, all variants are

equally efficient and show low scattering without packet drops.

Differences occur only at 1× 10−5 and above when CUBIC

and Reno start to perform worse than the other variants. Q(0.5)

is 8.6 Gbps, Q(0.25) 8.4 Gbps and Q(0.75) is 8.8 and 8.9 Gbps

respectively. They both show the same behavior as CUBIC

is in legacy mode. At a drop rate of 1× 10−4, CUBIC and

Reno show significant scattering of 1.5 Gbps between 4 and

5.5 Gbps; 25% of all values lie above 4.8 Gbps.

As Figure 4b shows, the differences between congestion

control algorithms become apparent at a drop rate of 1× 10−3.

Reno, CUBIC and HS-TCP show the same behavior with

bandwidth scattering between 1.9 and 2.7 Gbps. BIC performs

best and reaches up to 8.5 Gbps with 50% of all measurements

between 8.2 and 8.27 Gbps.

With an RTT of 6.2 ms, different behavior than with 0.2 ms

can be observed with drop rates above 1× 10−7 (Figure 5a).

Reno reaches only 3.6 Gbps while the high-speed variants

reach the uppermost limit, with the exception of H-TCP

with 9.35 Gbps. At a drop rate of 1× 10−6, Reno reaches

1.4 Gbps. CUBIC (6.26 Gbps) and HS-TCP (6.52 Gbps) also

show significant performance drops, despite not performing

in legacy mode. H-TCP with a similar cwnd still shows

better performance than the aforementioned variants as the

algorithm raises the bandwidth faster after a reduction. Note

that BIC outperforms all other algorithms. Even at a drop

rate of 1× 10−2 BIC still reaches an average throughput of

2.3 Gbps while every other variant lies below 1 Gbps. BIC’s

very good performance can also be observed in Figure 5b

showing the efficiency at a 1× 10−5 drop rate.

At 12.2 ms RTT — as can be seen in Figure 6a — Reno loses

bandwidth even with low drop rates quite drastically. The other

variants show very diverse reactions. At 1× 10−5, only BIC

can keep the bandwidth high with 4.9 Gbps on average. The

runner-up, Scalable, only reaches 1.6 Gbps.

Reno only reaches the bandwidth it does because of a high

throughput in the beginning of the test, because with very low

drop probability, it takes several seconds for the first drop

to occur. After the first drop, Reno only reaches between

949 Mbps and 1.8 Gbps at 1× 10−7 drop rate. At a drop

rate of 1× 10−6 (Figure 6b), some variants but especially

H-TCP and HS-TCP show high scatter. H-TCP reaches a an

average of at least 6.2 Gbps in 75% of all measurements.

HS-TCP reaches an average of 3 Gbps. However, 50% of

all measurements lie between 1.7 and 2.9 Gbps. The highest

bandwidth is 9.42 Gbps, the lowest 611 Mbps.

At an RTT of 24.2 ms, the aforementioned CRC errors

in the networks warp the results (Figure 7a). Even with no

induced drop rate, the errors from the network infrastructure

lead to low throughput for some of the variants. Relative to the

other variants, CUBIC’s performance improves significantly

with higher RTT, which shows that CUBIC is designed with

high RTTs in mind. At 12.2 ms, CUBIC reached 71% of the

throughput of H-TCP at a drop rate of 1× 10−6; at 24.2 ms

it already reaches 78%.

The effects that can be observed at 12.2 ms are even more

significant at 24.2 ms. The network CRC errors also take

their toll, as can be seen in Figure 7b. Reno loses bandwidth

solely because of the scarce CRC errors and the following

retransmissions and fluctuates heavily between 742 Mbps and

9.48 Gbps. HS-TCP is also highly influenced by the errors.

50% of the measurements show an average of 4.5 to 7.3 Gbps.

Outliers can be observed between 3.3 Gbps and 9.48 Gbps.

It comes with no surprise that in a local network with no

additional latency (0.2 ms) — shown in Figure 10 — all TCP

congestion control algorithms show complete fairness. The

biggest difference between the two flows is 150 Mbps and

the two flows utilize the ring fully (Figure 8a). Even legacy

Reno performs as well as the other variants. The bandwidth

utilization is lowest for CUBIC with 9.29 Gbps and best for

BIC with 9.42 Gbps for both flows combined. At 12.2 ms,

fairness lies between 0.96 (CUBIC) and 0.989 (BIC). The

very good fairness values come from the flows increasing

their bandwidth in parallel as their algorithms behave identical

under those circumstances and as there is no overload for

most of the test duration. A short overload period in the

beginning when both flows try to send at 10 Gbps and long

recovery times afterwards lead to very low link utilizations

between 3.6 Gbps and 5.6 Gbps with all variants. Reno

performs worst in this regard but the other variants HS-

TCP, H-TCP and CUBIC show little improvement. BIC and

Scalable perform best. With even longer recovery times, the

link utilization becomes worse with an RTT of 24.2 ms. Here,

H-TCP performs a lot better than before compared to the other

variants. Except for HS-TCP, all variants show more than two

times the link utilization of Reno. The logarithmic functions

of HS-TCP seem to work badly with high latency.

The resulting fairness is worse for every permutation when

the different variants are not competing with themselves but

with Reno to evaluate downwards compatibility, which can be

seen in Figure 8b. With higher RTT, the flow with the high-
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Fig. 4: Responsiveness & efficiency at 0.2 ms RTT.
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Fig. 5: Responsiveness & efficiency at 6.2 ms RTT.

speed variant always takes more bandwidth than the Reno flow

as the algorithms have a shorter recovery time after packet

drops. H-TCP, CUBIC and HS-TCP are the fairest which

negatively reflects in their results concerning link utilization as

a fair bandwidth propagation means more bandwidth for Reno

and less bandwidth for the high-speed flows with a therefore

smaller cwnd. Hence, in case of overload, the high-speed flow

needs more time to recover and the link utilization is lower.

As BIC and Scalable are less fair, the overall link utilization is

higher, which becomes especially apparent with 24.2 ms RTT.
In previous work [10], evaluating the convergence time, λ

was not clearly specified: we set λ = 0.1, which appeared

to be a good trade-off; a smaller λ leads to a smoother

convergence, but increases the overall convergence time. It is

out of scope for this work to provide an extensive analysis

of the effect of this metric parameter (just as we do not

change the ε = 0.8 given by Li et al. [10]). Instead we

measured the effect of round trip time and congestion control

algorithm on ε-convergence time. In addition, we computed

a measure for the stability of this convergence, as discussed

in Section III-B. The results are shown in Figure 9, where

the bar chart represents convergence time and the scatter plot

reflects the spread. For clarity, we left out the measurements

with an RTT of 0.2ms: these measurements converged virtually

instantly with very little spread. A significant result is that any

high speed TCP variant leads to a very unstable convergence

when streams with Reno are involved. This is due to the

fact that the distribution of bandwidth is very uneven (see

Figure 10), which amplifies the effects of retransmissions

and leads to higher spread. As expected, Reno itself shows

unstable behavior as the RTT increases. This is related to the

fact that Reno’s responsiveness is dependent on RTT, and it

was one of the reasons the new congestion control algorithms

were developed in the first place. Finally, we point out that

convergence time goes down as the RTT increases, which is

in part due to reduced utilization. This reduced utilization is

caused by the CRC failures of the link, as discussed in the

setup.

VI. TAKE AWAYS

It becomes evident that, when there is no packet loss in the

network, the actual TCP variant has no strong influence on

the performance. However, as soon as there is packet loss —

especially with noticeable RTT — the congestion control algo-
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Fig. 7: Responsiveness & efficiency at 24.2 ms RTT.

rithm affects the quality of service — e.g., link utilization and

responsiveness — immensely.

Taking into account our use cases mentioned before, BIC

shows the best properties for intra-data center and inter-data

center communication alike. Especially for higher drop rates,

BIC outperforms every other variant. In every test, BIC shows

the best behavior or — in case of link utilization and fairness

against itself — is one of the best variants.

However, when looking into backwards compatibility, BIC

shows its weakness. Like HS-TCP and Scalable, at an RTT of

6.2 ms, BIC dominates the network link. Here, CUBIC is by

far the best alternative, which also performs well in the other

tests. At an RTT of 12.2 ms and above, fairness becomes less

important as low link utilization leads to a network without

overload and therefore enough bandwidth for every user.

The decision as to which variant is best for a network cannot

be based on a general answer. It depends on the amount

of influence one has over the network. For example, if the

network is within a data center where every system is under

control of the local administrators, our analysis shows that BIC

should be used on every system. However, the variants we

investigated are all developed with downwards compatibility

to Reno in mind and other variants that were not part of our

analysis might perform better in this scenario. On the other

hand, CUBIC is the best choice if the composition of the

network components is not known and older systems might

still be present, as it offers a reasonable trade-off between link

utilization and efficiency on the one hand and also fairness

towards other systems on the other hand.

VII. CONCLUSION

In order to assess the performance and behavior of TCP

congestion control algorithms in 10G Ethernet networks, we

evaluated TCP Reno and five modern variants (Scalable TCP,

HS-TCP, BIC, CUBIC, and H-TCP) in a separate test environ-

ment. While we induced drop rates with a custom NetFPGA

device, we caused latencies by using a dedicated research

network with wide-area physical links yielding actual prop-

agation delay. For each variant, we assessed responsiveness,

efficiency, fairness, downwards compatibility, and convergence

time with varying RTT and drop-rate parameters. In total, we

executed more than 1,200 isolated test runs to collect data for

all metrics.
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Fig. 8: Link utilization of different TCP congestion control algorithms.
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Fig. 9: Convergence time and spread of the converged flows.

While all modern variants generally outperformed TCP

Reno in a 10G setting, the comparison among the other

variants yielded more varying results. BIC leads most of our

results in the test setup due to its aggressive behavior. At the

same time, BIC performed poorly at backwards compatibil-

ity and its applicability in higher-latency and heterogeneous

networks should be considered carefully. For such networks,

CUBIC may represent a more appropriate alternative. In

summary, we recommend the switch to a modern TCP variant

for 10G networks and the selection of a variant based on

the predominant latency and drop rate characteristics that the

networked applications will experience in that network.

A. Future Work

While we compared several loss-based congestion control

algorithms that promise downwards compatibility to legacy

TCP variants such as Reno, algorithms that were not designed

with this in mind, promise improved bandwidth utilization.

One example for such a TCP variant would be the delay-based

TCP Vegas algorithm. Application of delay-based algorithms

in a heterogeneous network with loss-based variants present is

still an open challenge. In more homogeneous networks, how-

ever, these variants could significantly improve performance.

Furthermore, we used the dumbbell topology for our test

setup in line with prior research. However, more complex

topologies such as the parking lot topology could yield more

insights whether certain TCP congestion control algorithms

are suitable for corresponding scenarios.
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