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Abstract—Motivated by the computational, bandwidth and
energy restrictions of wireless sensor network nodes and their
need to, collectively, determine the presence of exogenous in-
terference that could impair their communication, we consider
schemes that could support the task of interference classification
as a first step towards interference mitigation strategies. In
particular, we examine the effectiveness of the Discrete Wavelet
Transform (DWT) to communicate to other nodes the state of
the channel, as sampled by a node, in a compressed, denoised
form. We examine the suitability of different wavelet filters and
thresholding methods in order to: (a) preserve key features of the
interference, (b) denoise the noisy interference samples, and (c)
reduce the amount of information that needs to be communicated
to describe the interference.

I. INTRODUCTION

In this paper, we explore whether wavelet compression

is an effective means to convey sampled background noise

information collected by wireless nodes. The motivating appli-

cation is that of distributed decision-making by wireless sensor

nodes regarding the state of the channel with respect to the

presence (or not) of interference on the channel. The nodes

could, subsequently, adopt mitigation strategies particular to

the interference at hand. Here, we are only concerned with

developing a low overhead means to communicate the sampled

background noise information, among the nodes in a local

wireless network. The assumption is that the nodes are battery–

powered and any additional processing and transmissions, be-

yond what is needed by the applications, should be minimized.

Our previous work in this area, as well as that of a number

of other authors, suggested that there are a few particular

classes of interference [1]. In [2] we identified five classes

which we name: quiet (q), quiet-with-spike (qs), quiet-with-

rapid-spikes (qrs), high-end-level (hl), and shifting-mean (sm).

Note that the main difference between qs and qrs is that qs are

seemingly random impulses whereas qrs has strong periodic

characteristics. A receiver at the mercy of qrs, sm, and hl is

likely to be on occasion unable to properly decode a packet

received during high level incursions of the interference. Note

that, as in our previous work, we assume an inexpensive

approach to sampling the channel, i.e., by collecting RSSI

(Received Signal Strength Indicator) measurements, as they

are reported by the node’s RF front-end.

In order to reach an agreement (or not) among nodes in

a network regarding the class of interference that is present,

there exist two main strategies: (a) local classification: where

each node samples the background noise and classifies it

independently of the rest, sending its classification result to

the rest, or (b) global classification: where each node sends

the entire time series of sampled background noise to the

remaining nodes, allowing each node to perform a comparison,

and if deemed similar, run a classifier. Option (a) entails the

risk that, even if the class inferred is the same, two or more

nodes may be seeing a completely different temporal pattern

e.g. a different phase of a qrs-like time series. Option (b)

allows a thorough sample-by-sample analysis, e.g., via cross-

correlation calculation of the time series from different nodes,

but the transmission and reception energy cost involved to

collect the samples by all nodes is prohibitive for battery-

powered wireless nodes.

Our earlier work on characterizing the agreement between

nodes with respect to the interference seen on the channel

[3] was performed assuming case (b), i.e., complete access

to the time series as sampled by each node, and was neither

distributed nor energy-efficient. In this paper we still adopt

strategy (b) but use an intermediate (compressed) represen-

tation of the sampled data via a Discrete Wavelet Transform

(DWT). DWT is used for its ability to both perform denoising

and compression at the same time. The denoising eliminates

the effect of small noise components while retaining the

overall trend and pattern of the background noise. Note that

the application of DWT is a delicate matter when we wish to

have the noise patterns “survive” somehow the transformation

but at the same time we wish to eliminate some of the less

helpful (from the point of deciding the class) facets of noise.

Hence, in our work we examined various DWT alternatives

and their effects.

Note that for strategy (b), a node has to store its own

time series as well as the time series samples sent from

other nodes (which we assume is received in DWT form, and

uncompressed locally via Inverse Discrete Wavelet Transform

(IDWT)). For this reason, the time series segments are not

very long (or the sampling rate to acquire them is not very

high). Operationally, we would expect that the nodes take,

possibly periodically, some time off their regular operation to

simultaneously sample the background noise of the channel in

order to collectively determine the state/class of the channel. In

Section IV we explain how the comparison of the time series

is performed based on the cross-correlation across different

nodes’ time series.

Also, despite some similarities in the current work with that

of cognitive networks, e.g., the identification of which channel
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is used to [4], our approach is more general, specifically: (i)

we do not ascribe a role to a channel user (e.g., primary

or not), and in fact, (ii), there is no requirement that the

channel is used by a communicating user as the interference

can emanate from non-communicating sources as well (e.g.,

microwave oven, elevator, internal combustion engine, etc.),

and, consequently, (iii), the interference does not obey struc-

ture, such as modulation, that would allow it to be detected

as such (e.g., via cyclostationarity [5]), and even if it was the

result of modulation, (iv), the sampling rate is too low to be

able to identify modulation characteristics with certainty.

II. RELATED WORK

The role of wavelets, to represent time series of network

activity has been explored in the past in the context of

multifractal wavelet models for broadband traffic analysis

[6], i.e., to describe actual packet data traffic in a wired

environment rather than interference patterns in a wireless

communication setting. Also, the general idea is to have large

collections (long runs) of samples, whose ultimate objective is

to elicit a single characterization for the entire network traffic

process (rather than what we want, which is the compression

of the time series). To the best of our knowledge, there has

been no work on the short-term wireless interference sample

compression using wavelets. In DWT, a wavelet prototype

function is chosen, called a basis wavelet or mother wavelet.

Temporal analysis is performed with a contracted, high-

frequency version of the prototype wavelet; while frequency

analysis is performed with a dilated, low-frequency version

of the same wavelet. Hence, the original signal or function

can be represented in terms of the wavelet expansion using

coefficients in a linear combination of the wavelet functions.

If the optimal mother wavelet is chosen and adapted to the

examined data and if/when the coefficients are truncated below

a threshold, the data is sparsely represented which makes

wavelets suitable for data compression [7]. Towards this end,

Ngui et al. [8] enlisted mother wavelet selection methods based

on the similarity between the analyzed signal and the candidate

mother wavelet, in contrast to selecting a mother wavelet on its

properties alone. We follow in this paper the same principle of

selecting an application–specific mother wavelet. In previous

work, for example, Singh et al. [9] proposed a quantitative

approach based on the maximum cross-correlation coefficient

criterion, to select the optimal wavelet basis function in order

to denoise ECG signals. Patrick P.C. Tsui et al. [10] proposed

a technique for automatic ultrasound non-destructive Foreign

Body (FB) detection and classification based on an information

measure (via Shannon and relative entropy). We paid attention

to the compression effect of the DWT on our data, combining

in essence steps such as those followed by Singh’s et al. [9],

along with a form of a compression ratio inspired by the work

of Chompursi et al. [11].

III. MOTHER WAVELET AND THRESHOLDING SELECTION

Using visual inspection of the decompressed time series

we find significant differences compared to the original time

series. Those differences depended less crucially on the mother

wavelet selection and more on the used thresholding technique.

Thresholding allows coefficients of magnitude close to zero

(corresponding to minor signal details) to be set to zero and

be omitted, still allowing the signal to be recovered adequately.

Several thresholding techniques have been studied and are now

standard in numerical computing environments. In our work,

seven thresholding methods were implemented in MATLAB,

using both ’hard’ and ’soft’ thresholding [12]. When an

estimation of level noise is needed for these implementations,

it was approximated based on first-level wavelet coefficients,

since our real world RSSI data do not follow an ideal Additive

White Gaussian Noise (AWGN) model.

A. The RSSI Traces

We use the RSSI traces collected by Boers et al. [2], across

256 channels in an indoor urban environment. The nodes

were placed in a four-by-four grid with 1.84 m spacing.

The sensors were just recording the RSSI values without

transmitting. All 16 nodes would switch in unison to a new

channel, and simultaneously sample the RSSI. In total, 256

channels were examined producing a total of 256×16=4096

traces. The frequencies were from a base frequency of 904

MHz to a maximum of 954 MHz. Each trace was a sequence

of 175000 successive RSSI samples, representing 35 seconds

(of the node’s local clock) at 5000 samples per second.

B. Wavelet Compression Evaluation

We considered seven thresholding methods (both soft and

hard versions) and Daubechies, Symmlet, Coiflet filters of

varying orders. Initially, we kept the wavelet filter constant

and implemented all the thresholding methods. We visually

(qualitatively) inspected the recovered signals to verify which

patterns of each class remain untampered, as the quantita-

tive facets we used1 were unfortunately insufficient. Visually

speaking, we are interested in the thresholding method that

guarantees consistent preservation of spikes for qs and qrs

classes, as well as a uniform behavior of the noise present

in the signals (i.e. noise preserved or suppressed throughout

the duration of each signal and on the same scale across

different classes). Also, the more levels that were used in the

transform, the more intense the denoising and compression

effects. Moreover, the possibility of losing a pattern increases

in higher levels and depends on the principles applied by

the thresholding method. Note that the qs exhibits a similar

behaviour to qrs, while the q class is similar to the hl.

An example of acceptable vs. unacceptable results of thresh-

olding in a qrs class series is presented in Figures [1a-

1c]. It shows that the recovered signal after soft heuristic

SURE (Stein’s Unbiased Risk Estimate [13]) thresholding and

denoising over 10 levels using a db2 wavelet filter limits

the amplitude of the noise in the base of the signal, while

preserving the periodic spikes. It should be noted that the soft

heuristic SURE method is preferred over the hard heuristic

1We considered three metrics: (1) Root Mean Square Error (RMSE), (2)
an idealized form of compression ratio, and (3) an energy–based ratio.
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Figure 1: Channel 54, Node 6, 10 DWT Levels

SURE method, because it shrinks the noise amplitude at

the base of the signal better than hard. A poor choice of

a thresholding method is evident in Figure 1c, where the

soft Birge-Massart thresholding will completely suppress the

periodic spikes (leaving behind only two in this example). For

a sm class series good results are obtained from soft heuristic

SURE method and they also turn out to be more forgiving to

the use of the hard heuristic SURE and even the soft version of

the Birge-Massart thresholding. We have also studied the case

of hl class time series, and a distinct observation is that the

hard Birge-Massart thresholding results in undesired effects,

as it does not uniformly suppress the noise, leaving spikes of

noise randomly interfering with the dominant “clean” pattern.

In short, based on the results we collected, we can claim

that the soft heuristic SURE thresholding method has the

acceptable and desired effects of denoising and compression

for all classes. After selecting the best thresholding method,

we kept it constant while various types of wavelet basis

functions were evaluated with the three metrics. However, all

base functions produced similar results in terms of absolute

values and did not suppress the characteristics of any class.

IV. TIME SERIES COMPARISON

Pairwise Analysis of Time Series

With the wavelet basis function and thresholding decided

(and assumed known to all nodes), the next task is to find the

similarity across the time series collected from the various

nodes, once decompressed via IDWT, via pairwise cross–

correlation computation. Time series of different nodes, that

we know are very similar, should exhibit a very high cross-

correlation. In an ideal globally–synchronized distributed

clock experiment, we would only care about the presence of

strong cross–correlation at lag zero. Given our observations

about the node clock drift and the possible impact of buffering

and processing at the nodes and the data collection host, we

conjectured that, as long as the cross–correlation is maximized

at a lag within a small range around lag zero, it is very likely

that the nodes indeed observe the same channel behavior at

the same point in natural time, and it is only the reporting of

their data that is skewed with respect to timestamp values. We

rather arbitrarily set the “acceptable” lag range to correspond

to timestamp discrepancies of +/ − 10msec, so that these

results are comparable to the ones from our previous work

[3]. In this section we compare DWT-based results for 2, 5,

and 10 levels of compression, against the cross–correlation

results reported in [3]. We investigate how the different levels

affect this aggregate analysis.

In this work, from the 23438 (based on the ground truth

found [2]) that agree on the class, we found that 11169

and 10741 pairs exhibit maximum cross–correlation at lags

corresponding to timestamp discrepancies of +/ − 10msec
that indicate synchronization and correct classification of the

signals, at 2 and 5 levels respectively. For 10 levels we have

9927 such pairs. As a result, we observe that node pairs are

more likely to be considered to belong to the same class in

comparison to the ones in the previous work that were 9696

[3], according to the cross–correlation statistic. This is very

encouraging, since the cross–correlation is expected to be more

sensitive to the detection of dissimilarities in the denoised

signals, as the distinctive characteristics of the classes now

become the distinctive characteristic of the time series due to

the level of denoising.

Aggregate Analysis of Node Pairs

Table I summarizes the results, presenting the percentage

of pairs of time series, that were known to belong to the

same class, whose maximum cross-correlation falls within the

corresponding cross-correlation “bin” (bins are 0.2 units wide).

Clearly, the larger the percentage in the bins with the higher

values, the better. The table has one column dedicated to each

class. For every class we compare these maximum cross–

correlation results (per bin) for four cases: Results from our

previous work labeled (Orig.) [3], and results for soft heuristic

SURE thresholding with db2 filter in 2, 5 and 10 levels.

A trend we observe is that as the levels of wavelet decom-

position increase the used maximum cross-correlation, being a

metric of similarity, increases consistently, shifting ‘binwise’

to higher bins. This is more evident for the q and qs classes,

followed by qrs and sm. It is also noteworthy that for the

lowest wavelet decomposition level, i.e., 2, we have results

very similar to those found in [3]. This is expected, since the

lower the decomposition level, the coarser the denoising and

compression, resulting in signals resembling a signal under

low pass filtering. As a result, for both cases, the qrs and sm

channels class characterizations can be trusted as depicting

accurately the same channel state. The hl classification is
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Table I: Percentages of the maximum cross-correlation, rxy(k), between time series known to be of the same class, occurring

in lags [−10, 10]ms with a maximum falling within specific bins. ”Orig.” are the results reported in [3], while 2, 5, and 10

are the DWT levels under soft heuristic SURE thresholding, and db2 filter.

max rxy(k) q qs qrs sm hl
Orig. 2 5 10 Orig. 2 5 10 Orig. 2 5 10 Orig. 2 5 10 Orig. 2 5 10

[0, 0.2) 48.0 71.8 23.0 1.0 50.2 60.5 9.9 2.9 1.7 3.4 0.6 0.6 0.5 1.2 0.3 0.3 42.9 57.1 50.0 16.7
[0.2, 0.4) 27.3 19.6 37.0 18.4 39.0 34.5 39.8 23.8 26.8 28.8 8.4 8.5 2.7 5.6 4.7 4.1 14.3 0.0 12.5 33.3
[0.4, 0.6) 16.1 6.6 21.6 33.5 9.8 4.7 32.1 31.4 47.9 45.8 27.4 24.4 8.6 9.5 6.9 6.6 28.6 28.6 12.5 25.0
[0.6, 0.8) 7.7 2.0 13.1 27.6 0.9 0.3 17.4 30.1 22.9 21.4 48.1 47.4 13.5 15.3 11.9 11.6 14.2 14.3 25.0 25.0
[0.8, 1) 0.9 0.0 5.3 19.5 0.1 0.0 0.8 11.8 0.7 0.6 15.6 19.1 74.7 68.3 76.1 77.4 0.0 0.0 0.0 0.0

debatable as a non-trivial percentage corresponds to low maxi-

mum cross–correlation and the q and qs classifications are the

most problematic because of the very low cross-correlation.

The most dramatic ‘binwise’ shifts are observed for the q and

the qs classifications for the highest wavelet decomposition

level, however, the previous does not apply to the hl case

which now becomes the problematic case.
Finally, since the corresponding statistics about node pairs

that are known to not agree on the channel classification are

also available, we were able to determine how well relying on

a high maximum cross–correlation can avoid false positives.

We observed that as the levels increase from 2 to 5 to 10, the

false positives (i.e. identifying a pair of time series as being

in the same class while they are not) increase from 8.4% to

24.6% to 48.4%. A possible justification is the really high

suppression of random noise behavior whose contribution to

the numerical value of the cross–correlation would cancel out,

compared to the filtered and smoothed time series. Overall,

level 5 may be seen as a good compromise.
However, despite the increased level of denoising and

compression the hl time series result in maximum cross-

correlation in the lowest bins, i.e., there is weak evidence

of their similarity if we resort to cross-correlation. Hence,

nodes that see very similar hl time series would have trouble

reaching agreement that they are observing the same time

series. Finally, as as an indication of compression effective-

ness, the DWT representation results in the following average

number of non-zero coefficients and (in parentheses) average

maximum integer value per coefficient, for 2, 5, and 10 levels

respectively: 43009 (422), 7296 (1142), and 3088 (6115).

Clearly the reduction of non-zero coefficients as we increase

levels, has to be seen against the trade off of increasing bits

per coefficient for increasing levels.

V. CONCLUSION

We have studied whether DWT is a suitable method to

compress and denoise RSSI time series in a wireless network.

We are aiming to communicate the state of a channel from

the perspective of a single node among the WSN nodes, in a

new compressed and denoised version. We have examined the

suitability of different wavelet filters and thresholding methods

aiming to compress while preserving the noise patterns and

find an appropriate compression level. We have found that

for higher decomposition levels the accuracy of the similarity

measure improves. However, there are more false positives.
Therefore, there is a compromise to be made in choosing an

appropriate level, taking into consideration that the number of

non-zero coefficients decreases with increased level.
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