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Abstract—Localization is a highly important topic in wireless
sensor networks as well as in many Internet of Things ap-
plications. Many current localization algorithms are based on
the Sequential Monte Carlo Localization method (MCL), the
accuracy of which is bounded by the radio range. High compu-
tational complexity in the sampling step is another issue of these
approaches. We present Tri-MCL which significantly improves
on the accuracy of the Monte Carlo Localization algorithm.
To do this, we leverage three different distance measurement
algorithms based on range-free approaches. Using these, we
estimate the distances between unknown nodes and anchor nodes
to perform more fine-grained filtering of the particles as well
as for weighting the particles in the final estimation step of
the algorithm. Simulation results illustrate that the proposed
algorithm achieves better accuracy than the MCL and SA-MCL
algorithms. Furthermore, it also exhibits high efficiency in the
sampling step.

Index Terms—Localization, Wireless Sensor Network, Internet
of Things, Monte Carlo Localization, Range Free

I. INTRODUCTION

Node localization plays an important role in Wireless Sensor

Networks (WSNs) and Internet of Things (IoT) applications

since it is not only useful in many basic network applications

but also necessary in network operation. Examples are appli-

cations such as habitat monitoring [23], animal tracking [12],

vehicle tracking [9], and environment monitoring [22], as well

as network operation methods such as location-based routing

protocols saving significant energy by eliminating the need for

route discovery [13], [14], [17].

Global Positioning System (GPS) is the straightforward

solution for sensor node localization; however, it has disad-

vantages such as high cost, high power use and no indoor op-

eration. One reasonable solution is that only a small proportion

of sensor nodes is equipped with a GPS module and the rest

get their positions through another localization scheme. The

sensor nodes equipped with a GPS are called seeds or anchors.

Many localization algorithms have been proposed not only for

static sensor networks [4], [19], [5], [15], but also for mobile

sensor networks [6], [10], [1], [21] in the past several years.

A popular representative of localization algorithms for

mobile sensor networks is Monte Carlo Localization (MCL)

[10]. The key idea of MCL is that the positions of unknown

nodes are determined by a set of weighted samples and

each sample, usually called particle, represents a possible

location of the node. The most important contribution of MCL

is that it is especially designed for mobile WSNs, i.e. all

nodes including anchors are allowed to move arbitrarily during

network operation time. However, the sampling phase and

filtering phase need to be repeated in order to obtain each

particle, so it always suffers from high computational cost

which will shorten the network life time significantly.

In this paper, we present the design and evaluation of a

new algorithm for mobile sensor networks and IoT applica-

tions, called Tri-MCL. Tri-MCL follows the general MCL

approach [10]. In order to improve the localization accuracy

and sampling efficiency, our algorithm employs three differ-

ent, synergistic distance measurements based on range-free

methods and historical information to measure the distances

between unknown nodes and anchor nodes. These distances

are then used for filtering and weighting the particles in

a more precise manner in the final estimation step of the

algorithm. Tri-MCL is an interactive process operating over

multiple distance estimation values to form a consolidated

fusion by interactively exploiting the synergies in these range-

free distance measurement approaches, which is the key dif-

ference from the traditional MCL approach. Our approach

takes inspiration from Zhou et al. [31], who have presented

a Tri-Training strategy for semi-supervised learning, but their

work concentrated mainly on selecting unlabeled instances in

an interactive voting manner for machine learning. However

it should be noted that our approach itself does not employ

(semi-supervised) machine learning, making it suitable for use

on resource constrained devices such as wireless sensor nodes.

The structure of this paper is organized as follows: Section

2 reviews related works of existing MCL-based algorithms.

In section 3, we describe our proposed scheme. Simulation

results are shown in Section 4. Finally, we draw conclusions

in section 5.

II. RELATED WORKS

Many localization algorithms have been designed for mobile

sensor networks [28], [10], [7], [1], [11], [26], [20], [24], [16].

In 2004, the Monte Carlo method is firstly introduced by

L. Hu and D. Evans for localizing nodes in wireless sensor

networks, called MCL [10]. MCL-based localization repre-

sents the posterior distribution of a node’s location by a set

of weighted particles, and in each time unit, the particles are

updated based on new observations about beacons from anchor

nodes. The authors proposed the localization method for a

general network environment where nodes and anchors can
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move arbitrarily. It does not require any additional hardware.

This makes the approach suitable for both mobile ad hoc

sensor networks and IoT applications. The main drawback

of the MCL algorithm is that it has to redo the sampling

and filtering phases for each particle. Usually, it will iterate

many times in order to obtain enough valid particles, which is

really time consuming. This makes it less suitable for sensor

networks with limited computational abilities. The values of

the particle weights are only 1 or 0, making this part of the

algorithm coarse-grained.

In [1], A. Baggio and K. Langendoen proposed the Monte

Carlo localization Boxed (MCB) algorithm. The sampling

area was generated by building boxes in the intersection of

the anchor nodes’ communication scope, which improves the

time efficiency significantly in the prediction phase of MCL.

However, when the particle number of MCB equals to that

of MCL, the localization error will not be improved. Even

worse is that the number of valid particles will increase with

the increasing number of the anchor nodes. As a result, the

set of valid particles will be much larger than necessary for

estimating a node’s location.

M. Rudafshani and S. Datta [20] proposed the MSL*, MSL

to improve the filtering phase of MCL using the location

information of unknown nodes within two hops, but the

additional communication was needed to pass samples or

accuracy information.

S. Hartung et al. [8] proposed the Sensor-Assisted Monte

Carlo Localization (SA-MCL) method to solve the problem

of temporary connection loss to anchor nodes due to chang-

ing network topologies. They used three different additional

sensors to estimate the localization of unknown nodes. In

[11], SMC was proposed to improve the localization accuracy

by using the angle-of-arrival (AoA) measurements. Another

range-based scheme [7] assumed that the distance or angle

between anchor nodes and unknown node can be measured

based on signal measurements such as received signal strength

indication (RSSI), time of arrival (TOA), or angle of arrival

(AOA). However, the authors in [8], [11], [7] all need ad-

ditional hardware support to improve the accuracy or solve

problems of MCL.

In [29], weighted MCL (WMCL) was proposed. WMCL

can improve the localization accuracy and sampling efficiency

with low anchor densities, but the communication cost is much

higher than for the original MCL algorithm. The RDMCL

method was proposed in [30], which is based on the Received

Signal Strength (RSS), distance and direction of the moving

anchor nodes and MCL. RDMCL used three methods based

on the number of nodes’ one-hop neighbor anchors to build

a more effective sampling area. The authors in [25] proposed

a Weighted Monte Carlo Localization based on the Smallest

Enclosing Circle algorithm to solve the localization problem

of node mobility in IoT scenarios. This algorithm generates

the smallest enclosing circle of anchor nodes by using the hop

counts from anchor nodes.

Symbol Introduced Meaning

VMax III-D Maximum possible node speed,
also defines radius around nodes

et III-C3 HistDR position estimate at time t
Lt III-D Set of particles at time t
N III-F Number of particles in Lt

pk III-F k-th particle
A III-F Set heard anchor nodes
ai III-F i-th heard anchor node
φ III-G1 Number of distance estimation methods
rRingWidth III-F Filtering ring width parameter
r...,i III-F Distance estimate to anchor i

according to method ...
d(a, b) III-F Distance between points or particles a and b
pi,k III-G Copy of pk for anchor ai
σ III-G1 σ > 0, used to avoid dividing by zero
α III-G3 Weighting factor α = 0.75
ωFail,i,k III-G1 Penalty factor for pi,k , relating

to number of failed methods
ωRange,i,k III-G2 Penalty factor for pi,k , relating

how well the distance estimate matches
ωi,k III-G3 Weighting factor for pi,k
(xt, yt) III-G4 Final position estimate at time t

TABLE I: Table of symbols.

III. LOCALIZATION SCHEME

In this section, our proposed localization scheme, Tri-MCL,

is described in detail. Tri-MCL consists of three phases: ini-

tialization, sampling and filtering. But in the sampling phase,

there is only a simplified re-sampling phase in Tri-MCL,

which effectively reduces the computational cost. The Tri-

MCL filtering phase is also different from that of traditional

MCL-based algorithms. Firstly, instead of using only the radio

range of anchors to do the filtering, we use ring areas with

three different distances around anchors as the filter area to

filter particles. This helps to improve the localization accuracy.

Secondly, each particle has a different contribution to the final

position estimate of the unknown node, as we weight each

particle using a distance error penalty and a range free based

distance estimation method failure penalty.

A. Notation

For reference purposes, all symbols used in the following

description of our scheme will be listed in table I.

B. Initialization

Before having ran once, Tri-MCL is initialized with a set of

N particles, distributed randomly over the experimental area.

C. Range-free distance estimation

Tri-MCL uses distance estimates between unknown nodes

and anchor nodes to aid in the process of estimating locations.

For this reason, three different schemes with different strengths

are employed to estimate distances leading to the synergistic

qualities of Tri-MCL. All of the different schemes are range-

free and do not require additional hardware.

To allow penalizing the range estimates made with methods

that are unsuitable for a given situation, each method will

either return a result or a failure state.
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Fig. 1: Sample situation with two anchor nodes and one

unknown nodes. Red are filtered particles and green are

admissible particles.

1) DVH-Dist: DVH-Dist is a distance estimation algorithm

built on the principles of the well known DV-Hop localization

algorithm [18]. In DV-Hop first the minimum hop count from

anchor nodes to unknown nodes are determined. Then the

distance between the nodes and anchor nodes are computed

by multiplying the minimum hop count and average distance

of each hop. At last, the node estimates its position through

triangulation algorithm or maximum likelihood estimators.

However, since only the distances are relevant in the context

of Tri-MCL, the costly calculations required to calculate the

positions from the distance estimates are left out. We call this

simplification of DV-Hop DVH-Dist.

Like DV-Hop, this approach works well in scenarios with a

high density of unknown nodes, so that fine grained multi-hop

distance estimates to a smaller number of anchor nodes can

be made.

If no seed nodes have been heard, even indirectly, this

method returns a failure state.
2) Cent-Dist: Cent-Dist works by calculating positions of

nodes according to the Centroid localization scheme [2],

where the center position between the received anchor node

beacons is used to calculate a location estimate on unknown

nodes. Calculating this position estimate only incurs little

computational costs.

For Cent-Dist, this position estimate is calculated and used

to determine estimated distances towards all known anchor

nodes (i.e. also those received through DVH-Dist flooding).

This approach works best, when there are multiple anchor

nodes in the immediate vicinity of the unknown node attempt-

ing to calculate its position.

If less than one direct seed node has been heard, this method

returns a failure state.
3) HistDR-Dist: HistDR-Dist, short for Historical Dead

Reckoning Distance, is the final method employed in Tri-MCL

to calculate range estimates.

For HistDR-Dist, the last three position estimates made

by Tri-MCL are stored and used to derive an estimate of

the current acceleration and angular acceleration of the node.

Using these values, by means of dead reckoning, the current

position of the node is estimated.

Let et−1 = (xt−1, yt−1) be the previous estimate generated

by Tri-MCL, et−2 = (xt−2, yt−2) the one before that and

so on. Using these values, HistDR will estimate the current

position, which can then be used to determine a distance

estimate et = (xt, yt).

vt−1 = d(et−1, et−2), vt−2 = d(et−2, et−3) (1)

γt−1 = � (et−1, et−2), γt−2 = � (et−2, et−3) (2)

Δv = vt−1 − vt−2,Δγ = γt−1 − γt−2 (3)

xt = xt−1 + (vt−1 +Δv) cos(γt−1 +Δγ) (4)

yt = yt−1 + (vt−1 +Δv) sin(γt−1 +Δγ) (5)

This approach can give good results if the previous estimates

are reasonably accurate. It is not reliant on other nodes for

the current time step, so it bridges short intervals without

connectivity to the rest of the network.

The performance of the approach depends on the mobility

model. The performance of HistDR-Dist is optimized for

more realistic models such as the random waypoint mobility

model, rather than the random walk mobility model. HistDR-

Dist can be further extended by going one derivation deeper

and working with the differential of acceleration and angular

acceleration. Such a modification should allow the model to

perform better in a simulation using a Gaussian mobility model

as well as in a real world implementation.[3]

Since the computation is simple and only depends on a fixed

number of components, the computational cost of HistDR-Dist

is very low. Taken together, DVH-Dist, Cent-Dist and HistDR-

Dist can be assumed to have less than the computational cost

of DV-Hop alone.

If less than three samples exist in the history, this method

returns a failure state.

D. Prediction

A parameter VMax given in m/s defines the maximum speed

any node in the network can attain. For the prediction step,

similar to the original MCL, the set of particles Lt at the

current time t is determined by iterating over the set of

previous particles Lt−1 and for each particle li ∈ Lt−1, a

new particle is drawn from its surroundings within a radius

of VMax, reinterpreted in meters, around it. If the prediction is

not performed once per second, the radius has to be adjusted

correspondingly, both in MCL and in Tri-MCL, e.g. for a 0.5 s
interval, the radius in which particles may move should be

halved.

E. Filtering in MCL

In the original MCL, filtering is done by discarding particles

that do not lie within one radio range rRange around any of the

directly heard anchor nodes and within the ring from one to

two radio ranges around indirectly heard (2-hop) anchor nodes.
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This means that particles p ∈ Lt are kept, when the following

condition holds:

Let MCLA be the set of directly heard anchor nodes in

MCL and let MCLI be the set of 2-hop anchors.

∃a ∈ MCLA : d(p, a) ≤ rRange (6)

∧∃a ∈ MCLI : rRange < d(p, a) ≤ 2 ∗ rRange (7)

Regarding the resampling efficiency, in the original MCL,

filtering is implemented in such a way, that a particle is drawn

from Lt−1. Then the prediction step is run on this particle, and

finally the decision is made whether to keep the particle or not.

This process is repeated until the new set of particles Lt is

full. This can lead to a high number of iterations of the costly

prediction step in order to get enough admissible particles.

In Tri-MCL, we simply run the prediction step once for each

particle in Lt−1 and once per missing particle.

F. Filtering in Tri-MCL

For Tri-MCL, we eschew the first part and extend the

second part, keeping only particles pk ∈ Lt, for which the

following condition holds, with A being the set of anchor

nodes heard over any number of hops, ai ∈ A being the ith
anchor node and r{DVHDist,CentDist,HistDRDist},i ∈ RFi

being the corresponding distance estimate according to the

three different distance estimation methods:

i ∈ {1, ..., |A|} (8)

k ∈ {1, ..., N} (9)

∃ai ∈ A, ∃r ∈ RFi : (10)

r − rRingWidth ≤ d(pk, ai) ≤ r + rRingWidth (11)

Where d(pk, ai) refers to the euclidean distance between

the position of the particle’s and anchor node’s position and

rRingWidth is one of the parameters of the algorithm, referring

to the tolerance with which particles are kept, even if their

range does not exactly match that of any range estimates.

After filtering, the set Lt may contain less than N particles,

which can be remedied depending on the situation:

1) If it contains no particles at all, it will be reinitialized

with the positions of all directly heard anchor nodes as

particles.

2) If no directly heard anchor nodes are available, the

positions of indirectly (2-hop) anchor nodes are used

to seed the set of particles.

3) If still no particles are in the set, it is reset to its state

before filtering took place.

If at this point |Lt| < N , until |Lt| = N , a particle pk ∈ Lt

is drawn and from it a particle p′k is sampled from its VMax

surroundings, as in the prediction step, and then inserted into

Lt:

d(p′k, pk) ≤ VMax (12)

Lt := Lt ∪ {p′k} (13)
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Fig. 2: Tri-MCL error relative to radio range over varying ring

width and VMax.

Figure 1 gives a graphical representation of our approach.

The shown scenario consists of one unknown node and two

anchor nodes. The red and green points represent the particles

of the unknown node. Red particles are filtered and green

particles are kept. Each of the six colored rings, one per

method and anchor node, is one of the admissible areas

for particles and corresponds to the three different types of

distance measurement methods we employ. The green particles

lie only on the colored rings.

G. Position estimation

During a final step, the position is estimated as a weighted

average of the particles. Each particle is used once per anchor

node that is heard by the unknown node and each such instance

of a particle is weighted according to two penalty-factors:

∀ai ∈ A, ∀pk ∈ Lt, let pi,k := pk (14)

1) Distances estimation method failure penalty: The dis-

tance estimation method failure penalty factor ωFail,i,k relates

to the number φ of distance estimation methods that succeeded

in estimating a distance to an anchor node associated with

certain particles pi,k:

εi,k =
|RFi| − φ

|RFi| (15)

βi,k =
εi,k + σ

1− εi,k + σ
(16)

ωFail,i,k =
1

βi,k
(17)

With a small σ > 0, used to avoid dividing by zero.

2) Range error penalty: The range error penalty factor

ωRange,i,k represents how well the particle’s position matches

the estimated ranges. It is computed as the average distance

error over all three of the range free distance estimation

methods for the given particle pi,k, as follows:

ξi,k(r) =

{
1, if r failed

|d(pi,k,ai)−r|
maxDistance

, otherwise
(18)

ωRange,i,k =
1

3
∗

r∈RFi∑
ξi,k(r) (19)

336336336



 0.8

 0.9

 1

 1.1

 1.2

 1.3

 2  3  4  5  6  7  8

Er
ro

r

Vmax

Ring Width = 0.25 m

MCL
Tri-MCL

Fig. 3: Tri-MCL error compared to MCL error over varying

VMax with a ring width of 0.25m.

3) Overall weight: Finally, the two weights are combined

to form the final weight of the particle pi,k:

ωi,k = ωRange,i,k ∗ α+ ωFail,i,k ∗ (1− α) (20)

Here, α is a weighting factor, chosen after some informal

trial runs as 0.75.

4) Weighted average: In the last step, the position estimate

is calculated as a weighted average over all the particles left

in the set.

With pxi,k referring to the x component of the particle pi,k
and pyi,k referring to the y component, the final coordinates

are calculated as such:

ωΣ =

|A|∑
i=0

N∑
k=0

ωi,k (21)

xt =
1

ωΣ

|A|∑
i=0

N∑
k=0

ωi,kp
x
i,k (22)

yt =
1

ωΣ

|A|∑
i=0

N∑
k=0

ωi,kp
y
i,k (23)

IV. EVALUATION

To evaluate the effectiveness of our new approach, we have

performed a set of simulations in an especially built simulation

software while varying two simulation parameters.

The simulations are run with 150 nodes, of which 15 are

anchor nodes, distributed randomly over a 100m × 50m
simulation area. To balance out bias introduced by the random

distribution, we run each simulation of 300 s simulation time

fifty times. The radio communication range of all nodes is set

20m.

Mobility is introduced into the simulation by having nodes

move around the simulation area on the basis of a modified

random waypoint model. To avoid a loss of velocity as

described by Yoon et al., the model constrains the admissible

combinations of newly picked speed and waypoint combina-

tions in such a way, that the picked combination must be

reachable within five simulation seconds. Otherwise a new
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Fig. 4: Tri-MCL error compared to MCL error over varying

VMax with a ring width of 2m.

speed and waypoint combination is chosen until an admissible

combination is found.[27]

Over the simulation runs, we vary the maximum speed VMax

attainable by nodes and the Tri-MCL parameter rRingWidth. VMax

was varied within [2, 8] with a step size of 0.5, while rRingWidth

was varied within [0.25, 2] with a step size of 0.25.

For the sake of comparison, we evaluated the results of

MCL[10] and SA-MCL[8] at the same time as Tri-MCL.

A. Results

The error values for Tri-MCL over our simulation runs

are shown in Figure 2. The error is given relative to the

communication range.

For figures 3 and 4, 99% confidence intervals are given for

each sample.

We found Tri-MCL delivers the highest improvement upon

MCL at high values for VMax and low values for rRingWidth, with

a maximum improvement of 28% during one simulation run.

The highest, average improvement at 25% over a simulation

batch was found with rRingWidth = 0.25m and VMax = 5m/s.
In the worst batch there is still some slight but significant

improvement over MCL of 3.5% at maximum tested rRingWidth

and minimum tested VMax.

Overall it can be seen that lower values of rRingWidth lead

to better location estimates due to higher precision during the

filtering step.

It should be noted that the best accuracy is achieved with

both low values for VMax and low values for rRingWidth. How-

ever, Tri-MCL appears to be more robust than MCL against

higher speeds, with its performance not detoriating as quickly,

which is why the improvement over MCL is higher with higher

values for VMax.

Figure 4 shows that even with a higher rRingWidth value of

2m, Tri-MCL performs significantly better than MCL.

SA-MCL is apparently not well suited for the given sce-

nario, giving results nearly identical to MCL, which is why it

has been omitted from figures 3 and 4 to enhance readability.

V. CONCLUSION AND FUTURE WORKS

In this paper, we present a new localization scheme called

Tri-MCL, which improves localization accuracy and increases
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the efficiency of sampling during the prediction step. Our

method employs three different distance measurement ap-

proaches based on range-free methods to estimate distances

between unknown nodes and anchor nodes. These distances

are then used to filter out particles not lying within rings

around the anchor nodes with a radius corresponding the

distance estimates. We also consider the weight of different

particles, which means that the weight of each particle is

related to the distance between anchor node and unknown

node. The results from our simulations and experiments vali-

date the effectiveness of our proposed algorithms in improving

localization accuracy and reducing computational costs during

resampling. In the future, we aim to implement our proposed

algorithm in mobile ad hoc networks with real world deploy-

ments.
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