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Abstract—Despite the improvements brought about by content-
centric networking’s (CCN) in-network caching and interest
aggregation, congestion can still take place in such networks due
to the dominance of non-reusable content, high cache churn, high
delay variations, premature timeouts and interest retransmission.
This becomes even more dramatic when multi-path routing is
adopted. Identifying that at a given node in CCN, the Pending
Interest Table (PIT) occupancy can give a good estimate of the
data workload to arrive to the node in the near future, we propose
in this paper a novel mechanism to control congestion in CCN
based on this idea. Our mechanism uses the average occupancy
of the PIT to estimate the anticipated data packet transmission
queue length and sends explicit congestion notification signals to
the content requesters to reduce their interest sending rates when
such anticipated queue size exceeds a threshold. We demonstrate
the effectiveness of our proposed mechanism via ns-3 simulation.

I. INTRODUCTION

In-network caching and interest aggregation are among the

key features of Content-centric networking (CCN) [1] and

other Information-centric networking (ICN) proposals such as

Named-Data Networking (NDN) [2]. With these features, a

great deal of redundant traffic is filtered out from the network

thus improving the performance of the network considerably.

Nonetheless, due to various reasons, such as the dominance of

non-reusable (one-timer) content in the network, the popularity

distribution of traffic and the huge ratio of the universal content

available to the cache sizes in the nodes, congestion can still

take place in such networks. This motivates the design of a new

clean-slate congestion control mechanism to take into account

the unique characteristics of CCN/ICN.
A CCN node receives at most one data packet for every

interest packet forwarded upstream. The data packet is then

sent downstream at most one copy per interface. If the arrival

rate of data packets exceeds the transmission capacity of the

downlink, the queue begins to build up and eventually packets

are dropped leading to timeout and retransmission of interest

packets. To regulate the rate of arrival of new data chunks,

one can regulate the rate of arrival of interests. A requester

relies on timer expiration to infer congestion in the network

however, this approach can be slow in reacting to congestion

[3], [4]. To address this problem more effectively, intermediate

nodes could be co-opted to notify requesters of congestion by

explicitly sending a congestion control packet (aka NACK)

[5]. However, sending NACKs downstream is not without

drawbacks as it may require message prioritization and incurs

additional overhead [6]. Approaches that do not require such

prioritization and incur no extra overhead are desirable.

The Pending Interest Table (PIT) in CCN is a data structure

that keeps track of all interests forwarded upstream and thus

influences directly the occupancy of the data packet transmis-

sion buffer. In addition, it can represent a bottleneck for the

network when the rate at which PIT entries are created is

greater than the rate at which the entries are consumed [7],

[8]. Therefore, congestion control mechanisms that are de-

signed to efficiently manage the occupancy of the data packet

transmission buffer should take into account the occupancy of

the PIT as well. However, existing mechanisms [5], [9], [10],

[11] for managing congestion in CCN/ICN do not consider

the occupancy of the PIT, a vital information that can be used

to estimate the anticipated occupancy of the data transmission

buffer.

To this end, we propose in this paper a novel congestion

control mechanism for CCN that uses the occupancy of the

PIT as a good estimator of the additional data to be queued

in the data packet queue in the near future. More specif-

ically, our PIT-based congestion control mechanism takes

into account the occupancy of the PIT in predicting the

data buffer occupancy in the next RTT at each intermediate

node. These latter, convey back explicit congestion notification

to the requesters to slow down their interest sending rates

whenever the anticipated queue size exceeds a threshold. To

complement this, we also propose an interest rate controller

that forces the requesters to reduce their interest sending rates

upon the receipt of congestion notifications. We demonstrate

the effectiveness of our proposed mechanism via simulation

experiments in ns-3.

The rest of this paper is structured as follows: Our system

description is given in Section II. We provide the rationale

behind our congestion control protocol in Section III while

Section IV entails the description of our proposed mechanism

including its performance evaluation and analysis in Section V.

We review related works in Section VI and draw our conclu-

sion in Section VII.

II. SYSTEM DESCRIPTION

In this section, we give a brief description of CCN and

further explain how the occupancy of the PIT affects the data

packet transmission queue.
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A. Content-centric networking

Contents in CCN are divided into data chunks and each

chunk is singly identified using a hierarchical naming conven-

tion [1]. Communication in CCN is initiated by the requesters

of the data. More specifically, a receiver requests for chunks by

sending interest packets. Each interest contains the identifier

of the requested chunk. The identifier is used in routing an

interest packet towards the location of the data chunk, then

using the reverse path traversed by the interest packet, the

chunk is returned to the requester [12]. To improve the network

performance, every CCN node caches the data chunk to serve

future request for the same chunk if needed.

B. PIT occupancy and data transmission buffer

In a CCN PIT, an entry is created for every newly arrived

interest that experiences both cache and PIT misses before the

interest is forwarded upstream [12], [1]. While the arrival of

the requested data chunk consumes the pending interest from

the PIT before the data chunk is forwarded downstream. In

the CCN progressive deployment plans, it is suggested that

the PIT and the cache be elevated from a router’s buffer, as

a result both the PIT and the cache are limited in size can

become bottlenecks that affect the performance of the system.

In particular, when the upstream network is congested, data

chunks may take longer to return, leading to an increased

holding time of each PIT entry in the PIT and possibly PIT

blocking as discussed in our previous work [7]. PIT blocking

can lead to an increased load on the PIT. In addition, when the

PIT occupancy rate (i.e., number of PIT entries in the PIT per

unit time) increases, it may lead to an increased workload on

the the data buffer that exceeds the node’s forwarding capacity.

In this case congestion can take place in the data buffer.

III. PROTOCOL DESIGN RATIONALE

One can imagine a congestion control mechanism similar

to TCP congestion control where interest packets are sub-

stituted for Data and data chunk are instantiated for ACKs.

Nevertheless in such system there is no distinction between

congestion in the PIT and congestion in the router buffer.

In addition caching would have a dramatic impact on TCP

timeout due to the volatility of the RTT estimates. As a result,

to take into account the peculiarities of CCN, it is not sufficient

to control congestion in the traditional manner. We believe

that for a CCN congestion control mechanism to be effective

it must take into account the occupancy of the PIT, a key

component of CCN that drives the number of data packets that

can be retrieved from upstream nodes. Given the dependency

of the data packet transmission buffer occupancy on the PIT

occupancy, the current occupancy of the PIT can be used

to estimate the anticipated occupancy of the buffer knowing

the current buffer occupancy. Avoiding congestion before it

takes place is always desirable in communication networks.

Therefore, the PIT occupancy can be used to estimate the

anticipated queue length of the data packet transmission buffer

in the next RTT.

In addition, controlling congestion in a network at the traffic

sources is considered a good design choice as adopted by

some existing congestion control proposals for IP networks

and CCN. However, such end-host proposals rely on a timer

expiration or/and receipt of three duplicate ACKs (for TCP

congestion control flavours) which may lead to a slow reaction

to congestion in the network. Thanks to proposals such as

TCP/AQM with ECN marking that signal congestion to end-

hosts before timer expiration. A number of recently proposed

congestion control protocols for CCN/ICN recommend to use

congestion control packet (NACK) to signal congestion to

consumers [5], [10]. Another proposal uses a data packet,

excluding its payload, to signal congestion [13]. While we

believe that it is desirable to explicitly notify CCN consumers

of network congestion before timer expiration, explicitly sig-

nalling congestion to traffic sources should not incur additional

network overhead or require message prioritization [6]. Sim-

ilarly in our proposed congestion control protocol, instead of

waiting for congestion to take place, routers signal imminent

congestion to traffic sources, but differ from existing works

by marking an option field in the data packet header without

the need to exclude its payload. We consider this as a good

design choice.

Contents in CCN/ICN are divided into chunks. The number

of chunks per content depends on the size of the content as

well as the chunk size. Contents with large number of chunks

tend to occupy more entries in the PIT than content with

small number of chunks. Suppose we adopt a random early

drop mechanism to relieve congestion in the PIT, and need to

erase an entry in order to accommodate a new request when

the PIT is full or a target PIT occupancy has been reached,

an entry for a content that occupies the largest number of

PIT entries will be the best candidate to ensure fairness. To

this end, we propose to use a mechanism to determine such

elephant contents.

In summary, our protocol design is inspired by the well-

proven TCP/AQM (e.g. RED) with ECN marking. However,

it is bundled with additional functionalities such as:

i Penalizing contents that occupy a large number of entries

in the PIT

ii Using PIT occupancy to estimate the anticipated occu-

pancy of the router’s packet transmission buffer in the

next RTT.

iii Reaction to imminent congestion before it takes place.

Next, we present our proposed congestion control protocol for

CCN detailing first how to achieve functionalities i–iii. We

later give the full description of the protocol.

IV. PROPOSED CONGESTION CONTROL PROTOCOL

In the conventional TCP/IP network, congestion can happen

in a transmission buffer if the transmission link capacity is

a bottleneck in the network. However, with the evolution of

content-centric networking featuring a pending interest table

that keeps track of interests for yet-to-return data, the PIT

also is a potential bottleneck thus limiting the number of

interests that can be forwarded upstream and consequently the
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Fig. 1: A router’s PIT and transmission buffer for data in a

simple CCN network

number of data. Our proposed congestion control mechanism

operates at two levels in a given CCN node: First, it controls

congestion at the PIT, and secondly at the router’s buffer.

When congestion is detected either in the PIT or in the router’s

buffer, CCN receivers are notified before their retransmission

timers expire. Upon receiving the notifications, they regulate

their sending rates accordingly. See Fig. 1.

A. A modified data packet header for congestion notification

Each returned data packet has a new 1-bit field in its header

to signal congestion to CCN receivers. A value of 0 means no

congestion while a value of 1 implies imminent congestion.

The 1-bit field is filled in by intermediate nodes depending on

the current value of the field and the congestion status at the

nodes. Note that no downstream node can modify the value

in the field if its current value is 1.

When a CCN consumer receives a packet that is marked, it

reacts accordingly by reducing its interest sending rate once

per RTT.

B. Fairness controller

In a CCN PIT, a data chunk consumes at most one entry.

Different contents can have different number of chunks. For

example, given a fixed chunk size, there is a huge difference

in the number of chunks of a 3GB movie download and

a web request. Therefore, requests for the movie (elephant

content) tend to occupy more entries in the PIT than for the

web request (mice content). When congestion happens in the

PIT, we believe that the elephant contents should be penalized

more severely than the mice contents. To this end, we propose

a mechanism that mark data packet with a probability when

the PIT occupancy is between a minimum and maximum

thresholds at a given node. Our mechanism follows a RED-

like scheme to monitor the PIT occupancy and calculate the

data packet marking probability p̂.

C. Congestion notification via data packet marking

In section IV-A we propose to mark an Optional field in

the header of the data packet to be forwarded downstream

via a given interface if congestion is imminent either in the

PIT or transmission buffer. With this technique, we avoid

any additional traffic into the network and network resource

wastage unlike the works in [5] and [13], respectively.

To notify a CCN receiver of congestion, we set the 1-bit

Option field (OF) in a CCN data packet header to 1. It is set

to 0 by default at the node that satisfies the request. Every

downstream node that receives a data packet checks the 1-bit

OF and infers congestion in the upstream network. If OF is

1 then the node can attempt other available outgoing faces

in the forwarding information table (FIB). This request path

diversification on congestion tends to offload upstream nodes

in the future.

D. PIT congestion controller

Given a PIT of size M we define two PIT occupancy thresh-

olds similar to RED, ρmin and ρmax. A CCN node updates

its current PIT occupancy M(t) on every entry creation and

deletion in the PIT and the average PIT occupancy M̃ using

exponential moving average.

M̃ = (1− ω)M̃ + ωM(t) (1)

The detailed algorithm is shown in Algorithms 1.

On the arrival of an interest packet at a CCN node via

interface j and the requested data chunk is found in cache, the

interest is consumed by the node. On a cache miss, the PIT

is checked for pending interest with the same name. If found,

we do a normal CCN packet processing. If no matching entry

is found in the PIT then a PIT entry is created and the interest

is forwarded upstream. In this case we update M(t) and M̃ .

On the arrival of a data packet while M̃ ≥ ρmax we mark

the data packet for sure. If the average PIT occupancy is

between ρmin and ρmax, we use RED-like scheme to compute

the marking probability p̂ and mark the data packet with the

computed probability. Similarly, we update M(t) and M̃ .

E. Router’s buffer congestion controller

Suppose an interface j has a transmission buffer and at any

time t the buffer occupancy is observed to be Qj(t) packets.

Similarly, the PIT occupancy on the average is denoted as M̃
as in Equation 1. Given the PIT occupancy, we estimate the

anticipated occupancy of the transmission buffer of interface

j in the next τ seconds as Q̃j(t+ τ)

Q̃j(t+ τ) = Qj(t) + κjM̃ ; (2)

where Q̃j(t+τ) is defined as the anticipated number of packets

in the buffer. Note that Q̃j(t + τ) is a first order estimator

of the persistent queue length as it ignores both the packets

transmitted in interval of time τ and the extra PIT traffic that

would arrive during τ from downstream nodes. Also, for each

node we have κ defined as a set of ratios of the number of

interests received from a given interface to the total number

of interests received from all interfaces. κ = {κ1, . . . , κf}
where f is the number of transmission interfaces at a node.

κj indexed at j is the ratio of interests received from interface

j to the total interests received from all f interfaces.

Having estimated the anticipated number of packets in the

buffer Q̃j(t+ τ) for interface j, we then compare Q̃j(t+ τ)
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Algorithm 1: PIT congestion controller

Input: M , ρmin, ρmax

1 On Interest Arrival: via interface j
2 if cache hit or PIT hit then
3 normal CCN processing
4 else
5 Create PIT entry
6 Forward interest upstream
7 M = M + 1

8 M̃ = (1− ω)M̃ + ωM
9 end

10 On PIT entry timeout:
11 M = M − 1

12 M̃ = (1− ω)M̃ + ωM
13 normal CCN processing

14 On arrival of Data:
15 if PIT hit then
16 M = M − 1

17 M̃ = (1− ω)M̃ + ωM

18 if (M̃ ≥ ρmax) then
19 Mark data packet with probability

equal to 1
20 else if (ρmin ≤M ≤ ρmax) then
21 Compute p̂ using RED
22 Mark data packet with probability p̂
23 end
24 end
25 normal CCN processing

to a threshold γj
QBj and take decisions based on the outcome

of the comparison, where Bj is the buffer size of interface j.

If Q̃j(t + τ) >= γj
QBj then the flag flagIj associated with

interface j is set, otherwise flagIj is unset. Every data packet

that is transmitted via interface j is marked if flagIj is set.

Conversely, no data packet is marked if flagIj is unset. See

Algorithm 2 for details.

F. Receiver’s congestion controller

At the receiver, when a CCN consumer receives a data

packet, the CCN receiver controller checks the 1-bit OF; if its

value is 1 then congestion is inferred otherwise a congestion-

free network is assumed.

Given a data content C divided into chunks, a CCN con-

sumer generates an interest packet for each chunk. The interest

is sent out to fetch the requested chunk from the network

(caching nodes and/or content producer). To avoid overload-

ing the network with interest packets and consequently data

packet, we propose to have an interest controller residing on

every node that generates interests for contents. The controller

includes a transport mechanism for sending interests. It uses a

TCP-like congestion control mechanism to regulate the amount

of interests that can be sent upstream. Details of the interest

controller are shown in Algorithm 3.

To avoid waiting indefinitely for data, the controller in the

CCN router maintains a timer for every interest sent. The

controller can infer congestion upon the expiration of this

timer, in which case, the interest window is cut by half. Note

that congestion window never goes below 1 packet.

Algorithm 2: Router’s buffer congestion controller

Input: M̃ , Qj , γQ, κ

1 On Interest Arrival: via interface j
2 if cache hit then
3 normal CCN processing
4 if flagIj then
5 Mark data packet via interface j
6 end
7 else
8 if PIT hit then
9 normal CCN processing

10 else
11 normal CCN processing
12 update κ

13 Q̃j(t+ τ) = Qj(t) + κjM̃

14 if Q̃(t+ τ) >= γj
QBj then

15 set flagIj
16 else
17 unset flagIj
18 end
19 end
20 end
21 On arrival of Data:
22 if PIT hit then
23 normal CCN processing
24 update κ
25 if flagIj then
26 Mark outgoing data packet via

interface j
27 end
28 else
29 normal CCN processing
30 end

Due to high delay variability caused by in-network caching

in CCN, TCP-like RTO estimation has been shown to cause

unnecessary retransmission [4], [3], [14] thus degrading net-

work performance. In view of this, we follow a different

approach in estimating the RTO. Our approach is informed

by our previous work in [7] that records the maximum

RTT observed over a given period of time. See [7] for the

detailed algorithm. In addition, we set the RTO to be slightly

larger than the observed maximum value to avoid unnecessary

retransmission.

Upon receiving a data packet with the OF bit marked, the

controller infers congestion in the network and decreases its

sending rate accordingly not more than once in an RTT. We

adopt AIMD to increase and decrease the interest sending rate

at the consumer. Our approach is different in the value of

the multiplicative decrease factor β when a CCN consumer

receives a marked packet. We set β = 0.1 instead of 0.5. This

is because a data packet is marked as a result of imminent

congestion (congestion has not taken place, just anticipated).

Other values between 0.1 and 0.5 are plausible but too close

to 0.5 could impair the network performance. Also negative

powers of 2 such as (0.125) are more interesting to avoid

floating point operations.
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Algorithm 3: CCN consumer interest controller

1 Initialization: W = Winit = 1
Input: β
/* Similar to TCP congestion control

algorithm except in decreasing the
congestion window */

2 On Data:
3 if Data successfully received and data packet marked then
4 extract the value for ω

/* Once in 1 RTT */
5 W = W − βW
6 end
7 On Timeout:
8 W = max(Winit, 0.5W )
9 retransmit timeout interest

G. Complexity analysis

In our scheme, we propose to use an option field in the

data packet header to explicitly notify content requesters of

congestion. With this approach, no extra overhead cost is

introduced. In the proposed scheme, the requesters check the

Option field of the received data if it is marked, resulting in

an O(1) operation.

Our PIT congestion controller maintains three variables, M ,

M̃ and ρ̃, see Algorithm 1, for all interest packets received.

The variables are updated each time an entry is created in the

PIT. Note that in a normal CCN PIT operation, an interest

aggregation or PIT entry creation is done for every interest

packet that arrives at the PIT. Updating the three variables is

an O(1) operation.

In Algorithm 2, our router’s buffer congestion controller

maintains a fixed number of variables similar to Algorithm 1

except for κ and flagIj whose space complexity depends on

the number of transmission interfaces through which interests

have been received. Note that most routers in CCN would

probably have a number of transmission interfaces that is at

most 2 or 3 order of magnitude. Maintaining as many variables

would not pose any significant memory efficiency problem

in the router. In addition, we update κ and flagIj for each

interest arrival at the PIT. Given that both κ and flagIj are

indexed by the interface ID obtained when an interest arrives at

the PIT, updating the two variables is also an O(1) operation.

Finally, from the code perspective, the implementation of

our proposed scheme may seem to be not efficient based on

typical IP routers. In fact, these routers cannot even match

the compute power demand of CCN itself which has led to

the design of specialized routers (e.g., by Cisco and Huawei)

for CCN. As discussed above, in such routers our proposed

scheme should not pose any efficiency issue.

V. PERFORMANCE EVALUATION AND ANALYSIS

This section presents a performance evaluation and analysis

of our proposed mechanism via simulation in ns-3. We also

demonstrate the benefits of a network assisted congestion

control mechanism by a comparative performance study of our

proposed mechanism to a TCP1 without congestion feedback

from intermediate nodes in the network.

A. Simulation description

To study the impact of congestion on the performance of our

proposed scheme in a single shared bottleneck, we consider a

dumbbell topology consisting of 6 nodes. Two access routers

ar1 and ar2 receive requests for contents from many users

(10,000 users). We believe this number of users is large enough

to evaluate our scheme. Users’ content requests follow a Zipf

probability distribution with the skewness parameter α. In the

case of cache misses, all chunk requests from ar1 and ar2 can

only be satisfied by content producers p1 and p2, respectively.

Two core routers, cr1 and cr2 connect ar1 to p1 and ar2 to

p2. We believe that this topology is simple and sufficient to

capture the impact of caching, aggregation and PIT occupancy

on the performance of our proposed mechanism. We do not

consider complex topologies and bidirectional flows of interest

packets because the arrivals of interest packets on one direction

are capable of causing congestion in the reverse path.

By default ar1 and ar2 have relatively small cache sizes

and thus requests are not satisfied by these nodes. Requests

are forwarded using shortest path routing and content request

arrivals at each access router follow a Poisson process with

mean arrival rate λ. Requests for the same content have the

same interest lifetime. We use ProWGen [15] to generate our

workloads. ProWGen is a widely used synthetic web proxy

workload generation tool for web requests in the Internet.

Note that large queueing delay and packet drops are two

manifestations of congestion in a network. They can affect

negatively the time it takes a content requester to fetch a given

content from the network, the rate of packet retransmission

and chunk delay variance (jitter). To see the extent to which

our scheme improves content requesters’ quality of experience

while keeping the network in a normally operating and stable

state we evaluate the performance of our scheme by consid-

ering the following metrics:

• Content download time defined as the time from when

the first request is sent to the time the last chunk for the

content is received.

• squared coefficient of variation (SCV) of the chunk delay

per content;

• number of interest retransmission (every 100s);

• data chunk packet loss rate;

• number of entries in the PIT indicating the number of

pending interest entries in the PIT;

• queue length at the bottleneck link.

Node cr1 receives interests from two interfaces leading to

entries in the PIT. As such, we present results for the number

of entries in the PIT for only cr1.

1Similar to a TCP congestion control that relies on timeout to infer
congestion in the network. RTO estimation and reaction to timeout is the
same as in our proposed mechanism
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B. Simulation setup

Our proposed congestion control mechanism was imple-

mented in ns-3 network simulator using the ndn/ccn ns-3

modules [2]. To use the workload generated by ProwGen in

ns-3, we developed a custom application module. The scenario

described in Section V-A was simulated in ns-3.

Each of the links connecting ar1 to cr1 and ar2 to cr1 has

a capacity of 1Gbps and a propagation delay of 10ms while

for cr2 to p1 and cr2 to p2 it has a capacity of 1Gbps and a

propagation delay of 20ms. To make the link connecting cr1
to cr2 a shared bottleneck link we set the link capacity and

propagation delay as 0.5Gbps and 70ms, respectively. The size

of each returned data chunk is 1500 bytes. To make each of

the links busy 100% of the time when congestion happens we

set buffer sizes in each node to the bandwidth delay product

and the default size of the PIT is 20000 entries. To see how the

size of PIT impact the network performance we consider a PIT

size less than the buffer size. We set γQ = 1.0, ρmin = 0.75P
and ρmax = 0.95P where P is the PIT size. For the value of

M̂ to capture the current changes in the occupancy of the PIT

we set ω = 0.125.

For our workload, we use α = 0.95 (default). We also

consider α = 0.65. These values are within the recommended

values in the literature [16]. There are 60% one-timers and

40% unique contents. The mean file size for contents is 7000

chunks. We generated 10,000 content requests (not at the

chunk level). Note that the number of data chunks per content

depends on the file size of the content. For in-network caching,

we use LRU replacement policy using the default ubiquitous

caching policy of CCN and the cache sizes considered in each

node are 1%, 0.25% and 0.025% of the content universe . In

this work we set the interest lifetime and the PIT entry lifetime

to the estimated RTO.

We ran each simulation 100 times. For lightly loaded

networks we set λ = 5 users per second while for heavily

loaded networks λ = 10 users per second. Simulations ran

for the entire time to download all the contents (10,000). We

present the CDF over all the contents and over simulation

time. We hereafter refer to our proposed interest rate controller

without congestion feedback from the network as TCP and

with congestion feedback from the network as Proposed.

C. Impact of traffic load

Fig. 2 shows the distributions of the content download

time Fig. 2a, data chunk drop rates Fig. 2b, number of

interest retransmissions per 100s Fig. 2c, SCV of the chunk

delay Fig. 2d, bottleneck queue occupancy Fig. 2e and PIT

occupancy Fig. 2f with different average arrival rate of users

at each of the access routers in the absence of in-network

caching. The results shown in Fig. 2a reveal that about

60% of the contents have finished their downloads in less

than 400s using Proposed while the same percentage of

contents requires about 500s using TCP in the presence of

a lightly loaded network. This is because of the higher data

chunk drop rates experienced by TCP than the drop rates

experienced by Proposed as shown in Fig. 2b, leading to more
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Fig. 2: Impact of network traffic load without caching

interest retransmissions by majority of the content requesters,

see Fig. 2c.

Increasing the average arrival rate to 10 users per second

can lead to more congestion as evident by the increase in

download time from 400s to about 800s for downloading the

same amount of contents using Proposed compared to TCP

which achieves about 900s to download the same amount of

contents. In Fig. 2d, we observe that the SCV for chunk delay

is less than 1 for all the contents using Proposed unlike TCP

that achieves about 20% of the contents experiencing SCV

≥ 1. This suggests that, using Proposed, the distribution of

the chunk delays experienced for downloading a content are

considered low-variance.

The improved performance achieved by Proposed over TCP

is partly due to the bottleneck buffer and the PIT not becoming

full in a significant fraction of the time unlike TCP in which

the buffer is full in about 30% of the time as shown in Fig. 2e

and the PIT in about 20% of the time as shown in Fig. 2f,

respectively. Next, we show how the presence of in-network

caching can affect the performance of our proposed congestion

mechanism.

With in-network caching, we observe a decrease in the

content download time from 400s to 300s to fetch about

60% of the contents using Proposed in Fig. 3a. TCP also

benefits from caching as the content download time is ob-

served to decrease from about 900s to 700s to download

60% of contents. However, a less percentage of the contents
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Fig. 3: Impact of network traffic load with caching

experience nearly zero packet drop (Fig. 3b), few number

of interest retransmission (Fig. 3c) and less-than-one SCV

(Fig. 3d) than when there is no caching using Proposed. This

is because some of the chunk requests are satisfied from in-

network caches thus reducing the number of hops which in

turn increases the rate at which the congestion window is

increased especially in slowstart phase causing more chunk

drops, interest retransmission and higher chunk delay variance.

We do not observe significant performance improvements

w.r.t. the bottleneck buffer and PIT occupancies. The results

are not included due to page limit.

D. Impact of caching

In this section we vary the cache size per node in the

network when the average user arrival rate is 5 users/s. We

consider cache sizes of 1%, 0.25% and 0.025% of the universe

contents and Fig. 4 shows the distributions of the content

download time (Fig. 4a), data chunk drop rate (Fig. 4b),

number of interest retransmissions (Fig. 4c) and SCV of chunk

delay (Fig. 4d). We do not include results for 0.025% of

universe content as no significant performance gain over the

scenario without caching was observed.

Fig. 4a presents results showing that both Proposed and TCP

benefit from increased cache size as evident by downloading

about 40% of the contents in less than 200s with 1% of

universe contents cache size compared to downloading the

same amount of contents in about 250s with 0.25%. This is

achieved at the expense of a reduced percentage of contents

(from 90% to 80% in Fig. 4b) that experience nearly zero

data chunk drop rate, (from 60% to 25% in Fig. 4c) about

9 interest retransmissions every 100s, (from about 80% to

50% in Fig. 4d) about 0.1 SCV) using Proposed. TCP also

degrades in performance but it is less significant. The improved

download time is due to the fact that more requests are satisfied

from in-network caches as the size of the cache increases.
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Fig. 4: Impact of caching

E. Impact of PIT size

To see how caching influence the impact of PIT size on the

performance of our proposed congestion control mechanism,

we present in Fig. 5 the distributions of the content download

time (see Fig. 5a) and number of interest retransmission every

100s (see Fig. 5b). As caching always strives to improve

performance especially in terms of content download time and

being one of the key features of CCN/ICN, we do not include

results for the scenario without caching due to page limit.

Given a PIT size that is larger than the bottleneck buffer

size and using Proposed, Fig. 5a shows that about 60% of the

contents have finished their downloads in about 300s. Only

about 45% of the contents have completed their downloads

within the same period of time if the PIT size is reduced

from 20K to 7K entries (less than the buffer size). Similar

performance behaviour is observed with TCP. Only about

45% of the contents have completed their downloads for

P=20K while only about 20% of the contents have finished

their download for P=7K in the same amount of time with

TCP. However, thanks to our proposed PIT congestion control

mechanism with about 50% of the contents achieving at

most 20 retransmissions in every 100s unlike TCP with the

same percentage of contents achieving 110 and 130 interest

retransmissions every 100s for P=20K and P=7K, respectively.

Fig. 5d shows that our mechanism is capable of avoiding the

PIT becomes full for a significant fraction of time.

About 10% of the contents experience more than 100

interest retransmissions every 100s with Proposed, see Fig. 5b.

Again this is due to increase rate of increasing the congestion

window caused by caching. No significant performance differ-

ence is observed in the SCV. Due to delay variability caused

by caching, about less than 5% of the contents experience SCV

more than 1, making the distribution of the delay experienced

by the requested chunks to be of high-variance. See Fig. 5c.
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Fig. 5: Impact of PIT size

F. Impact of Zipf’s skewness parameter

In this section we consider two different values of α, 0.65

(many popular contents) and 0.95 (few number of very popular

contents) and results from simulations are presented in Fig. 6.

Fig. 6a shows the improved content download time achieved

with different values of α, with or without caching using

Proposed or TCP. For Proposed, we observe about 90% and

70% of the contents complete their downloads in 400s, if

α = 0.95 while it is about 75% and 50% that complete their

download in the same amount of time if α = 0.65, in the

presence (see Fig. 6b) and absence (see Fig. 6a) of caching,

respectively. TCP achieves smaller percentage of contents that

finish their download in the same amount of time (70% and

35% if α = 0.95 and 45% and 30% if α = 0.65 in the presence

and absence of caching, respectively).

Interest aggregation can improve performance w.r.t. of the

number of interest retransmissions every 100s. With Proposed

in Fig. 6c about 90% of the contents experience a single

interest retransmission for α = 0.95 compared to about

10% that experience the same number of retransmission for

α = 0.65. Caching increases the rate at which consumer’s

congestion window increased as some of the chunk requests

do not traverse the full perimeter of the network. This has the

potential of increasing the number of retransmission leading

to about 15% of the contents experiencing 1 interest retrans-

mission and negligible for α = 0.65, see Fig. 6d.

Larger values of α tend to benefit more from caching than

lower values. This is evident as the SCV of 0.01 experienced

by 75% of the contents in the absence of caching, Fig. 6f,

is observed by about 60% of the contents in the presence

of caching when α = 0.95, see Fig. 6e using Proposed. The

inverse is the case when α = 0.65. No significant performance

difference is observed in the two values of α considered.

VI. RELATED WORKS

Key features of CCN/NDN such as interest aggregation, and

universal in-network caching and dynamic eviction of contents

pose new challenges to existing techniques for controlling and

managing network congestion in today’s IP networks. These

have motivated several works on congestion/flow control in

CCN/ICN at receiver nodes [3], [4], [6] and at intermediate

nodes [9], [13], [11], [10], [5].

Proposals at intermediate (cum receiver) nodes bear a

resemblance to our work as these aim to regulate (directly

or indirectly) the rate of forwarding interests upstream. For

instance, Rozhnova et. al. propose an interest rate shaper at

an intermediate node based on the current queue occupancy

and available bandwidth[11]. The performance of the pro-

posed mechanism may degrade under busty traffic resulting

in the queue exceeding the target. Wang et. al. consider a bi-

directional approach for controlling congestion in CCN/NDN

[10]. The authors model the congestion control problem as an

optimization problem and propose an algorithm for shaping the

interest rate using the network load (interests) and available

bandwidth. Although the proposed mechanism effectively con-

trols congestion with zero packet loss but requires parameter

tuning to stabilize the queue.

In [13], Oueslati et. al. propose a flow aware traffic con-

trol at intermediate routers based on per-flow fair share of

bandwidth using deficit round robin scheduling algorithm. The

technique discards Interest(s) that belongs to a flow that has

exceeded its share. To inform a CCN receiver of a congestion

in the network, a DDR scheduler only rejects the payload and

the header packet is sent downstream instead of discarding the

entire packet. Downstream routers treat the truncated packet

as a normal data packet. When it arrives at the receiver,

packet loss is implied and the receiver adjusts its Interest rate

accordingly (AIMD) and re-expresses the interest packet(s).

Dropping interests and cutting data packet payload to signal

congestion at intermediate nodes may not be the best solution

as network resources might have been wasted.

In addition, other proposals make use of NACK packets to

signal congestion [5]. In [9], a credit counter is used to keep

track of the number of data packet that a flow is allowed

to transmit. All the existing works do not consider using

the PIT occupancy to anticipate the data packet transmission

queue occupancy. They always resort to dropping interest/data

packets. A more desirable solution is to notify CCN receivers

before congestion takes place. Our work has filled this gap

with results demonstrating its effectiveness while taking into

account the characteristics of CCN/ICN.

VII. CONCLUSION

This paper has presented a novel congestion control mech-

anism for CCN and other ICN architectures. Our proposed

method leverage the occupancy of the PIT to predict the future

queue length of the data packet transmission buffer. In this

technique, receivers are notified of imminent congestion before

the queue reaches its target or before the buffer overflows.

CCN consumers that receive congestion notifications slow
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Fig. 6: Impact of Zipf’s skewness parameter α. a, c and e represent the absence of caching while b, d, and f represent the

presence of caching

down their sending rates. Simulation results show that our

proposed method is effective in controlling congestion in the

network. Comparative analysis results show the benefits of

explicit congestion notification. None of the recently proposed

congestion control mechanisms for CCN is available in ns-3

making our comparative analysis not to include any of these

existing works. As a future work, we plan to implement one

or two of the existing congestion control algorithms for CCN

in ns-3 and compare with our proposed algorithm. In addition,

we plan to carry out further analysis and more exposition of

our proposed method in the presence of burst traffic.
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