
Concurrent Transmissions for Communication
Protocols in the Internet of Things

Martina Brachmann
Embedded Systems Lab

TU Dresden, Germany

martina.brachmann@tu-dresden.de

Olaf Landsiedel
Computer Science and Engineering

Chalmers University of Technology, Sweden

olafl@chalmers.se

Silvia Santini
Embedded Systems Lab

TU Dresden, Germany

silvia.santini@tu-dresden.de

Abstract—Standard Internet communication protocols are key
enablers for the Internet of Things (IoT). Recent technological
advances have made it possible to run such protocols on resource-
constrained devices. Yet these devices often use energy-efficient,
low-level communication technologies, like IEEE 802.15.4, which
suffer from low-reliability and high latency. These drawbacks
can be significantly reduced if communication occurs using
concurrent transmissions – a novel communication paradigm for
resource-constrained devices. In this paper, we show that Internet
protocols like TCP/UDP and CoAP can run efficiently on top
of a routing substrate based on concurrent transmissions. We
call this substrate LaneFlood and demonstrate its effectiveness
through extensive experiments on Flocklab, a publicly available
testbed. Our results show that LaneFlood improves upon CXFS
– a representative competitor – in terms of both duty cycle and
reliability. Furthermore, LaneFlood can transport IoT traffic
with an end-to-end latency of less than 300 ms over several hops.

Index Terms—Wireless Sensor Networks; Internet of Things;
Concurrent Transmissions

I. INTRODUCTION

One-to-one traffic is becoming an essential building block for

applications in the Internet of Things (IoT): For example, the

Constrained Application Protocol (CoAP) [1], UDP and TCP

are widespread one-to-one protocols in the IoT [2], [3], [4].

Traditionally, these are deployed on RPL [5], which provides

one-to-many and one-to-one routing.

In this paper, we depart from using a traditional routing

protocol, such as RPL [5], and introduce LaneFlood as routing

substrate for one-to-one traffic in the IoT. LaneFlood exploits

fast network-wide flooding and concurrent transmissions [6] to

efficiently establish a path between any source and destination

in the network. Once the path is established, LaneFlood involves

only the nodes along that path in the forwarding of data while

all others nodes enter deep sleep states and periodically wake

up to be available for further connections.

LaneFlood is tailored for IoT applications and fully supports

their protocols including CoAP, UDP/TCP, IPv6, and 6LoW-

PAN. The design of LaneFlood reflects their communication

patterns: It sets up connections between any two nodes in the

network and then facilitates the data exchange. For example,

a CoAP request message will trigger a connection setup, and

LaneFlood maintains this connection until it is either closed

or has timed out.

LaneFlood does not maintain routes by selecting parent

nodes, announcing routing metrics, discovering neighbors and

maintaining routing tables as traditional routing protocols.

Instead, we build upon Glossy [6] and the Concurrent Trans-

missions Forwarder Selection (CXFS) protocol [7], recent

work on concurrent transmissions and capture. Compared

to existing approaches, LaneFlood provides three key advan-

tages: (1) Low idle cost, (2) full and transparent integration

into the IoT protocol stack, and, (3) native support for

one-to-one communication.

We show the feasibility of LaneFlood as routing substrate

for one-to-one communication in the IoT. In particular, we

make the following contributions:

• We provide a robust and energy efficient unicast and

broadcast communication protocol, called LaneFlood,

that relies on concurrent transmissions, has no routing

overhead, and does not require neighbor discovery;

• We design LaneFlood to be transparent to the upper layers

of the protocol stack, including network, transport or

application layer and thus enable the use of multiple

request-response-based protocols (e.g. CoAP, TCP);

• We show through extensive experiments on the Flocklab

testbed [8] that LaneFlood improves CXFS in terms of

duty cycle and reliability and that it can transport IoT

traffic with a latency of less than 300 ms over several hops.

The source code of LaneFlood, along with additional

resources, is publicly available at: https://github.com/

martinabr/laneflood.

The remainder of this paper is structured as follows. In

Sec. II, we provide a brief overview of LaneFlood and

distinguish it from the state of the art. Next, Sec. III details

on the design of LaneFlood. We evaluate LaneFlood on a

testbed in Sec. IV and present related work in Sec. V. Sec. VI

discusses future work and concludes the paper.

II. LANEFLOOD: AN OVERVIEW

LaneFlood creates an exclusive communication channel – a

lane – between a source and a destination with all currently

active nodes in the path serving as forwarders. The lane is

established through two consecutive network floods initiated

by the source and the destination. As illustrated in Fig. 1a the

first flood is the Setup flood, which is initiated by the source.

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Martina Brachmann. Under license to IEEE. 406

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Martina Brachmann. Under license to IEEE.

DOI 10.1109/LCN.2016.69

406

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Martina Brachmann. Under license to IEEE.

DOI 10.1109/LCN.2016.69

406



����

����

����

����

����

����

����

����

����

����

����

	���

Source 
Destination 
Active node 
Inactive node 
Link 
Lane boundary 

����

����

����

����
����

���� 	���

����

����

Hop count 2;? 

(a) Setup

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����
����

���� ����

����

����

(b) Response

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����
����

���� ����

����

����

(c) Data exchange

Fig. 1: Basic idea behind LaneFlood: We utilize two network-wide floods (based on Glossy) to establish a lane within the

network. The first flood is initiated by the source (Setup) and the second by the destination (Response). When the lane is

established, nodes that are outside the lane enter sleep states, while the other nodes remain active (Data exchange).

The second flood is initiated by the destination and is called

Response flood, as shown in Fig. 1b.

Using the information collected during the Setup and the

Response floods, nodes can autonomously decide whether they

belong to the lane or not. In the first case, they remain active to

enable the data exchange between the source and the destination.

Otherwise, they turn their radios off until their participation in

the next lane construction is required. While a lane is active,

source and destination exchange packets through lane floods,

i.e., network floods propagated by active nodes only. Fig. 1c

illustrates a lane within a network.

Network and lane floods are executed “à la Glossy”.

Glossy [6] is a network flooding protocol that exploits concur-

rent transmissions to achieve reliable and fast dissemination of

packets in a multi-hop network. It assumes there is an initiator

in the network that first transmits the packet to disseminate

– which in our case is either the source or the destination.

Glossy assumes that all nodes in the network participate in

the flood. In LaneFlood, floods used to establish a lane also

involve all nodes. During data exchange, however, only nodes

within a lane remain active and participate in the floods, as

illustrated in Fig. 1c. Nodes outside the lane switch their radio

off to save energy.

To let nodes decide whether they should remain active during

a data exchange or not, LaneFlood builds upon the forwarder

selection strategy proposed for the CXFS protocol [7]. CXFS

determines the length – measured in number of hops – of

existing paths between the source and the destination. It then

selects the nodes on minimal paths as forwarders. Nodes on

non-minimal paths can also be selected, to improve robustness.

LaneFlood improves upon CXFS in three ways. First,

LaneFlood’s forwarder selection mechanism makes nodes

decide whether they belong to a lane or not using a partially

randomized approach, which we describe in detail in the next

section. Second, LaneFlood is implemented in Contiki [9] and

can operate on common resource-constrained platforms – like,

e.g., the Tmote Sky [10]. Instead, CXFS is implemented in

TinyOS [11] and adapted to run on a dedicated platform –

the “Bacon” mote [7] – which features a high-precision timer

capture module. Low-power hardware platforms are typically

equipped with cheap and imprecise system clocks [12], [13].

Thus, refraining from assuming the presence of a high precision

clock guarantees LaneFlood’s portability to a large number of

hardware platforms. Third, LaneFlood enables the seamless

operation of standard protocols like TCP/UDP and CoAP.

Instead, CXFS [7] supports only proprietary transport protocols.

A recently presented approach also shows that Glossy-

like floods can be used to relay messages from high-level,

standard Internet protocols [14]. However, this approach relies

on a central entity that schedules communication. Instead, in

LaneFlood connections are established spontaneously between

arbitrary source and destination nodes. Furthermore, Hewage et

al. [14] do not consider any forwarder selection mechanism in

their approach. Their main focus is on maximizing throughput.

Instead, LaneFlood can trade-off energy consumption with

achievable throughput and reliability. Further, while Hewage

et al. [14] evaluate their protocol on a small-scale, proprietary

testbed, we tested the performance of LaneFlood on both a

well-established simulator (Cooja [15]) and a large, publicly

available testbed (Flocklab [8]).

III. LANEFLOOD: A CLOSER LOOK

LaneFlood enables fast and reliable communication in IEEE

802.15.4 networks and ensures their interoperability with the

Internet. Traffic from and to the IEEE 802.15.4 network flows

through the initiator node, which acts as a border router.

LaneFlood is a time-slotted protocol and organizes its

operation in sessions Ts. Each session consists of several

rounds Tr. Fig. 2 shows an example of a session that contains

six rounds. A round is further split into two parts. In the first

part of each round the nodes keep their radio transceivers off.

In the meanwhile, the application(s) running on the nodes can

operate (e.g., perform computations or collect sensor data).

The second part of each round is reserved for communication

and we accordingly refer to it as the communication slot Td.

In each slot, a network or lane flood is executed. A network

407407407



flood provides a network-wide broadcast while a lane flood

implements unicast communication. A short guard period Tg

at the end of each session ensures that all nodes are ready to

wake up in the next session.

At startup, nodes running LaneFlood behave similarly as in

Glossy [6]. They keep their radio on to synchronize with the

initiator. Once synchronized, they start participating in network

and lane floods.


��
��� 
��
���
��
��� 
��
���
��

������
���� ������
�� ������
����

��

��


��
��� 
��
���

������ ������ ������ ������ ������ ������

��

Fig. 2: A LaneFlood session with six rounds.

A. Establishing a connection (Part 1)

To illustrate how LaneFlood operates, we first consider the

case in which the initiator must retrieve data from a specific

node in the network. This corresponds to the case in which,

e.g., a CoAP client running on an Internet host requests sensor

data from a node within the IEEE 802.15.4 network. To relay

the request from the Internet host, the initiator establishes a

connection with the intended recipient. To this end, it transmits

a Setup message during the first round of a session. The first

communication slot of a session is reserved for the initiator,

so there is no contention for this slot. A Setup message is

disseminated to all nodes through a network flood.

The header of a Setup message carries several fields. The

field source indicates the identifier of the sender of the message,

in this case the initiator. The field destination indicates the

identifier of the intended recipient of the message – which in our

example is the node from which the initiator must retrieve data.

Both the source and destination fields carry 1-byte addresses

that are assigned locally to the nodes.

The field relay counter is set to 0 by the initiator and

increased each time the message is retransmitted during a

flood, as in [6]. Every node that receives the Setup message

uses this counter to determine its distance dsf (“f” stands for

“forwarder”) – measured in hops – to the source, as done in [7].

Fig. 1a depicts a network flood initiated by the source node.

The figure also shows how nodes learn their distance in hops to

the source. When the Setup message arrives at the destination,

the field relay counter indicates the distance in hops between

source and destination, dsd. In the example of Fig. 1a dsd = 3.

In the second round, the destination of the Setup message

sends a Response message. The format of a Response message

is the same as that of a Setup message. In our example, the

destination sets the source field of the Response message with

its identifier and the destination field with the address of the

initiator. The distance field contains the value of dsd – which

the destination retrieves from the relay counter of the Setup

message. When a node receives the Response message it can

determine its distance in hop to the destination, ddf , by reading

the value of the relay counter [7], as depicted in Fig. 1b.

At the end of the second round all nodes that have received

both the Setup and Response messages know the values of dsd
and their own values of dsf and ddf [7]. Setup and Response

messages are disseminated using Glossy network floods and

all nodes in the network are thus expected to receive them

with high probability and very low latency [6]. Every node

then uses these values to determine whether it belongs or not

to the current lane, as depicted in Fig. 1c and detailed below.

B. Creating a lane

A node always belongs to the current lane, if:

dsf + ddf � dsd + si, (1)

whereas si is the integer part of a tunable protocol parameter:

the slack s. Condition 1 makes nodes belong to the lane

that are (a) on minimal paths between the source and the

destination, and (b) on non-minimal paths that are at most si
hops longer than the minimal path. This corresponds to the

forwarder selection strategy used in CXFS [7].

Making the lane include only nodes on minimal paths might

indeed cause Glossy floods to become unreliable. Adding nodes

to the minimal path by following Condition 1 helps to improve

the performance, but might in turn cause an unnecessarily high

number of forwarders being active. While the optimal value of

si depends on the specific network topology, we have observed

that in practical settings small values of si (e.g., 1 or 2) can

significantly improve the reliability of network floods with

respect to the case in which si = 0. This hints to the fact that

selecting nodes that are “somewhere in-between” si and si +1
might allow to save energy without sacrificing performance.

We thus consider the values of si to be small and add additional

nodes to the lane that fulfill the following composite condition:

[dsd + si < dsf + ddf � dsd + si + 1]

AND [rand(0, 1) ≤ sd], (2)

whereas sd represents the fractional part of the slack s. If,

e.g., s = 2, 3, then si = 2 and sd = 0, 3. Condition 2 implies

that nodes that are on paths si+1 hops longer than the minimal

path are part of the lane with probability sd. This allows us to

improve performance by increasing the number of nodes that

participate in a lane in a far more fine-grained way compared

to just considering integer values of the slack. This, in turn,

allows us to save energy without sacrificing performance. The

value of the slack is included in the homonymous field of

Setup and Response messages and can thus be disseminated

to all nodes in each session.

C. Exchanging data

In the round that follows the dissemination of a Response

message, nodes within the lane wake up. All other nodes keep

their radios switched off until the beginning of the next session.

408408408



The source and destination nodes continue their communication

by exchanging Data messages. Data messages have the same

format as Setup and Response messages and can carry up to 119

bytes of data payload.1 Packet fragmentation is dealt with by

upper-layer Internet protocols (e.g., 6LoWPAN), as discussed

below. In each round, a single Data message is disseminated

using lane floods.

When a data exchange ends before the end of a session,

forwarder nodes keep on listening to potentially incoming

messages for two rounds. They then switch themselves off and

wake up again when the next session starts. In other words,

a connection is released if no communication takes place for

two consecutive rounds.

If the last Data message is transmitted successfully during

the last round of a session, there are no idle rounds and all

nodes wake up again in the next round, which is the first of

the new session. If a data exchange is not completed when

the session ends, initiator and destination continue the data

exchange when the new session starts.

Irrespectively of whether and when a data exchange ends

within a session, when the new session starts nodes compete

to establish a new connection, as described below.

D. Establishing a connection (Part 2)

When a new session starts, all nodes wake up and listen to

incoming messages from the initiator. If the initiator does not

have any pending requests – i.e., if it does not need to send

any Setup message – it disseminates a Sync message.

This message guarantees that all the nodes in the network

re-synchronize their clocks to that of the initiator. It also signals

to all nodes that connections to the initiator or to any other

node in the network can be established in the next round. In

the subsequent round, a node that has data to send or retrieve

can thus transmit a Setup message to its intended destination.

For instance, if the destination in our previous example could

not relay all its Data messages, it would try to setup a new

connection with the initiator in the new session.2

However, several nodes may want to setup a connection

and they thus all transmit a Setup message in the same round.

These messages compete against each other with three possible

outcomes: (1) All Setup messages are lost; (2) Only one of

the Setup messages reaches its intended destination; (3) Two

or more Setup messages reach their intended destination.

In the first case, no Response message is disseminated in the

next round. Nodes that had sent a Setup message recognize this

situation and send their Setup message again in the subsequent

round. In the second case, only one Response message is

disseminated in the next round. A connection between a source

and destination-pair is thus successfully established and a data

exchange can be performed as described above. The senders

1The header of Setup, Response, and Data messages is 8 bytes in total and
the maximum physical layer size of a IEEE 802.1.5.4 packet is 127 bytes.
Thus, Setup, Response, and Data messages can carry 119 bytes of data payload
each.

2In the current version of LaneFlood the initiator cannot recognize whether
a node has completed relaying its data or not when the session ends. This is
because LaneFlood is decoupled from the application layer.

of failed Setup messages recognize that another node has won

the current session and either switch themselves off or act as

forwarders. In the third case, two or more competing Response

messages are sent concurrently. Again, there are three possible

outcomes: (1) All Response messages are lost; (2) Only one of

the Response messages reaches its intended destination; (3) Two

or more Response messages reach their intended destination.

The first case results in the same behavior as if all Setup

messages were lost. Senders of Setup messages recognize the

absence of a Response message and attempt to send their

Setup messages again in the next round.3 In the second case,

a connection between a single source and destination-pair is

established and all nodes in the network evaluate whether

to remain active in a lane or go back to sleep. In the third

case, several connections are established concurrently. Since

both Setup and Response messages have been successfully

delivered, it is likely that several lanes can co-exist at the

same time in the network. We reserve it to our future work to

investigate experimentally how well LaneFlood can cope with

such situations in practical settings.

Application

Transport

Network

Adaptation

HTTP, CoAP, …

TCP/UDP

IPv6 + RPL

6LoWPAN

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

Medium Access 
Control

Physical

HTTP, CoAP, …

TCP/UDP

FastLane

IEEE 802.15.4 PHY

(a) (b)

IPv6*
6LoWPAN*

Fig. 3: Network stack of Internet-compliant IEEE 802.15.4

networks (a); Network stack of nodes running LaneFlood (b).

E. LaneFlood’s interoperability with Internet protocols

Fig. 3 shows (a) the network stack of an Internet-compliant

IEEE 802.15.4 network and (b) the network stack of nodes

running LaneFlood. The figure shows that LaneFlood eliminates

the need of incorporating routing protocols (like RPL [5]) and

any MAC logic on the nodes. Indeed, when Glossy-like floods

are used to relay data, no routing or medium access control

is needed. Nodes do not need to perform neighbor discovery,

maintain routing tables or deal with channel contention. They

just “blindly” retransmit packets. Any logic related to IP-routing

is not needed either. Thus, nodes running LaneFlood must not

load a fully-fledged implementation of IPv6 and 6LoWPAN.

“Slimmed” versions of these protocols – indicated as IPv6∗ and

6LoWPAN∗ in Fig. 3 – are sufficient. IPv6∗ and 6LoWPAN∗

do not contain any logic related to IP routing but keep all

3We do not embed a random backoff or similar behavior in the current
version of LaneFlood. We reserve it to future work to investigate whether a
random backoff or equivalent solution provides better performance than our
current “brute force” approach.

409409409



components of IPv6 and 6LoWPAN that take care of packet

fragmentation, header compression, and IP addresses.

F. LaneFlood’s packet queue

Typical IoT protocols like, e.g., CoAP [1], can generate

communication requests at any point in time. LaneFlood, on the

other hand, operates according to a fixed schedule. To support

on-demand traffic from application protocols, LaneFlood uses

a dedicated packet queue. This queue receives packets from

layers sitting above LaneFlood and we thus refer to it as the tx
queue. Once a packet is generated by the application and passed

down the stack, LaneFlood first enqueues it in the tx queue.

In each round, every node verifies whether it has any packet

in its queue. If so, the node further verifies whether it is allowed

to transmit in the current round. This is the case when, for

instance, a Sync message was transmitted in the previous round.

If the tx queue of a node is not empty and the node is allowed

to send, it transmits a Setup message with a copy of the first

packet from its tx queue as payload. The packet is removed

from the queue if and only if – by the end of the current

communication slot – the node has received its own packet at

least once. This implies that the packet has been forwarded

by neighboring nodes and, thus, has most likely also reached

the destination. If, instead, the node receives the packet of

a contending sender, it passes this packet to the upper layer

and keeps its own packet in the tx queue. A new transmission

attempt is started in the next allowed round.

Allowing the embedding of application data in Setup and

Response messages reduces LaneFlood’s control overhead to

just a few byte for the header.

The length of the queue is a tunable parameter in LaneFlood.

In the current implementation the tx queue can hold 35 packets.

IV. EVALUATION

In this section, we evaluate the performance of LaneFlood

through extensive simulations and experiments on a publicly

available testbed. We show that our forwarder selection strategy

improves CXFS in terms of duty cycle and reliability by choos-

ing the number of participating nodes with more granularity.

We also find that LaneFlood can transport IoT traffic with an

end-to-end latency that can be tuned to less than 300 ms.

A. Methodology

We run LaneFlood on both the Cooja simulator [15] and

the Flocklab testbed [8]. We consider a scenario where the

initiator, acting as client, requests a batch of data (e.g., sensor

data, traffic monitoring information) from specific nodes in the

network. The client sends requests of 90 byte that are uniformly

distributed within a random interval of [1,11] seconds. Thus,

a request is sent on average every 5 seconds. The client sends

125 requests to each server, before switching to the next one. We

select the node with identifier 1 as our client. The target nodes

in the role of servers reply immediately with 5 packets and a

packet size of 125 byte. Table I shows the server identifiers and

their distance to the client. Client and servers are addressed

with IPv6 addresses and application messages are transported

TABLE I: Server settings

Node identifier in Distance to client
Cooja Flocklab in hops

7 16 2 to 3 (short distance)
2 13 3 to 4 (middle distance)
4 7 4 to 7 (long distance)

through UDP. This simulates the scenario in which the requests

issued by the initiator are e.g., CoAP requests. LaneFlood is

used as underlying communication protocol.

We focus on three key performance metrics: Reliability,

latency, and duty cycle. The reliability is the ratio of received

messages and total messages sent by the application without

retransmissions. We measure the reliability of packets received

at the client. The latency is measured end-to-end (at the

application level) and describes the time interval between the

sending of a packet and its reception. We distinguish between

the latency of a packet transmitted from the client to the server,

and the latency from server to client. The duty cycle indicates

the ratio of the total time the radio of a node is on during an

experiment and the total duration of the experiment. The duty

cycle is averaged over all nodes within the network.

Each experiment runs for 1 hour. Results are averaged over

at least 3 runs and error bars in the plots indicate the 5th and

95th percentiles.

B. Impact of the Slack

We first evaluate the impact of the slack s in different

network topologies. We set the transmission power Ptx to

0 dBm and s = 0, 00 and increase the slack steadily until

all nodes participate in the lane flood. Note that in case all

nodes participate in a lane flood, this corresponds to a Glossy-

flood, indicated with s = Glossy. In case of using integer

values for the slack, e.g., s = 0, 00, s = 1, 00, s = 2, 00, this

corresponds to CXFS. We repeat the same experiments with

Ptx = −10 dBm. When Ptx = 0 dBm, paths between client

and servers are shorter and more nodes are within a single

hop. This results in a broader lane. Vice versa, when Ptx =
−10 dBm paths between client and servers are longer and less

nodes are within a one-hop range. Thus, lanes are typically

narrower. In the following, we refer to the network resulting

from setting Ptx = 0 dBm and Ptx = −10 dBm to the dense
and sparse topology, respectively.

Observation 1: The higher the slack, the higher the duty
cycle. The first plots in Fig. 4 and 5 show that the average

duty cycle increases with higher slack. The upper peak of the

error bars indicate the duty cycle of the nodes participating

in the lane flood while the lower peaks of the the error bars

mark the duty cycle of nodes in sleep state. The impact of the

slack on the duty cycle is the same in the sparse and dense

topology. This result is expected since with a higher slack more

nodes participate in the lane flood and leave their radios on

to be able to forward packets. To reduce the duty cycle – and

thus increase battery lifetime – a small slack is preferable. We

410410410



Fig. 4: Impact of the slack in the sparse topology in Flocklab.

plan to investigate techniques to adapt the slack at runtime to

trade-off duty cycle and reliability.

Observation 2: A higher slack increases the reliability until
its maximum is reached. The second plots in Fig. 4 and 5

display the impact of the slack on the reliability. The reliability

increases until it reaches its maximum. Since more nodes

participate in the lane flood and help in forwarding the packets,

the reliability increases. The reliability is lower than 100%

because it drops logarithmically with the packet size [6]. The

smaller the packet, the higher the reliability. Our rationale

for sending 125 byte packets is (a) the simulation of big

data streams and fragmented data and (b) the increase of the

client-to-server latency with smaller packets. Having a fixed

size of bytes to send and decreasing the packet size leads to

more packets that need to be sent. This increases the client to

server latency since only one packet is transmitted in a single

round. The reliability reaches its peak in the sparse topology at

s = 2, 00 and in the dense topology at s = 0, 80. After reaching

the peak the reliability either remains constant or even decreases

Fig. 5: Impact of the slack in the dense topology in Flocklab.

as shown in Fig. 4. At the peak we have reached a saturation of

participating nodes. At this point additional nodes just increase

the average duty cycle rather than contribute to the reliability.

As reported by Chaos [16] and Sparkle [17], it might be that

too many concurrently transmitting nodes result in a low signal-

to-noise ratio and thus in a lower reliability. The phenomenon

of the reliability drop in sparse networks was also observed in

Glossy. The reliability drops logarithmically with the network

diameter. In a dense network the packets have to pass more hops

to reach either source or destination. Increasing the slack and

thus, boosting the amount of participating nodes compensates

for this effect until reaching node saturation. After that, adding

nodes worsens the effect due to the deteriorating signal-noise-

ratio caused by many concurrently transmitting nodes.

Observation 3: The reliability is highest between a minimum
and a maximum of participating nodes. We already mentioned

the saturation of participating nodes during a lane flood. There

is a second phenomenon which can be seen in Fig. 5 – the

reliability drops at s = 0, 10. We use Contiki’s network simu-

411411411



Fig. 6: Reliability in a dense network in Cooja. The reliability

drops at s = 0,10 for all servers. In order to concurrently

transmit and contribute in the reliability a minimum number

of active nodes is required.

s = 0,00

1

2

9

12

17

20

25
29

32

37

55

56

59

69

72

8998

99

s = 0,10

1

2

9

12

17

20

25
29

32

37

55

56

59

69

72

8998

99

Fig. 7: Exemplary lane between client with identifier 1 and

server with identifier 2 in a dense network in Cooja. A

slack = 0,00 results in a minimal path, while more nodes

participate when slack = 0,10.

lator, Cooja, with the Multi-path Ray-tracer Medium (MRM)

communication model to further investigate this phenomenon.

We set the network size to 100 nodes, randomly distributed

within a 1x1km square. We fix the background noise to

-100 dBm with a variance of 60 dB. Table I shows the server

identifiers and the distance to the client. The rest of the setting

is the same as for Flocklab. Fig. 6 shows that all three servers

have a reliability of 100% at s = 0, 00. However, the reliability

drops significantly at s = 0, 10 to 95% for the middle-distance

server. Fig. 7 shows a snapshot of the lane between client and

the short distance server with identifier 2. At s = 0, 00 only

source and destination are active, being able to communicate

directly. No concurrent transmissions are involved. At s = 0, 10
additional nodes are added to the lane, which becomes broader,

and concurrent transmissions occur between client and server.

However, one or more of the additional nodes causes the link

quality to decrease, which results in a drop in reliability. A

minimum amount of participating nodes and thus, a minimum

slack value, are thus necessary to achieve high reliability. The

minimum required slack value depends on the topology and

the distance between client and server.

Observation 4: The random slack facilitates a high relia-
bility with a low network duty cycle compared to CXFS. We

have already shown that there is a maximum reliability that

we cannot exceed even by adding more nodes to the lane. The

goal is thus, to find the maximum reliability with the lowest

duty cycle. While the boundary b in CXFS is a fixed integer,

our random slack approach allows for a fine-grand selection

of nodes participating in a lane. This allows us to achieve the

maximum reliability with only the amount of nodes that are

necessary to forward the packets between client and server,

reducing the energy consumption in the network.

Observation 5: The best slack value for a client-server-
pair depends on the topology. The best slack value in terms

of reliability and duty cycle is determined by the topology

and the distance between a client-server-pair. For example, in

the dense topology, the short distance server has its highest

reliability at s = 0, 50, the middle distance server at s = 0, 70
and the long distance server at s = 0, 80. In the sparse topology

short and middle distance servers have their peak at s = 2, 00
while the long distance server achieves its highest reliability

at s = 2, 10. We, thus, have to assign a slack value for each

client-server-pair individually. We leave the implementation

of an algorithm that determines the best slack value for each

client-server-pair autonomously for future work.

Observation 6: The latency is not affected by the slack. As

shown by the two lower plots in Fig. 4 and 5, the latency

remains almost constant and is not effected by the slack.

However, low reliabilities increase the latency, because the

nodes need more attempts to transmit their packet. Since only

one packet is sent in each round, the latency increase for all

enqueued packets in the tx queue. As described below, the

error bars mainly indicate, how long a packet was enqueued

in the tx queue before successfully transmitting it. The lower

peak indicates the latency of the first packet in the tx queue,

as it is directly transmitted by LaneFlood.

C. Impact of the session and round length on latency

In this set of experiments we evaluate the impact of the

session and round length on the performance of LaneFlood. We

use our sparse topology with a transmission power of -10 dBm

and set s = 1, 00. In this configuration we run LaneFlood with

round lengths of 100 ms and 200 ms.

Observation 7: The server to client latency increases with
the round length Tr. Looking at Fig. 8 we find that the server

to client latency increases for all servers with the round length

while the client to server latency, the reliability and the duty

cycle remain constant. This is expected since the latency from

server to client is mainly determined by Tr and the position

of the packet under consideration. More specific, the server

enqueues all data packets in the tx queue before transmission. In

our evaluation application, the server creates 5 packets destined

to the client. In each round only one packet is transmitted, thus

the average server to client latency for the first packet in the

tx queue is Tr/2. The average latency from server to client for

each following packet increases by Tr assuming the previous

packet was transmitted correctly. The 5th packet has, thus, an

average server to client latency of Tr/2 + 4 · Tr. Minimizing

Tr decreases the time until a packet is scheduled and hence,

the overall server to client latency.

Observation 8: Increasing throughput increases duty cycle.

Increasing Tr with a constant interval to send requests has

no effect on the duty cycle. Packets in LaneFlood can carry

119 byte of payload. Assuming that data is exchanged in each

412412412



Fig. 8: Increasing the round length Tr increases the latency

from client to server.

round with Tr = 200ms, we achieve a best case throughput

of 4.76kb/s and with Tr = 100ms the best case throughput is

9.52kb/s. Facilitating more rounds by decreasing Tr forces the

active nodes to turn on their radio more often, leading to a

higher duty cycle.

Observation 9: The client to server latency can be reduced
by decreasing the session length Ts. Fig 4 shows that the

average client-to-server latency is 2 s. This is expected since

the client-to-server latency is mainly influenced by the value

of Ts, which we set to 4 s. Since LaneFlood runs completely

detached from the application, it issues Setup messages from

the client on average every Ts/2 seconds. Reducing Ts thus

allows to straightforwardly reduce the client-to-server latency.

However, a smaller value of Ts also leads to (a) a higher duty

cycle – since Setup and Response messages are exchanged

more often – and (b) to less rounds available for data exchange

(if Tr is fixed). This, in turn, may results in higher packet

drops due to a full tx queue.

V. RELATED WORK

Since its presentation to the research community in 2011,

Glossy has been modified and extended in several ways. The

Low-power Wireless Bus (LWB) [18] relies on Glossy as an un-

derlying flooding mechanism. LWB schedules communication

in a centralized manner to support one-to-many, many-to-one,

and many-to-many traffic patterns. Chaos [16] builds upon

Glossy to achieve fast and efficient all-to-all data sharing in a

completely decentralised manner. Splash [19] adds pipelining

to Glossy-like floods to build a full-fledged data dissemination

protocol. While Glossy distributes one (typically small) packet

in every communication slot, Splash is designed to reliably

and quickly deliver large data objects to all nodes in a network.

Ripple [20] builds and improves upon Splash in particular in

terms of achievable throughput. The approaches listed above

differ from LaneFlood because: (1) They do not support one-

to-one traffic or do so without forwarder selection; (2) Their

interoperability with high-level protocols like TCP/UDP or

CoAP has not been discussed nor evaluated.

There exist also protocols like CXFS [7] and Sparkle [17]

that build upon Glossy to provide one-to-one communication.

The differences between CXFS and LaneFlood have been

outlined in detail earlier in this paper. Sparkle [17] also supports

one-to-one communication and selects subsets of nodes that

participate in Glossy-like network floods. LaneFlood could

also operate using Sparkle’s forwarder selection mechanism.

However, from the results reported in [17] it is unclear whether

Sparkle can provide higher end-to-end reliability than CXFS.

We plan to evaluate LaneFlood with Sparkle’s forwarder

selection in our future work. RTF [21] builds upon Sparkle

and focuses on improving reliability and energy-efficiency in

point-to-point traffic. It uses TDMA for scheduling messages.

LaneFlood does not provide any scheduling mechanism as we

assume on-demand traffic rather than constant traffic.

A number of communication protocols based on concurrent

transmissions, like CXFS [7], rely on proprietary transport

protocols to regulate data flows. Instead, LaneFlood supports

standard Internet protocols like, TCP/UDP and CoAP. Hewage

et al. [14] have recently demonstrated that TCP/IP can run

efficiently on top of LWB. In particular, the authors propose

two different LWB schedulers to support TCP connections.

In LaneFlood, there is no central entity that schedules com-

munication. Furthermore, Hewage et al.’s main focus is on

maximizing throughput at the cost of energy and they evaluate

their protocol on a small-scale, proprietary testbed. Duquennoy

et al. [22] propose a communication primitive called Burst
Forwarding. They show that they can support standard TCP

on top of this primitive. However, Burst Forwarding does not

rely on concurrent transmissions and can thus not achieve as

high reliability and low latency as Glossy-based protocols.

In summary, the main novelty of LaneFlood with respect to

existing work consists in its ability to integrate the benefits of

concurrent transmissions to provide for high reliability and very

low latency, an efficient forwarder selection mechanism to save

energy, and a protocol design that allows it to support standard,

high-level Internet protocols. To the best of our knowledge,

LaneFlood is the first approach presented in the literature that

integrates these three components.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we argue that one-to-one communication is the

most common traffic paradigm in the Internet of Things. CoAP,

TCP/UDP are indeed widespread one-to-one protocols in the

IoT. We introduce LaneFlood as a routing substrate to support

IoT one-to-one protocols. LaneFlood allows IoT applications

to depart from using a traditional routing protocol, such as

RPL. It relies on fast network-wide flooding and concurrent

transmissions to efficiently establish a path between any source

413413413



and destination in the network. Once the path is established,

LaneFlood involves only the nodes along that path in the

forwarding of data while all others nodes enter deep sleep states.

All nodes wake up periodically to build further connections. Our

experimental results show that LaneFlood improves upon CXFS,

its closest competitor, in terms of duty cycle and reliability.

We further show that LaneFlood can transport IoT traffic with

a latency of less than 300 ms in the Flocklab testbed.

Our future work includes a deeper integration of LaneFlood

in the IoT protocol stack. Our goal is to make LaneFlood

become a fully-fledged, transparent replacement to RPL. To

this end, we will make LaneFlood provide all features of RPL –

such as dissemination and security. Further directions for future

research include a qualitative and quantitative comparison

of LaneFlood and RPL and the analysis of the behavior of

LaneFlood in the presence of node failures and mobility.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for

their very valuable comments and the developers of the Flocklab

testbed for enabling us to run our experiments. This work

has been partially supported by the Research Training Group

GRK 1362 Cooperative, Adaptive and Responsive Monitoring
in Mixed-mode Environments and the Collaborative Research

Center SFB 921 Highly Adaptive Energy-Efficient Computing
both funded by the German Research Foundation.

REFERENCES

[1] C. Bormann, K. Hartke, and Z. Shelby, “The Constrained Application
Protocol (CoAP),” RFC 7252, 2015. [Online]. Available: https:
//rfc-editor.org/rfc/rfc7252.txt

[2] S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the tree Bloom:
Scalable Opportunistic Routing with ORPL,” in The ACM Conference
on Embedded Networked Sensor Systems (SenSys), September 2013.

[3] O. Gaddour and A. Koubâa, “RPL in a Nutshell: A Survey,” Computer
Networks, vol. 56, no. 14, pp. 3163–3178, 2012.

[4] T. Pötsch, K. Kuladinithi, M. Becker, P. Trenkamp, and C. Goerg,
“Performance evaluation of CoAP using RPL and LPL in TinyOS,”
in IEEE International Conference on New Technologies, Mobility and
Security (NTMS), May 2012.

[5] A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert, P. Levis, R. Struik,
R. Kelsey, T. H. Clausen, and T. Winter, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550, 2015. [Online].
Available: https://rfc-editor.org/rfc/rfc6550.txt

[6] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient Network
Flooding and Time Synchronization with Glossy,” in ACM/IEEE Interna-
tional Conference on Information Processing in Sensor Networks (IPSN),
April 2011.

[7] D. Carlson, M. Chang, A. Terzis, Y. Chen, and O. Gnawali, “Forwarder
Selection in Multi-transmitter Networks,” in IEEE International Con-
ference on Distributed Computing in Sensor Systems (DCOSS), May
2013.

[8] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,
“Flocklab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems,” in ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), April 2013.

[9] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in IEEE
Conference on Local Computer Networks (LCN), November 2004.

[10] Moteiv, “Tmote Sky datasheet,” 2006.
[11] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, TinyOS: An Operating
System for Sensor Networks. Springer Berlin Heidelberg, 2005, pp.
115–148.

[12] A. Willig, “Recent and Emerging Topics in Wireless Industrial Commu-
nications: A Selection,” IEEE Transactions on Industrial Informatics,
vol. 4, no. 2, pp. 102–124, May 2008.

[13] A. Willig, K. Matheus, and A. Wolisz, “Wireless Technology in Industrial
Networks,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1130–1151, June
2005.

[14] K. Hewage, S. Duquennoy, V. Iyer, and T. Voigt, “Enabling TCP in
Mobile Cyber-Physical Systems,” in IEEE International Conference on
Mobile Ad hoc and Sensor Systems (MASS), October 2015.

[15] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” in IEEE Conference
on Local Computer Networks (LCN), November 2006.

[16] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and
Efficient All-to-All Data Sharing and In-Network Processing at Scale,” in
The ACM Conference on Embedded Networked Sensor Systems (SenSys),
November 2013.

[17] D. Yuan, M. Riecker, and M. Hollick, “Making ’Glossy’ Networks
Sparkle: Exploiting Concurrent Transmissions for Energy Efficient, Reli-
able, Ultra-Low Latency Communication in Wireless Control Networks,”
in International Conference on Embedded Wireless Systems and Networks
(EWSN), February 2014.

[18] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-Power
Wireless Bus,” in The ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2012.

[19] M. Doddavenkatappa, M. C. Chan, and B. Leong, “Splash: Fast data
dissemination with constructive interference in wireless sensor networks,”
in USENIX Symposium on Networked Systems Design and Implementation
(NSDI), April 2013.

[20] D. Yuan and M. Hollick, “Ripple: High-throughput, reliable and energy-
efficient network flooding in wireless sensor networks,” in IEEE
International Symposium on a World of Wireless Mobile and Multimedia
Networks (WoWMoM), June 2015.

[21] J. Zhang, A. Reinhardt, W. Hu, and S. S. Kanhere, “RFT: Identifying
Suitable Neighbors for Concurrent Transmissions in Point-to-Point
Communications,” in ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM),
November 2015.

[22] S. Duquennoy, F. Österlind, and A. Dunkels, “Lossy links, low power,
high throughput,” in The ACM Conference on Embedded Networked
Sensor Systems (SenSys), November 2011.

414414414


