
BAH: A Bitmap Index Compression Algorithm for
Fast Data Retrieval

Chenxing Li§†, Zhen Chen∗†‡, Wenxun Zheng†‡, Yinjun Wu†‡, Junwei Cao†‡
∗Fundamental Industry Training Center (iCenter), Beijing, China
†Research Institute of Information Technology, Beijing, China

‡Tsinghua National Lab for Information Science and Technologies (TNList), Beijing, China
§Institute of Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

Corresponding e-mail: zhenchen@tsinghua.edu.cn

Abstract—Efficient retrieval of traffic archival data is a must-
have technique to detect network attacks, such as APT(advanced
persistent threat) attack. In order to take insight from Internet
traffic, the bitmap index is increasingly used for efficiently
querying over large datasets. However, a raw bitmap index leads
to high space consumption and overhead on loading indexes.
Various bitmap index compression algorithms are proposed
to save storage while improving query efficiency. This paper
proposes a new bitmap index compression algorithm called
BAH (Byte Aligned Hybrid compression coding). An acceleration
algorithm using SIMD is designed to increase the efficiency of
AND operation over multiple compressed bitmaps. In all, BAH
has a better compression ratio and faster intersection querying
speed compared with several previous works such as WAH,
PLWAH, COMPAX, Roaring etc. The theoretical analysis shows
that the space required by BAH is no larger than 1.6 times
the information entropy of the bitmap with density larger than
0.2%. In the experiments, BAH saves about 65% space and 60%
space compared with WAH on two datasets. The experiments also
demonstrate the query efficiency of BAH with the application in
Internet Traffic and Web pages.

Index Terms—Big Data, Traffic Archival, Web pages, Index,
Bitmap Index

I. INTRODUCTION

Efficient retrieval of traffic archival data is a must-have
technique to detect network attacks, such as APT(advanced
persistent threat) attack. However, the fast increasing amount
of traffic data makes the efficient network analysis a challenge
work. The VNI report[1] from Cisco indicated that the Internet
traffic data had increased more than fivefold in the past 5
years and would increase about threefold in the next 3 years.
It remains a problem that how to achieve the real-time data
retrieval in massive archived Internet traffic data.

To achieve efficient query, the index for database is de-
signed for avoiding a mass of loading tasks while responding
queries. When a query was launched, the program would load
corresponding index files instead of original data. Among the
various index methods, the bitmap indexing obtains advantages
from the efficiency of bitwise operation on the modern CPU,
and is increasingly used for efficiently querying [2].

However, a raw bitmap index requires large storage, which
results in a serious problem with I/O speed. Compared with
an immense amount of time on the loading process, the

advantage of the bitwise operation is negligible. Fortunately,
various bitmap index compression algorithms have been
devised for the relief of the I/O problem on the raw bitmap
indexes, such as BBC[3], WAH[4], PLWAH[5], EWAH[6],
PWAH[7], COMPAX[8], SECOMPAX[9], PLWAH+[10],
CONCISE[11], SPLWAH[12], Roaring[13], MASC[14],
CAMP[15], SBH[16]. A detailed survey has been presented
in [17]. All of these algorithms have both acceptable I/O time
and efficient bitwise operations.

Most bitmap compression algorithms are the variants of
WAH. These algorithms use more complicated coding schemes
to save the space consumption and I/O time usage. But the
complicated encoding scheme increases the bitwise operation
time. Some algorithms achieve the efficient query in another
way, which adopt more simple coding schemes, such as
Roaring[13] and CAMP[15]. This two algorithms have a
marvelous speed of the bitwise operation. However, the simple
coding scheme makes some concessions to space consumption.
As the limited in-memory size can’t restore the index for the
huge amount of data, the optimization on I/O time must be
also taken into consideration.

In this paper, a new bitmap index compression algorithm
named BAH (Byte Aligned Hybrid compression coding) is
proposed to improve the compression performance without
loss in query efficiency. BAH uses the same basic ideas as
WAH, which are Run Length Encoding and dealing with the
raw bitmap in equal-length chunk. Unlike most variants of
WAH, BAH doesn’t use more complicated codebook. Instead,
BAH encodes the raw bitmap using a simple rule and stores the
result in byte other than word, with the help of the other three
auxiliary arrays. Benefiting from the simple encoding scheme,
the SIMD operations can be applied to the compressed bitmap
to accelerate the AND operation.

This paper is organized as follows: Section 2 introduces
the background of the bitmap index compression algorithms.
Section 3 describes the details of the BAH algorithm. A the-
oretical analysis of the space consumption of WAH, PLWAH,
COMPAX, Roaring and BAH is presented in Section 4.
Section 5 presents the applications of BAH in Internet Traffic
archival and Web page statistic. The experiments demonstrate
the compression ratio and query efficiency of BAH compared
with other algorithms. The conclusion and future work are

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Chenxing Li. Under license to IEEE.

DOI 10.1109/LCN.2016.120

697

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Chenxing Li. Under license to IEEE.

DOI 10.1109/LCN.2016.120

697

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Chenxing Li. Under license to IEEE.

DOI 10.1109/LCN.2016.120

697

given in Section 6.

II. BACKGROUND FOR BITMAP INDEX

The basic notion of bitmap index is to keep several bitmaps,
each of which corresponds to a possible value of an attribute.
An example of a bitmap index for one attribute ranged from
1 to 4 is shown in Table I. Bitmap indexes allow fast bitwise
AND/OR operation between columns, which makes the query
process efficient.

However, a raw bitmap index causes a large space con-
sumption. One attribute with 𝑛 items and 𝑑 possible values
requires 𝑛𝑑 bits for the bitmap index, in which 𝑛(𝑑 − 1)
bits are 0. To deal with such problem, a considerable amount
of bitmap index compression algorithms, such as WAH, have
been proposed.

WAH divides the raw bitmap into 31-bit chunks, and
encodes continuous the fill chunks (all 31 bits are the same)
into a single fill word (which is noted as 0F or 1F), while
encoding all the other chunks into a literal word (which is
noted as L).

It is mentioned in the previous works that WAH has a dis-
satisfactory performance when encoding some specific Words.
For example, if the set bit appears every 31 bits in the raw
bitmap, WAH will encode all the chunks as Literal, which
leads to a large space consumption. In order to avoid such con-
sumption, some other bitmap index compression algorithms
are proposed to improve the compression ratio.

PLWAH is an encoding algorithm over the result of WAH,
which tries to deal with the chunk with only one set bit to save
more space than WAH. PLWAH encodes the fill word and its
next literal word into one word if the chunk of the literal word
contains only one set bit.

COMPAX improves WAH in a different way. COMPAX
also tries to combine literal words and fill words for the
result of WAH. However, COMPAX uses a codebook to deal
with various situations. Instead of only considering the fill
word followed with a special literal word, COMPAX finds the
pattern LFL(literal-fill-literal) and FLF(fill-literal-fill) from the
result of WAH and tries to combine them into one word.

Roaring considers this method in a different way. Roaring
divides the raw bitmap into chunks with 65536 bits. The chunk
with low density (no more than 4096 set bits) is encoded in

TABLE I: An Example of a Bitmap Index

RowID Value
Bitmap index

=1 =2 =3 =4

1 4 0 0 0 1

2 3 0 0 1 0

3 2 0 1 0 0

4 3 0 0 1 0

5 4 0 0 0 1

6 1 1 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
...

...
...

...

16-bit integer list. The chunk with high density (more than
4096 set bits) are stored in raw bitmap directly.

However, most algorithms only focus on the optimization on
some specific Literal Words in WAH, with the space wasted on
the fill words ignored. If the average length of continuous fill
chunks was small, most of the counter in the fill words would
require a few bits instead of an entire word. For example, if
the set bit appears every 124 bits in the raw bitmap, only 2
bits of 31 bits-counter part are used, while 29 bits are wasted.

In order to deal with such situations, BAH uses bytes
instead of words to record the run length. BAH also adopts
the idea that the word patterns appealing frequently needs
special treatment. The coding scheme of BAH is given in the
following section.

III. CODING ALGORITHM

A. Notations

For clarity, all the nouns, symbols and notations used in the
following part of this paper are defined in this sub-section.

1) Word means a binary string with 32 bits.
2) All the binary strings are subscripted with 2. Binary

string and an integer are used interchangeably.
3) The set 𝑆𝑛 is defined as {𝑥 ∈ ℤ ∣ 0 ≤ 𝑥 ≤ 𝑛− 1}.
4) 𝑤[𝑖] (𝑖 ∈ 𝑆32) represents the 𝑖𝑡ℎ bit of the Word 𝑤.

𝑤[0] is the least significant bit and 𝑤[31] is the most
significant bit.

5) 𝑤[𝑖 : 𝑗] represents the substring 𝑤[𝑗−1] ⋅ ⋅ ⋅𝑤[𝑖+1]𝑤[𝑖].
5) The Workload of a Word means the number of set

bit in a Word. For example, the overload of Word
000000010000000000010000000000002 is 2.

6) The Loading Part of 𝑤 is the substring removing leading
zero bits and trailing zero bits of 𝑤. The Loading
Length of a Word is the length of its Loading Part. For
the Word 000000010010000000000000000000002, the
Loading Part is 10012 and the Loading Length is 4.

B. Encodable Pattern and Pattern Function

BAH divides the raw bitmap index into chunks with 32
bits. In other words, the algorithm regards the input as a Word
array. In a real implementation, some Words in the input array
may appear more frequently than the others. For example,
in a sparse bitmap, the Word with a low Workload appears
more frequently than the Word with a high Workload. Using
less space to encode these Word patterns can save the space
consumption.

Two functions 𝑓 : 𝑆64 → {0, 1}32, 𝑔 : 𝑆64 × 𝑆256 →
{0, 1}32 are defined in order to encode such Word. 𝑓 makes
a mapping relation between 64 different Words and integers
in 𝑆64. So it is possible that all the Words in the image set
of 𝑓 are encoded in one byte. (More details are shown in
subsection C). Each Word in the image set of 𝑓 is called One
byte Encodable Pattern (OEP). Each Word in the image set
of 𝑔 can be encoded using two bytes in coding method, which
is called Two bytes Encodable Pattern (TEP).

698698698

BAH contains 64 OEPs and 16384 TEPs. Both OEPs and
TEPs are called Encodable Patterns. Function 𝑓, 𝑔 are called
Pattern Functions.

In the encoding process, it is necessary to recognize
the OEPs and TEPs from in the input Words. For each
Encodable Pattern 𝑤, the algorithm needs to find out the
pre-image of 𝑤 in the pattern function. A general way to
deal with this problem is Hash Set, which stores the pairs
(key,value)=(𝑤, 𝑓−1(𝑤)) or (𝑤, 𝑔−1(𝑤)) for all the Encodable
Patterns. Another way is designing a customized program. If
the choice of Encodable Patterns is fixed before compiling
the program, we can design a special procedure to judge
and compute the pre-image of these Encodable Patterns. The
experiments in this paper use the second way.

In the decoding process, the algorithm constructs two
lookup tables for Pattern Functions 𝑓, 𝑔. The lookup table for
𝑓 requires 256 bytes, which can be stored in the L1 cache.
The lookup table for 𝑔 requires 64 KB, which can be stored
in the L2 cache. So the computation of 𝑓, 𝑔 can be applied
efficiently.

The choice of Encodable Patterns depends on the character
of the original data. In our experiment, the Words with
Loading Part 112 and the Words whose Workload is 1 or 32
are chosen as the OEPs. We choose the Words having one of
the following characters to be the TEPs.
∙ The Word whose Workload is 3, 30 or 31.
∙ The Word whose Loading Part are all set bits.
∙ The Word whose Loading Length is less than 10.

C. Coding Method

It is mentioned in the previous subsection that the raw
bitmap is regarded as a Word array. The coding method
classifies all the Words into 3 types: Zero, Encodable and
Literal.

∙ Zero(Z): All the 32 bits are 0.
∙ Encodable(E): The Words belong to Encodable Patterns.
∙ Literal(L): All the other Words.

BAH uses a main array in byte to encode the original
sequence, with the help of 3 auxiliary arrays: data array(in
Word), index array (in byte) and counter array (in Word).
Each byte in the main array may contain some corresponding
elements in the other 3 arrays. In the encoding process, each
time the algorithm appending one byte to the main array,
corresponding elements are appended to the other 3 arrays
concurrently. In the decoding process, each time a byte is
retrieved from the main array, the algorithm accesses its
corresponding elements in the other 3 arrays.

The design of elements in Main array is shown in Table
II. The two most significant bits of each byte in main array
denote the type and the six least significant bits are regarded
as an integer 𝑛 ∈ 𝑆64.

D. Encoding process

In the Encoding process, the input array is divided into
several segments. Continuous Words with the same type
construct one segment. After that, all the Literal segments are

TABLE II: The design for bytes in main array

Type 𝑛 Corresponding elements and Meaning

002
𝑛 = 0

One integer 𝑥 in the counter array

𝑥 continuous Zero Words

1 ≤ 𝑛 ≤ 63 𝑛 continuous Zero Words

012

𝑛 = 0 (Undefined)

1 ≤ 𝑛 ≤ 63
𝑛 continuous Word in the data array

𝑛 continuous Literal Words

102 0 ≤ 𝑛 ≤ 63 One Encodable Word: 𝑓(𝑛)

112 0 ≤ 𝑛 ≤ 63
One byte 𝑚 in the index array

One Encodable Word: 𝑔(𝑛,𝑚)

TABLE III: The encoding scheme for each segment type

Type Length 𝑙
Main array

Corresponding Elements
type 𝑛

Zero
1 ≤ 𝑙 ≤ 63 002 𝑙 None

𝑙 > 252 002 0
Append integer 𝑙

to counter array

Literal 1 ≤ 𝑙 ≤ 63 012 𝑙
Append 𝑙 Literal Words

to data array

OEP
𝑙 = 1 102 𝑎 None

𝑤 = 𝑓(𝑎)

TEP
𝑙 = 1 112 𝑎

Append byte 𝑏

𝑤 = 𝑔(𝑎, 𝑏) to index array

divided into sub-segments with no more than 63 Words. All
the Zero segments with less than 253 words are divided into
sub-segments with no more than 63 Words. All the Encodable
segments are divided into sub-segments with length 1.

The following example shows the way to divide the Word
array into 4 segments and 10 sub-segments.

Uncompressed bitmap, regarded as a Word array:

ZZZZ ⋅ ⋅ ⋅ ZZZ︸ ︷︷ ︸
70×Z

EELLLLL ⋅ ⋅ ⋅ LLL︸ ︷︷ ︸
270×L

ZZZZZ ⋅ ⋅ ⋅ ZZZ︸ ︷︷ ︸
270×Z

Word array is divided into 4 segments:

ZZZZ ⋅ ⋅ ⋅ ZZZ︸ ︷︷ ︸
70×Z

EE LLLLL ⋅ ⋅ ⋅ LLL︸ ︷︷ ︸
270×L

ZZZZZ ⋅ ⋅ ⋅ ZZZ︸ ︷︷ ︸
270×Z

4 segments are divided into 10 sub-segments:

Z ⋅ ⋅ ⋅ Z︸ ︷︷ ︸
63×Z

Z ⋅ ⋅ ⋅ Z︸ ︷︷ ︸
7×Z

E E L ⋅ ⋅ ⋅ L︸ ︷︷ ︸
63×L

L ⋅ ⋅ ⋅ L︸ ︷︷ ︸
63×L

L ⋅ ⋅ ⋅ L︸ ︷︷ ︸
63×L

L ⋅ ⋅ ⋅ L︸ ︷︷ ︸
63×L

L ⋅ ⋅ ⋅ L︸ ︷︷ ︸
18×L

Z ⋅ ⋅ ⋅ Z︸ ︷︷ ︸
270×Z

After dividing step, each segment or sub-segment is encoded
using the rules showed in Table III.

In the implementation, two dividing steps and one encoding
step are executed in one scan. The Words are fetched from the
original bitmap and stored it into a buffer. Once the next Word
has the different type from the Words in buffer, or the length
of the buffer exceeds the threshold (63 for Literal and 1 for
Encodable Word), the buffer is regarded as a sub-segment and
encoded according to Table III.

E. AND operation over multiple bitmaps

AND operation can be applied over multiple compressed
bitmaps 𝐵0, ⋅ ⋅ ⋅ , 𝐵𝑛−1 concurrently. The corresponding raw

699699699

Input: The compressed bitmaps 𝐵0, ⋅ ⋅ ⋅ , 𝐵𝑛−1.
Output: The result of AND operation formatted in integer
array.

1: Construct 4 pointers 𝑝𝑚𝑎𝑖𝑛,𝑖, 𝑝𝑑𝑎𝑡𝑎,𝑖, 𝑝𝑖𝑛𝑑𝑒𝑥,𝑖, 𝑝𝑐𝑜𝑢𝑛𝑡𝑒𝑟,𝑖
and two interger 𝑘𝑖,𝑚𝑖 for each 𝐵𝑖.

2: Initialize all the pointers to the start of corresponding
array.

3: Set 𝑘𝑖 ← −1,𝑚𝑖 ← 0 for all 𝑖
4: 𝑘𝑚𝑎𝑥 ← −1, 𝑖← 0, 𝑙𝑒𝑎𝑑𝑒𝑟 ← −1, 𝑤 ← 0xffffffff
5: while all the pointers are within the boundary do
6: if 𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑖 then
7: Output 32(𝑘𝑚𝑎𝑥 + 1) + 𝑗 for all 𝑗 with 𝑤[𝑗] = 1.
8: 𝑘𝑚𝑎𝑥 ← 𝑘𝑚𝑎𝑥 + 1, 𝑙𝑒𝑎𝑑𝑒𝑟 ← −1
9: 𝑤 ← 0xffffffff

10: end if
11: if 𝑙𝑒𝑎𝑑𝑒𝑟 = −1 then 𝑙𝑒𝑎𝑑𝑒𝑟 ← 𝑖
12: 𝑤 ←move(𝐵𝑖, 𝑘𝑚𝑎𝑥, 𝑤)
13: if 𝑤 = 0 then
14: 𝑘𝑚𝑎𝑥 ← 𝑘𝑖, 𝑤 ← 0xffffffff, 𝑙𝑒𝑎𝑑𝑒𝑟 ← −1
15: end if
16: 𝑖← (𝑖+ 1 mod 𝑛)
17: end while

Algorithm 1: AND operation over 𝑛 bitmaps

bitmaps are denoted by 𝐶0, ⋅ ⋅ ⋅ , 𝐶𝑛−1. During AND opera-
tion, the pointers for 4 arrays are maintained for each bitmap.
Each bitmap also maintains an integer 𝑘 to denote the current
position in the original bitmap and an integer 𝑚 to record
the number of literal that has not been read in current Literal
sub-segment.

Algorithm 1 shows AND operation briefly, outputs the result
formatted in integer list, each element of which is an index of
set bit in the answer bitmap. Algorithm 2 is a sub-function
called by Algorithm 1. Let 𝑤𝑖,𝑘𝑚𝑎𝑥+1 denote the word of
bitmap 𝐶𝑖 at position 𝑘𝑚𝑎𝑥+1. The return value of Algorithm
2 is 𝑤𝑖,𝑘𝑚𝑎𝑥+1 AND 𝑤.

In these two algorithms, the pointers always point to the next
elements to be read and move to the next element immediately
once the content pointed has been read.

Algorithm 1 sequentially computes the result of each po-
sition. 𝑘𝑚𝑎𝑥 denotes the last position which has been dealt
with. The result of AND operation at position 𝑘𝑚𝑎𝑥 + 1 will
be recorded in 𝑤.

Each time updating 𝑘𝑚𝑎𝑥, to get the result at position
𝑘𝑚𝑎𝑥 +1, the Algorithm 1initialize 𝑤 ← 0xffffffff firstly.
Then each bitmap 𝐵𝑖 reads its original Word at position
𝑘𝑚𝑎𝑥 + 1 and merges the answer to 𝑤 by applying 𝑤 ← 𝑤𝑖

AND 𝑤 in turn (Line 12). Once all the bitmaps merge their
answers, or 𝑤 equals to 0 during this process, the algorithm
outputs the result at position 𝑘𝑚𝑎𝑥+1 and updates 𝑘𝑚𝑎𝑥. The
variable 𝑙𝑒𝑎𝑑𝑒𝑟 is used to determine whether all the bitmaps
have merged their answers.

In Algorithm 2, 𝑘𝑖 represents the position in 𝐶𝑖 which is

Input: 𝐵𝑖, corresponding varibles of 𝐵𝑖, 𝑘𝑚𝑎𝑥 and 𝑤
Output: Updated 𝑤
Note: This algorithm may modify some variables used in
Algorithm 1, such as 𝑘𝑖.

1: 𝑐𝑖 ← 𝑚𝑖

2: 𝑏𝑓 ← 012
3: while 𝑘𝑚𝑎𝑥 > 𝑘𝑖 + 𝑐𝑖 do
4: Move pointer 𝑝𝑑𝑎𝑡𝑎,𝑖 forward 𝑚𝑖 words.
5: 𝑚𝑖 ← 0, 𝑘𝑖 ← 𝑘𝑖 + 𝑐𝑖
6: Read the byte 𝑏 pointed by 𝑝𝑚𝑎𝑖𝑛,𝑖.
7: 𝑏𝑓 ← 𝑏[6 : 8]
8: 𝑏𝑙 ← 𝑏[0 : 6]
9: if 𝑏 = 0 then

10: Read the integer 𝑎𝑖 pointed by 𝑝𝑐𝑜𝑢𝑛𝑡𝑒𝑟,𝑖
11: 𝑐𝑖 ← 𝑎𝑖
12: else
13: if 𝑏𝑓 = 002 then 𝑐𝑖 ← 𝑏𝑙
14: if 𝑏𝑓 = 012 then 𝑐𝑖 ← 𝑏𝑙,𝑚𝑖 ← 𝑏𝑙
15: if 𝑏𝑓 = 102 then 𝑐𝑖 ← 1
16: if 𝑏𝑓 = 112 then 𝑐𝑖 ← 1, Read the byte 𝑖𝑛𝑑𝑒𝑥

pointed by 𝑝𝑖𝑛𝑑𝑒𝑥,𝑖
17: end if
18: end while
19: if 𝑏𝑓 is 002 then
20: 𝑘𝑖 ← 𝑘𝑖 + 𝑐𝑖
21: return 0.
22: end if
23: if 𝑏𝑓 is 012 then
24: 𝑟𝑖 ← 𝑘𝑚𝑎𝑥 − 𝑘𝑖
25: Move pointer 𝑝𝑑𝑎𝑡𝑎,𝑖 forward 𝑟𝑖 words.
26: 𝑚𝑖 ← 𝑚𝑖 − 𝑟𝑖.
27: Read the byte 𝑤𝑖 pointed by 𝑝𝑑𝑎𝑡𝑎,𝑖
28: 𝑚𝑖 ← 𝑚𝑖 − 1.
29: end if
30: if 𝑏𝑓 is 102 or 112 then
31: Calculate 𝑤𝑖 using pattern function and 𝑖𝑛𝑑𝑒𝑥
32: end if
33: 𝑘𝑖 ← 𝑘𝑚𝑎𝑥 + 1
34: return 𝑤 AND 𝑤𝑖

Algorithm 2: move(𝑏𝑖, 𝑘𝑚𝑎𝑥, 𝑤)

the last Word been decoded. If the last element read out from
main array is of type 102, 𝑚𝑖 denotes the number of Literals
that haven’t been read in current Literal sub-segment. 𝑐𝑖 and
𝑟𝑖 are two temporary variables. The loop between Line 3 to
18 is called Main Loop. The Word at position 𝑘𝑚𝑎𝑥+1 in the
original bitmap is called Objective Word.

The Main Loop reads byte 𝑏 from main array repeatedly and
maintains all corresponding variables of 𝐵𝑖, until the main
array element encoding the Objective Word is found. If the
Objective Word is in a Zero sub-Segment, 𝑘𝑖 will be moved
to the end position of this sub-segment.

700700700

Input: 𝐵𝑖, corresponding varibles of 𝐵𝑖 and 𝑘𝑚𝑎𝑥

Output: None.

1: if 𝑘𝑚𝑎𝑥 − 𝑘𝑖 < min{64, 𝑐𝑖} then Exit this procedure
2: Move pointer 𝑝𝑑𝑎𝑡𝑎,𝑖 forward 𝑚𝑖 words.
3: 𝑚𝑖 ← 0, 𝑘𝑖 ← 𝑘𝑖 + 𝑐𝑖
4: 𝑐𝑖 ← 0
5: while 𝑘𝑚𝑎𝑥 > 𝑘𝑖 + 𝑐𝑖 do
6: 𝑘𝑖 ← 𝑘𝑖 + 𝑐𝑖
7: Record all the corresponding variables of 𝐵𝑖.
8: Read the next 16 bytes 𝑏0 ⋅ ⋅ ⋅ 𝑏15 pointed by 𝑝𝑚𝑎𝑖𝑛,𝑖.
9: Set 𝑠1 ←

∑
𝑗∈𝑆16,𝑏𝑗=0 1.

10: Set 𝑠2 ←
∑

𝑗∈𝑆16,𝑏𝑗 [7]=1 1.
11: Set 𝑠3 ←

∑
𝑗∈𝑆16,𝑏𝑗 [7]=0 𝑏𝑗 [0 : 6].

12: Set 𝑠4 ←
∑

𝑗∈𝑆16,𝑏𝑗 [6:8]=012
𝑏𝑗 [0 : 6].

13: Set 𝑠5 ←
∑

𝑗∈𝑆16,𝑏𝑗 [6:8]=112
1.

14: Read the next 𝑠1 integers pointed by 𝑝𝑐𝑜𝑢𝑛𝑡𝑒𝑟,𝑖 and
sum them into 𝑎𝑖

15: 𝑐𝑖 ← 𝑎𝑖 + 𝑠3 + 𝑠2.
16: if 𝑘𝑚𝑎𝑥 < 𝑘𝑖 + 𝑐𝑖 then
17: Rewind all the corresponding variable to the states

recorded in Line 7
18: Exit this procedure
19: end if
20: Move pointer 𝑝𝑑𝑎𝑡𝑎,𝑖 forward 𝑠4 elements.
21: Move pointer 𝑝𝑖𝑛𝑑𝑒𝑥,𝑖 forward 𝑠5 elements.
22: end while

Algorithm 3: SIMD acceleration procedure

F. SIMD acceleration

A SIMD acceleration procedure could be inserted between
Line 2 and Line 3 in Algorithm 2. This can accelerate the
process finding the main array element encoding the Objective
Word. The Algorithm 3 shows the SIMD acceleration proce-
dure. Each round of the loop in Algorithm 3 is equivalent to
16 rounds of the loop in Algorithm 2.

The calculation of 𝑠1 ∼ 𝑠5 in algorithm 3 can be executed
by SIMD operations in a few CPU cycles. The C style
functions for Intel intrinsic instructions used is list as follows,
more details about these functions can be found on the web
page [18].

1. _mm_cmpgt_epi8
2. _mm_cmplt_epi8
3. _mm_cmpeq_epi8
4. _mm_movemask_epi8
5. _mm_and_si128

6. _mm_sad_epu8
7. _mm_cvtsi128_si32
8. _popcnt32
9. _mm_srli_si128

The Algorithm 4 shows the way to calculate 𝑠1 ∼ 𝑠5
using above functions. We use some simple symbols to
represent these 9 functions: cmpgt,cmplt,cmpeq,mvm,
and,sad,cvtsi,popcnt,srli. The brace {𝑥𝑗} repre-
sents the 16-element byte array (𝑥0, 𝑥1, ⋅ ⋅ ⋅ , 𝑥15).

Input: 16 bytes 𝑏0 ⋅ ⋅ ⋅ 𝑏15 read from main array
Output: 𝑠1 ∼ 𝑠5.

1: ∀𝑗 ∈ 𝑆16, Set 𝑥𝑗 ← 63, 𝑦𝑗 ← −63, 𝑧𝑗 ← 0
2: 𝑠1 ← popcnt (mvm (cmpeq ({𝑏𝑗}, {𝑧𝑗})))
3: 𝑠2 ← popcnt (mvm (cmplt ({𝑏𝑗}, {𝑧𝑗})))
4: 𝑠5 ← popcnt (mvm (cmpgt (cmplt ({𝑏𝑗}, {𝑧𝑗}) , {𝑦𝑗})))
5: {𝑢𝑗} ← sad (and (cmpgt ({𝑏𝑗}, {𝑧𝑗}) , {𝑥𝑗}))
6: 𝑠3 ← cvtsi ({𝑢𝑗}) + cvtsi (srli ({𝑢𝑗}, 8))
7: {𝑣𝑗} ← sad (and (cmpgt ({𝑏𝑗}, {𝑥𝑗}) , {𝑥𝑗}))
8: 𝑠4 ← cvtsi ({𝑣𝑗}) + cvtsi (srli ({𝑣𝑗}, 8))

Algorithm 4: Details for SIMD implementation

G. Simple Version

The simple version of BAH denoted by BAH simp is BAH
without TEP. In BAH simp, the pattern function 𝑔 : 𝑆64 ×
𝑆256 → {0, 1}32 is replaced with 𝑔 : 𝑆64 → {0, 1}32. In other
words, the type 112 in BAH simp is designed similar with the
type 102 in BAH. The removal of TEP and index array makes
the AND operation on BAH simp simpler.

The BAH simp contains 128 OEPs and no TEP. In our
experiments, we choose the Words satisfying one of the
following conditions to be the OEPs of BAH simp:

∙ The Word whose Workload is 1.
∙ The Word whose Workload is 2 and Loading Length is

no more than 4.

IV. THEORETICAL ANALYSIS

In this section, we compare the theoretical space con-
sumption of BAH with other 4 algorithms: WAH, PLWAH,
COMPAX and Roaring. A former theoretical analysis with
bitmap index is presented in [19]. Suppose the raw bitmap is
a sequence of independent and identically distribution random
bits. The bit density (the proportion of set bits) of the raw
bitmap is 𝑝. Here we suppose 𝑝 ≤ 0.5. The analysis ignores
the coding scheme for 1-fill chunks because the proportion of
1-fill chunks is negligible.

In the following subsections, we will calculate the expec-
tation of space consumption for each algorithm. 𝐸[WAH],
𝐸[PLWAH], 𝐸[COMPAX], 𝐸[Roaring], 𝐸[BAH] denotes the
expectation of space consumption under 𝑛 bits input. (𝑛 is
sufficiently large).

A. WAH

Algorithm WAH divides the raw bitmap into a sequence
of 31-bit chunks and encodes continuous 0-fill chunks (the
chunks with no set bit) between two non-0-fill chunks in a
Word called Fill (F), which contains one bit flag and 31-bit
counter part. Each non-0-fill chunk is encoded in one Word
called Literal (L).

Let f denote a 0-fill Chunk, l denote a non-0-fill Chunk, f 𝑘

denote 𝑘 continuous 0-fill Chunk. Set 𝑥 = (1−𝑝)31. For each

701701701

pattern 𝑠 ∈ {𝑓, 𝑙}∗, 𝐸[𝑠] denotes the expectation number of
occurences of 𝑠 in the chunk sequence. In WAH, we can get:

𝐸[f] = 𝑥 ⋅ 𝑛

31

𝐸[l] = (1− 𝑥) ⋅ 𝑛
31

𝐸[l𝑓𝑘l] = 𝑥𝑘(1− 𝑥)2 ⋅ 𝑛
31

In WAH algorithm, each l is encoded in one Literal Word,
and each f 𝑘 bounded by l is encoded in one Fill Word. The
expected length of WAH algorithm is

𝐸[WAH] = 32 ⋅ 𝐸[l] +
231−1∑
𝑘=1

32 ⋅ 𝐸[l𝑓𝑘l]

=
32𝑛

31
⋅
(
(1− 𝑥) + (1− 𝑥)(𝑥− 𝑥231)

)

≈ 32𝑛

31
⋅ (1− 𝑥2)

Since 0 < 𝑥 < 1, we suppose 𝑥231 ≈ 0 here.

B. PLWAH

The structure of Fill Word in PLWAH consists of 2-bit flag,
5-bit “position” part and 25-bit counter part.

In PLWAH algorithm, a 31-bit chunk with Workload 1 is
called “nearly identical”. If a sequence of continuous 0-fill
chunks is followed by a nearly identical chunk (a chunk with
only one set bit), PLWAH would encode them together in a
Fill Word. The position part will record the position of the
set bit in the nearly identical chunk and the counter part will
record the length of the fill chunks.

Let 𝑦 = 31𝑝(1 − 𝑝)30. Let f denote a 0-fill chunk and l a
non-0-fill chunk. The non-0-fill chunk contains two sub-types,
let 𝑙1 denote the nearly identical chunk and 𝑙2 denote the other
non-fill chunks. In PLWAH, we have

𝐸[𝑙] = (1− 𝑥) ⋅ 𝑛

31

𝐸[𝑙1] = 𝑦 ⋅ 𝑛

31

𝐸[𝑙2] = (1− 𝑥− 𝑦) ⋅ 𝑛

31

𝐸[𝑙𝑙1] = (1− 𝑥) 𝑦 ⋅ 𝑛

31

𝐸[𝑙𝑓𝑘𝑙1] = 𝑥𝑘(1− 𝑥) 𝑦 ⋅ 𝑛
31

𝐸[𝑙𝑓𝑘𝑙2] = 𝑥𝑘(1− 𝑥)(1− 𝑥− 𝑦) ⋅ 𝑛
31

PLWAH algorithm encodes 𝑙2 and 𝑙1 following 𝑙 in Literal
Word and encodes the other situations in Fill Word.

𝐸[PLWAH]

= 32 ⋅
⎛
⎝𝐸[𝑙2] + 𝐸[𝑙𝑙1] +

225−1∑
𝑘=1

(
𝐸[𝑙𝑓𝑘𝑙1] + 𝐸[𝑙𝑓𝑘𝑙2]

)⎞⎠

=
32𝑛

31
⋅
(
(1− 𝑥− 𝑥𝑦) + (1− 𝑥)(𝑥− 𝑥225)

)

≈ 32𝑛

31
⋅ (1− 𝑥2 − 𝑥𝑦)

Since 0 < 𝑥 < 1, we also suppose 𝑥225 ≈ 0 here.

C. COMPAX

The expectation of space consumption with COMPAX can
be computed using Markov Chain. Because of space restric-
tion, we only show the result for COMPAX here. We define
3 variables:

𝑥 = (1− 𝑝)31

𝑦 = (1− 𝑝)23 + 3(1− 𝑝)24 − 4(1− 𝑝)31

𝑧 = 𝑥− 𝑥64.

The space reduction of COMPAX compared with WAH is:

𝐸[COMPAX]− 𝐸[WAH] =

64𝑛𝑦𝑧
(
(1− 𝑥2)(1 + 𝑥− 𝑧)2 + (1− 𝑥2)2𝑧 + (1 + 𝑥)2𝑦2𝑧

)
31(1 + 2𝑥) (1 + 𝑥4 + 𝑦𝑧(1 + 𝑦𝑧)− 𝑥2(2 + 𝑦𝑧))

D. Roaring

Roaring divides the raw bitmap into a sequence of 216-bit
chunks. For each chunk with 𝑘 set bits:

∙ 𝑘 = 0, Nothing is recorded.
∙ 1 ≤ 𝑘 ≤ 4096, Roaring records the index of each set bit

using 16-bit integers, which need 16𝑘 bits. 32 extra bits
are required to record some other information.

∙ 𝑘 > 4096, Roaring records 216 bits directly. 32 extra bits
are required to record some other information.

The expectation of space consumption with Roaring is:

𝐸[Roaring] =
𝑛

216
⋅
4096∑
𝑖=1

(
216

𝑖

)
(16𝑖+ 32)𝑝𝑖(1− 𝑝)32−𝑖

+
𝑛

216
⋅

216∑
𝑖=4097

(
216

𝑖

)
(216 + 32)𝑝𝑖(1− 𝑝)32−𝑖

E. BAH

The performance of BAH depends on the choice of the
Encodable Words. Here we choose 32 Words with Workload
1 as the OEP, and 5456 Words with Workload 2 or 3 as the
TEP.

Let 𝑧 denote the Zero Word, 𝑙 the Literal Word, 𝑐 the
Encodable Word, 𝑐1 the OEP and 𝑐2 the TEP. Let 𝑥̄ denotes
all the Words excluding 𝑥. (𝑥 ∈ {𝑧, 𝑙, 𝑐}). Let 𝑝𝑧 = (1− 𝑝)32,
𝑝𝑐1 = 32𝑝(1− 𝑝)31, 𝑝𝑐2 = 496𝑝2(1− 𝑝)30+4960𝑝3(1− 𝑝)29,
𝑝𝑙 = 1− 𝑝𝑧 − 𝑝𝑐1 − 𝑝𝑐2 .

In BAH, we have 𝐸[𝑧] = 𝑝𝑧𝑛/32, 𝐸[𝑐1] = 𝑝𝑐1𝑛/32,
𝐸[𝑐2] = 𝑝𝑐2𝑛/32, 𝐸[𝑙] = 𝑝𝑙𝑛/32, and

𝐸[𝑙̄𝑙𝑘 𝑙̄] = (1− 𝑝𝑙)
2𝑝𝑘𝑙 ⋅

𝑛

32

𝐸[𝑧𝑧𝑘𝑧] = (1− 𝑝𝑧)
2𝑝𝑘𝑧 ⋅

𝑛

32

The expectation of space consumption on each part is shown
in Table IV. Summing all these results, we can get

𝐸[BAH]

=
𝑛

4
⋅ (𝑝𝑧(1− 𝑝𝑧)(1 + 𝑝63𝑧 + 𝑝126𝑧 + 𝑝189𝑧 + 𝑝252𝑧)

+ 𝑝𝑐1 + 2𝑝𝑐2 + 4𝑝𝑙 + (1− 𝑝𝑙)
2𝑝𝑙/(1− 𝑝63𝑙)2

)

702702702

TABLE IV: Space consumption of different part

Array Type Space consumption (bits)

Main

002

∑4
𝑡=1

∑63𝑡
𝑘=63𝑡−62 8𝑡𝐸[𝑧𝑧𝑘𝑧]

+
∑∞

𝑘=253 32𝐸[𝑧𝑧𝑘𝑧]

012
∑∞

𝑡=1

∑63𝑡
𝑘=63𝑡−62 8𝑡𝐸[𝑙̄𝑙𝑘 𝑙̄]

102 8𝑝𝑐1 ⋅ 𝑛
32

112 8𝑝𝑐2 ⋅ 𝑛
32

Index 8𝑝𝑐2 ⋅ 𝑛
32

Literal 32𝑝𝑙 ⋅ 𝑛
32

Counter
∑∞

𝑘=253 32𝐸[𝑧𝑧𝑘𝑧]

F. Comparison

Fig. 5a shows the average number of compressed bytes per
set bit required by each algorithm. The density 𝑝 is chosen
from 0.2% to 50%. We can observe that BAH has the best
performance when 𝑝 ∈ [0.002, 0.5].

The information entropy of each bit in a random bitmap with
density 𝑝 is 𝐻(𝑝) = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝). For a
bitmap with length 𝑛, the theoretical best space consumption is
information entropy 𝑛𝐻(𝑝) bits. Fig. 5b and 5c shows the ratio
of space consumption between each algorithm and information
entropy. It can be shown that the lower bound of ratio of BAH
is 1.6, which is about one half of the next best algorithm
PLWAH.

V. EXPERIMENT

In the experiment, the space consumption and the query
efficiency of each algorithm will be evaluated using the real
world datasets.

A. Environment

The algorithm is implemented by C++. All the experiments
were conducted on a 64-bit machine with operating system
Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-24-generic x86 64)
and compiler gcc in version 4.8.2. The experimental machine
has a Intel i7-3770 CPU @ 3.40GHz, 20G RAM and 2TB
magnetic disk.

B. Datasets and Experimental Design

1) CAIDA: The CAIDA dataset [20] is the real network
trace data. About 150 million IPv4 records from 6 files in
CAIDA anonymized internet traces are used in the experiment.
The task in the experiment on dataset CAIDA is retrieving the
IP addresses.

2) Clueweb09: We downloaded ClueWeb09 Gap Data
set[21], which represents posting lists extracted from the cat-
egory B html files of the ClueWeb09 collection. The category
B contains 50 million English web pages. ClueWeb09 Gap
Data set contains 1 million posting lists of the most frequent
words. Decompressed ClueWeb09 Gap Data data is formatted
in ordered integer lists.

(a) Space Consumption per set bit in the raw bitmap

(b) The ratio between the algorithms and information entropy

(c) The upper bound of the ratio in Fig. 5b

Fig. 5: Comparison of theoretical compression ratio.

703703703

C. Experimental Settings

In the following experiments, the BAH and BAH simp are
compared with WAH, PLWAH, COMPAX and Roaring.

PLWAH and COMPAX are chosen as the representative of
the variants of WAH. Roaring is chosen as the representative
of algorithms using simple coding scheme.

The performance on the space consumption and query
efficiency are compared among these 6 algorithms.

1) Experimental Setting for CAIDA: For CAIDA, each byte
of IP addresses was treated as an attribute. There were 8
attributes in total for source addresses and destination address-
es, each of which has 256 possible values. The compressed
bitmaps for these 8 attributes are prepared before the query
experiments.

In order to simulate real queries, 500 IP addresses are
chosen randomly as query tasks from all the appearing IP
addresses for each file. Each IP address contains a tag picked
randomly from “source” and “destination”. For each IP ad-
dress, the algorithms are required to output the positions of
all the records with the same source address or destination
address.

2) Experimental Setting for Clueweb09: In Clueweb09,
1 million ordered integer lists were converted to 1 million
bitmaps. The compressed bitmaps for all these lists are pre-
pared before the query experiment.

In order to simulate the query performance on Clueweb09,
1000 random compressed bitmap are picked from 100000
bitmaps. These bitmaps are paired in 500 pairs, each of which
represents an AND operation task on two bitmaps.

D. Result

1) Space consumption: Fig. 6 shows the space consumption
of different algorithms under real datasets. On CAIDA dataset
(Fig. 6a), BAH saves about 65% compared with WAH, about
40% with COMPAX and about 35% with Roaring in space
consumption. On Clueweb09 dataset (Fig. 6b), BAH saves
about 60% compared with WAH, about 46% with Roaring,
about 39% with PLWAH and 37% space of COMPAX.

In all these datasets, BAH simp needs about 20% more
space than BAH, which is still better than the other algorithms.

2) Query efficiency: The time for loading index files and
the time for bitwise operations are both taken into account.

Fig. 7a shows the total time per query on CAIDA. Benefiting
from the compression ratio, BAH saves much time on loading
process and brings about 1.08× and 1.17× speed-up compared
with Roaring and COMPAX. Fig. 7b shows the total time per
query on Clueweb09, which is similar with the performance
on CAIDA.

The Table V shows the accurate query time. It can be
shown that the query efficiency largely depends on the loading
time. The compression ratio with good bitwise operation time
guarantees fast query on BAH and BAH simp.

(a) The space consumption of compressed bitmap on CAIDA
dataset using experimental algorithms

(b) The space consumption of compressed bitmap on Clueweb09
dataset using experimental algorithms

Fig. 6: Space consumption on real datasets

TABLE V: The accurate query time(ms)

Total time (Loading Time + Bitwise operation)

Algorithm CAIDA Clueweb09

WAH 26.12 (25.70 + 0.42) 26.42 (26.17 + 0.45)

PLWAH 23.87 (23.30 + 0.57) 25.55 (24.96 + 0.59)

COMPAX 24.68 (23.99 + 0.69) 25.79 (25.05 + 0.74)

Roaring 24.09 (23.86 + 0.22) 25.37 (25.12 + 0.25)

BAH 23.08 (22.50 + 0.58) 24.17 (23.56 + 0.62)

BAH simp 23.53 (22.98 + 0.56) 23.82 (23.24 + 0.58)

VI. CONCLUSION AND FUTURE WORK

In this paper, we present BAH, a bitmap compression algo-
rithm that achieves better performance in space consumption
and query efficiency. BAH uses arrays in bytes instead of
Words to save space usage, which decreases the loading time
of indexes. The design of Encodable Word is helpful for the
compression. Simple coding scheme and SIMD acceleration
algorithm make BAH conduct efficient bitwise operation. The
theoretical analysis shows that BAH requires no more 1.6
times space of entropy information under a random bitmap

704704704

(a) The query time on CAIDA dataset

(b) The query time on Clueweb09 dataset

Fig. 7: Query time on real dataset

with density larger than 0.2%. The experiment based on the
dataset CAIDA and Clueweb09 demonstrates the performance
on network traffic data retrieval and the Web pages. BAH has
the best performance in both application scenarios.

The future work focus on the Encodable Word. There could
be more efficient algorithms for encoding Encodable Word.
The approach to choose Encodable Word from specific original
data has not been considered yet. BAH tries to optimize the
space consumption of bitmaps with density larger than 0.2%,
but does not consider more sparse bitmap. An alternative
choice may be added to the design of the algorithm to optimize
the compression ratio on these situation.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China (grants No. 61472200 and No.
61233016), Ministry of Science and Technology of Chi-
na under National 973 Basic Research Program (grant No.
2013CB228206), State Grid R&D project “Research on the
Architecture of Information Communication System for In-
ternet of Energy” (grant No. SGRIXTKJ[2015]253), National
Training program of Innovation and Entrepreneurship for
Undergraduates (No.201610003B010 and No.201610003031,

201610003032, 201610003033). This work is also supported
by Sumavision Technologies.

REFERENCES

[1] I. Cisco, “Cisco visual networking index: Forecast and methodology,
2014–2019,” CISCO White paper, 2015.

[2] I. Spiegler and R. Maayan, “Storage and retrieval considerations of
binary data bases,” Information processing & management, vol. 21,
no. 3, pp. 233–254, 1985.

[3] G. Antoshenkov, “Byte-aligned bitmap compression,” in Data Compres-
sion Conference, 1995. DCC’95. Proceedings. IEEE, 1995, p. 476.

[4] K. Wu, E. J. Otoo, and A. Shoshani, “Compressing bitmap indexes
for faster search operations,” in Scientific and Statistical Database
Management, 2002. Proceedings. 14th International Conference on.
IEEE, 2002, pp. 99–108.

[5] F. Deliège and T. B. Pedersen, “Position list word aligned hybrid: opti-
mizing space and performance for compressed bitmaps,” in Proceedings
of the 13th International Conference on Extending Database Technology.
ACM, 2010, pp. 228–239.

[6] D. Lemire, O. Kaser, and K. Aouiche, “Sorting improves word-aligned
bitmap indexes,” Data & Knowledge Engineering, vol. 69, no. 1, pp.
3–28, 2010.

[7] S. J. van Schaik and O. de Moor, “A memory efficient reachability
data structure through bit vector compression,” in Proceedings of the
2011 ACM SIGMOD International Conference on Management of data.
ACM, 2011, pp. 913–924.

[8] F. Fusco, M. P. Stoecklin, and M. Vlachos, “Net-fli: on-the-fly compres-
sion, archiving and indexing of streaming network traffic,” Proceedings
of the VLDB Endowment, vol. 3, no. 1-2, pp. 1382–1393, 2010.

[9] Y. Wen, Z. Chen, G. Ma, J. Cao, W. Zheng, G. Peng, S. Li, and W.-L.
Huang, “SECOMPAX: A bitmap index compression algorithm,” in Com-
puter Communication and Networks (ICCCN), 2014 23rd International
Conference on. IEEE, 2014, pp. 1–7.

[10] J. Chang, Z. Chen, W. Zheng, Y. Wen, J. Cao, and W.-L. Huang,
“PLWAH+: a bitmap index compressing scheme based on plwah,” in
Proceedings of the tenth ACM/IEEE symposium on Architectures for
networking and communications systems. ACM, 2014, pp. 257–258.

[11] A. Colantonio and R. Di Pietro, “Concise: Compressed ncomposable
integer set,” Information Processing Letters, vol. 110, no. 16, pp. 644–
650, 2010.

[12] J. Chang, Z. Chen, W. Zheng, J. Cao, Y. Wen, G. Peng, and W.-L. Huang,
“SPLWAH: a bitmap index compression scheme for searching in archival
internet traffic,” in Communications (ICC), 2015 IEEE International
Conference on. IEEE, 2015, pp. 7089–7094.

[13] S. Chambi, D. Lemire, O. Kaser, and R. Godin, “Better bitmap perfor-
mance with roaring bitmaps,” Software: Practice and Experience, 2015.

[14] Y. Wen, H. Wang, Z. Chen, J. Cao, G. Peng, W. Huang, Z. Hu,
J. Zhou, and J. Guo, “MASC: A bitmap index encoding algorithm for
fast data retrieval,” in Communications (ICC), 2016 IEEE International
Conference on. IEEE, 2016.

[15] Y. Wu, Z. Chen, J. Cao, H. Li, C. Li, Y. Wang, and W. Zheng,
“CAMP: A new bitmap index for data retrieval in traffic archival,” IEEE
Communication Letters, 2016.

[16] S. Kim, J. Lee, S. R. Satti, and B. Moon, “SBH: Super byte-aligned
hybrid bitmap compression,” Information Systems, vol. 62, pp. 155–168,
2016.

[17] Z. Chen, Y. Wen, J. Cao, W. Zheng, J. Chang, Y. Wu, G. Ma,
M. Hakmaoui, and G. Peng, “A survey of bitmap index compression
algorithms for big data,” Tsinghua Science and Technology, vol. 20,
no. 1, pp. 100–115, 2015.

[18] “Intel intrinsics guide,” http://software.intel.com/sites/landingpage/
IntrinsicsGuide/.

[19] Y. Wu, Z. Chen, Y. Wen, J. Cao, W. Zheng, and G. Ma, “A general
analytical model for spatial and temporal performance of bitmap index
compression algorithms in big data,” in 2015 24th International Con-
ference on Computer Communication and Networks (ICCCN). IEEE,
2015, pp. 1–10.

[20] “The CAIDA UCSD anonymized internet traces 2013-20130529,” http:
//www.caida.org/data/passive/passive 2013 dataset.xml.

[21] “Clueweb09 gap data set,” http://searchivarius.org/personal/data-sets/
clueweb09gap.

705705705

