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Abstract—Data capture is important for some critical network
applications, such as network diagnosis and criminal investigation.
In multi-channel wireless networks, the fundamental challenge for
data capture is how to assign operation channels to wireless snif-
fers. The existing approaches make some impractical assumptions,
such as the prior knowledge on network traffic and the perfect
conditions of data capture. In this paper, we relax these assump-
tions and investigate the sniffer-channel assignment problem in
multi-hop scenarios. Especially, sniffer redundancy deployment is
discussed, which enables multiple sniffers to monitor one traffic.
This problem is formulated as a combinatorial multi-arm bandit
(MAB) problem, and a cooperative distribute learning policy is
proposed.We analyze the regret of our policy in theory, and
validate its effectiveness through numerical simulations.

I. INTRODUCTION

Data capture is an important approach to evaluate network
performance, which has been adopted in various applications,
such as traffic monitoring, malicious activities detection, and
so on. To gather the detailed PHY/MAC information, a passive
monitoring framework has been proposed [1], in which a
dedicated set of hardware devices, called wireless sniffers are
introduced. The sniffers are deployed to capture the wireless
signals in their vicinity. Then the gathered information can be
analyzed in a centralized or distributive way.

Such sniffer-based monitoring framework has attracted in-
creasing attention, especially in the multi-channel wireless
works, such as WLAN, wireless mesh networks, cognitive
radio networks. Due to less number of wireless sniffers of
wireless sniffers as well as limited capturing capability, one
fundamental technical challenge is how to assign the working
channels for a limited number of sniffers, i.e. sniffer-channel
assignment problem, so as to maximize the total amount of
information gathered.

There have been some research focused on this area [2]–[4].
They assume that the statistics for all the users’ activities are
known or could be inferred. Recently, Arora et al. [5] study this
problem without the prior assumptions on the traffic statistics.
They propose to sequentially learn the traffic pattern while
making dynamic channel assignment decisions. Specially, there
exists a tradeoff between exploitation (i.e., to assign sniffers
exclusively to a few channels that are estimated with maximum
rewards) and exploration (i.e., to try out on each channel to
find the best one).

However, the existing studies imply in a local monitoring
region. Extending to a multi-hop scenario, a special issue
emerges, named “sniffer redundancy”, which is to assign
multiple sniffers to monitor a certain object. For example,
a node is in the vicinity of different sniffers or a flow will
happen on the links located in different places, which is likely

to lead to the repetition of captured packets. The similar sniffer
redundancy problem has been studied in [5], which is devoted
to eliminate the repetition of active monitored user introduced
by the spatial overlap of sniffer monitoring regions.

However, the redundancy of sniffers is not always harmful,
especially in wireless monitoring environment. In practice, a
variety of factors may cause miss capturing, such as poor
wireless channel conditions, and sniffer suspension due to
operational failure or sleep mode for energy saving. Unreliable
monitoring conditions will affect the quality of data capture and
learning results. This issue has been investigated in recent work
[6]. Since the observation results from the sniffers are indepen-
dent, the more sniffers are deployed to monitor one object, the
more capture uncertainty could be eliminated. Therefore, with
the introduction of uncertainty in passive monitoring, another
option of sniffer deployment is also introduced. That is, if one
sniffer finds a small reward from monitoring current object, one
candidate choice is to work together with the other sniffers on
a more promising one.

In this paper, we investigate the sniffer-channel assignmen-
t problem for data capturing in a multi-hop multi-channel
wireless network scenario, in which the users’ traffic statistic
information is unknown a priori and the monitoring conditions
are unreliable. Our objective is to capture the packets of
interesting flows as many as possible. Especially, we focus on
sniffer redundancy deployment. The reliability of data capture
will be improved by assigning multiple sniffers to monitor
one data flow. While, sniffer redundancy will also reduce the
chances of exploring the best monitoring flow. An interesting
tradeoff arises, exploitation (i.e. to monitor one flow more
accurately with more sniffers) and exploration (i.e. to monitor
more flows not so clearly with one sniffer for one flow).

To this end, we formulate the problem as a combinatorial
multi-armed bandit (MAB) problem [7] and the idea of online
learning is inherited. Moreover, the multi-hop scenario general-
ly implies a large scale network, which requires a decentralized
implementation. To address it, we propose an efficient policy
to solve the combinatorial MAB problem for sniffer-channel
assignment. Our main contributions are summarized as follows:

• Sniffer redundancy deployment is investigated to achieve
a new trade-off between exploitation and exploration.

• A cooperative distributed implementation of learning pol-
icy is proposed for the multi-hop scenario.

The reminder of this paper is organized as follows. Section
II presents our problem and its formulation, and the details of
our policy are introduced in Section III. Performance evaluation
of our proposed policy is shown in Section IV, followed by
conclusion in Section V.
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II. PROBLEM DESCRIPTION

A. System model
1) Network scenario: Given a multi-hop multi-channel

wireless network G(V,E,C), there are a set V of nodes
and a set C of available wireless channels without any inter-
channel interference, where |C| ≥ 2. E is the set of possible
communication links. The nodes are scattered in a large scale
plane. The adjacent nodes (i.e. within the transmission range
of each other) that work on the same channel construct a link
l ∈ E. The channel cl ∈ C of a link l is chosen according to
one of existing channel assignment algorithms in the literature
[8]. Similar to [5], the nodes communicate according to a
synchronous slot structure. For limited transmission range,
when two distant nodes need to communicate, a route with
multiple consecutive links will be established and their packets
will be transmitted along the path by the means of relay.

2) Wireless monitoring system: Independent of the commu-
nication system, we introduce a third-party monitoring system
for network G. The objective is to capture the packets of inter-
ested flows as many as possible. Whether a flow is of interest
or not depends on the purpose of the monitoring system. We
assume that S sniffers are deployed in the monitoring system,
each of which can switch among multiple channels.

The sniffer deployment could be conducted in two steps. The
first step is to solve the spatial coverage problem, which aims
to distribute the sniffers to achieve the maximum coverage.
After that, the locations of the sniffers are given. Based on the
results, the next issue is to determinate the channel of each
sniffer, i.e., sniffer-channel assignment. The main reason to
separate the two problems is to support dynamical network
topology. Once the network topology changes, the system only
needs to adjust the monitoring channel of each sniffer. It avoids
sniffer location rearrangement that is usually costly and time-
consuming. In this paper, we focus on the latter issue.

We assume that the sniffers have capture capability in the
frame level such that the packets can be distinguished. But
there are some restrictions for the sniffers. Firstly, each sniffer
can only listen on one channel at any instant of time, so as to
capture the whole packet. Secondly, each sniffer has a limited
monitoring range. The link set within the monitor range of
the sniffer s is denoted as D(s). The necessary condition that
the packets of links can be observed by sniffer s is given
by D(s)

⋂{l | cl = ks} �= ∅ if its monitoring channel is
ks. Since the operating channel of each link in a time slot is
unique, the sniffer-channel assignment is equivalent to sniffer-
link assignment. In the rest part of this paper, we will use the
links as objects instead of the channels.

Furthermore, we consider a practical scenario with consider-
ations of unreliable monitoring conditions, where the packets
can be successfully captured with a certain probability. We
define the probability as capture probability. Without loss of
generality, we assume that capture probabilities of the sniffers
on each link are heterogeneous, which can be represented as a
matrix P c. Each entry Pc(s, l) ∈ [0, 1] is the average capture
probability when sniffer s monitors link l. We assume that P c

is known a priori via measurement and is relatively stable.

B. Problem formulation
Considering a multi-hop network, there are N target flows

transmitted along L active links in the monitoring region

of the sniffers. For simplicity, we assume that single path
routing is adopted in the communication network and the
routing of each flow is relatively stable. Let Path =
{path1,path2, . . . ,pathN} be the path set, in which each
entry is a dependent set of links. Similar to [5], we assume
that the traffic on a given flow f is drawn from an i.i.d
Bernoulli stochastic process xt

f over time t with mean packet
occurrence probability pf ∈ (0, 1). Accordingly, the link traffic
(xt

l , l ∈ [L], t ∈ [T ]) over time T > 0 is also an i.i.d random
sequence. And the packet occurrence probability on each link
that belongs to a path is equal to that of a flow on the path.
That is, pl = pf , ∀ l ∈ pathf . Note that some paths will
pass through the same link in some cases. In this case, packet
occurrence probability of a flow will be overestimated by using
that of the link. Fortunately, the packets from different flows
cannot be transmitted on the same link at the same time.
Thus, xt

l can be decomposed as multiple components based
on Independent Component Analysis (ICA). Each component
is the packet occurrence probability corresponding to a flow.
The link belongs to multiple paths can be deemed as multiple
virtual links, each of which bears a different flow.

Let A be the set of admissible deployment of sniffers,
A = {a = (as,l ∈ {0, 1}), ∀s ∈ [S], l ∈ [L]}, where
[L] = {1, 2, . . . , L}, [S] = {1, 2, . . . , S}1. For any a ∈ A,
as,l = 1 if sniffer s is assigned to monitor link l, and 0
otherwise. Our objective is to maximize the expected number
of packets captured given any traffic pattern of target flows.

Different from the existing works, in our formulation, when
a particular deployment scheme at is selected, packets will
only be captured with a probability. In particular, given any
realization of link traffic (xt

l , l ∈ [L], t ∈ [T ]) over time T > 0,
let yts,l be the observation of sniffer s on link l at time slot t.

ys,l =
{
xtl , w.p. Pc(s, l)
0, w.p. 1− Pc(s, l)

Two special cases require us to calculate the reward function
carefully with the introduction of capture probability. One is
sniffer redundancy on a link. It implies that multiple sniffers
monitor a link at the same time. We can represent the capture
probability of link l as

φl(a) = 1−
∏

s
[(1− Pc(s, l))

as,l ]

The other case is sniffer redundancy on a flow. That is, multiple
sniffers are deployed to monitor different links that belong to
the same path of a flow. Thus, it requires us to calculate the
reward based on flows rather than links. From the view point
of traffic flow, capture probability of the packets of a flow f
depends on sniffer deployment of all the links that belong to
it. Thus, the capture probability of flow f is

φf (a) = 1−
∏

l∈pathf

∏
s
[(1− Pc(s, l))

as,l ]

Obviously, φf = 0 when as,l = 0, ∀s ∈ [S], l ∈ pathf .
We define the reward R(at) of using at at time t as

Rf (a
t) =

{
xtf , w.p. φf (a

t)

0, w.p. 1− φf (a
t)

and
R(at) =

∑
f
Rf (a

t).

1Other notation in the form of [·] is similarly defined.
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The decision at is based on all past observations ht =
(yςs,l, s ∈ [S], l ∈ [L], ς ∈ [t − 1]). Let the set of all possible
observations over time be H, and the decision policy of the
monitoring system is then given by a map σ : H → A. Given
any realization of the traffic (xt

l , l ∈ [L], t ∈ [T ]), the reward
of any policy σ is defined as

G(σ) := E
σ

{∑T

t=1
R(at)

}
,

where the expectation is taken with respect to the randomness
in capture process, which depends on the choice of σ, and we
explicitly denote this dependency using the superscript.

We evaluate a given policy σ by using the notion of regret,
which is defined as the difference between the average number
of packets captured by the dynamic deployment using σ, and
that by the optimal static sniffer-channel assignment scheme
a∗ in hindsight. Formally, given (xt

l , l ∈ [L], t ∈ [T ]), let

a∗ = argmax
a∈A

E
a

{∑T

t=1
R(a)

}
.

Similarly, the expectation is taken with respect to the ran-
domness of packet capture given a. Let σ∗ : H → A be a
static policy such that the deployment a∗ is eternal for any
ht ∈ H, and set Gmax = G(σ∗). The regret is then defined as
Regret = Gmax − G(σ).

III. ONLINE SNIFFER-CHANNEL ASSIGNMENT

A. A distributed implementation
In general, the multi-hop network implies a large scale

scenario. The centralized architecture requires a coordinator
who globally collects the observed packet information, cen-
trally computes the decision scheme, and informs the sniffers
to assign their monitoring objectives. Such approach is not
preferable in the large scale scenario. Thus, we inherit classic
LLR policy [9] designed for the combinatorial MAB problem
and give its distributed implementation for the sniffer-channel
assignment in the multi-hop scenario.

Different from the conventional distributed learning poli-
cies, we assume that the sniffers are cooperative. There is a
network that enables the sniffers to communicate with each
other for sharing all of their learning results periodically. The
communication period lasts for τ time slots. In each round,
each sniffer announces a special message to all the other
sniffers, named StaMsg. In order to reduce communication
overhead, the StaMsg contains (η, 〈Ms

f (η), λ̃
s
f (η)〉) instead of

original packets, in which η is designed to assure information
synchronization of the process and 〈Ms

f , λ̃
s
f 〉 is the corre-

sponding statistical information vector of all monitored flows
in the vicinity of sniffer s. Through message exchange, the
sniffers can get “global” information from each other. Note
that the “global” information will be obtained after τ time
slots. To omit the impact of this delay, we wrap up every τ
consecutive time slots as one round. See Algorithm 1 for the
main framework of our distributed learning policy.

The ηth round begins at time slot (η− 1)τ and ends at time
slot ητ . At the beginning phase of the η-th batch cycle, each
sniffer gets λ̃f by merge operation once receiving messages
from the other ones (step 4). The messages sent over the
monitoring network will incur a non-negligible latency. The
latency is proportional to the distance between the sniffers,

Algorithm 1 distributed online sniffer-channel assignment

Input:
Flow number: N ; Link number: L; Sniffer number: S;
The dependent link set along the route of flow f : Pathf ;
Communication period: τ ; the longest exchange delay: τ0

1: for for each round η = 1, 2, ..., T/τ do
2: for s ∈ [S] do
3: for each time slot t = 1, 2, . . . , τ do
4: waits message from other sniffers till τ0 ends
5: if receives a message from sniffer s′ then
6: verifies the message is newer than the local record by com-

paring ηs′
7: if the message is newer then
8: updates statistical means of packet occurrence probabilities

of the corresponding flows

λ̃
s
f (η − 1) = Merge(λ̃sf (η − 1), λ̃s

′
f (η − 1))

9: else
10: discards the received messages
11: end if
12: end if
13: calculates estimated packet occurrence probability

p̃sf (η) = λ̃sf (η) +

√√√√√
(
∑
f

I(
∑

l∈pathf

∑
s
ats,l > 0) + 1) ln t

Ms
f (η − 1)

14: strategy decision: at
s = Decision(p̃s(η))

15: maintains the sniffer channel assignment scheme at the remained
time slots of current period

at
s = at−1

s

16: waits packet captured results Yl(t)
17: end for
18: calculates the average reward

yf (η) =
1

τ − τ0

∑
t

yl(t), l ∈ pathf

19: updates Ms(η) and λ̃
s
(η) :

Ms
f (η) =

⎧⎨
⎩
Ms

f (η − 1) + 1, if
∑

l∈pathf

∑
s
ats,l > 0

Ms
f (η − 1), else

(1)

λ̃sf (η) =

⎧⎪⎪⎨
⎪⎪⎩

λ̃sf (η−1)×Ms
f (η−1)+

Yf (η)

φf (at)

Ms
f
(η)

, if
∑

l∈pathf

∑
s
ats,l > 0

λ̃sf (η − 1), else
(2)

20: broadcasts StaMsg message
21: end for
22: end for

and the longest possible latency is therefore proportional to the
diameter of the monitoring network, denoted as τ0(≤ τ). In the

merge process (step 8), the statistic information λ̃f with more
Mf is selected as the final result of a flow. Then a sniffer-
channel assignment aη is decided by invoking the scheme
decision (step 13-14). After that, no message exchange will
happen and the sniffer-channel assignment schemes on each
time slot in a round are consistent (step 15). That is, the sniffers
are deployed according to the scheme for the remained time
slots, i.e. a(η−1)τ+τ0+1 = a(η−1)τ+τ0+2 = . . . = aητ . At the
end of the round, the packet capture reward on each time slot is
accumulated and the average value is calculated for the update
of the statistical means (step 18-19).

In the decision process (step 14), each sniffer utilizes the
estimated packet occurrence probabilities of all flows to select
a sniffer-channel assignment scheme with the maximum ex-
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pected reward. Obviously, the problem is a non-linear integral
programming, which has been proven to be NP-hard. Fortu-
nately, the reward function is monotony and the key property
can be exploited to solve it with a polynomial-time algorithm.
The details of the algorithm can be referred to [10].

Note that all the links are deemed as arms in our formulation.
We further divide the links into different clusters. The links
belong to the same path are in one cluster. The update of
statistical information is based on clusters/flows. Two vectors
with the size of N are maintained to store and update the
statistical means of all flows’ packet transmission.

B. Regret analysis
Our policy is built on the LLR policy. Specially, the LLR

policy can be regarded as the non-delayed version, where τ is
set to be 0. To this end, we conclude the regret guarantees of
non-delayed version by referring to that of LLR policy.

LEMMA 1. The expected regret of the non-delayed version of
our policy over any sequence trials is bounded by

Regret0(T ) ≤ [
4(δmax)

2S2(S + 1)N lnT

Δ2
min

+N+
π2

3
SN ]Δmax,

where Δmin and Δmax is minimum and maximum of gap
between R(a∗) and the reward of non-optimal scheme, δmax =
max

f
φf (a), ∀f ∈ [N ].

Based on the lemma, we can easily deduce the regret
guarantees of Algorithm 1 as following.

THEOREM 1. The expected regret of our policy over any
sequence trials is bounded by

Regret(T ) ≤ τUpperBound(Regret0(T\τ)) + o(τ).

Due to space limitation, we omit the proof of this conclusion.

IV. NUMERICAL RESULTS

We implement our proposed policy in Matlab and conduct
simulations to evaluate its effectiveness.

In our scenario, there is a multi-hop wireless network,
where N flows with the interesting traffic passing through
L links. The relationship between links and flows are gen-
erated randomly. Packet transmission of each flow is drawn
from a distinct i.i.d Bernoulli stochastic process with a mean
pf ∈ (0, 1). The traffic on all the links along a path has
the same statistics. The monitoring system can perform initial
detection in its serving area, and identify the L links as
its monitoring objects.Capture probability matrix is randomly
generate Pc ∈ (0, 1]. In the simulations, we vary network
topology (including the number of monitored link L and
interesting flow N ) and the scale of the monitoring system (i.e.,
the number of sniffers S). The simulation with each setting is
repeated for 100 times to even random disturbance.

Fig. 1 shows some representative results for the regret of
our policy over time, where N = 5, S = 4, T = 100000. We
can observe that the regret tends to flatten out over time. The
similar results can be found under various settings. It indicates
the convergence of Algorithm 1 and verifies its effectiveness.
We further vary τ = 0, 5, 10 to study the impact of the
communication period τ on the regret of the algorithm. We

find that the resulted regret becomes larger with the increasing
of τ and it is up to an additive penalty depending on τ .
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Fig. 1. The regret of Algorithm 1 with varying τ when N = 5, S = 4

V. CONCLUSION

In this paper, we investigate sniffer-channel assignment
problem for data capture in multi-hop multi-channel wire-
less networks. We consider unreliable monitoring conditions
and focus on sniffer redundancy deployment that utilized
to improve capture probability. Without assuming any prior
knowledge of the flow traffic, the sniffer-channel assignment
is formulated as a combinatorial MAB problem, and a coop-
erative distribute learning policy is proposed.We analyze the
regret of our policy in theory and simulation results validate
that our policy can achieve logarithmic regret in the number
of time slots. In the future work, we will extend our solution
to other scenarios where the flows follow a Markovian process
or under an adversarial setting.
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