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Abstract—Multipath forwarding consists of using multiple paths
simultaneously to transport data over the network. While most
such techniques require endpoint modifications, we investigate
how multipath forwarding can be done inside the network, trans-
parently to endpoint hosts. With such a network-centric approach,
packet reordering becomes a critical issue as it may cause critical
performance degradation. We present a Software Defined Network
architecture which automatically sets up multipath forwarding,
including solutions for reordering and performance improvement,
both at the sending side through multipath scheduling algorithms,
and the receiver side, by resequencing out-of-order packets in a
dedicated in-network buffer. We implemented a prototype with
commonly available technology and evaluated it in both emulated
and real networks. Our results show consistent throughput
improvements, thanks to the use of aggregated path capacity.
We give comparisons to Multipath TCP, where we show our
approach can achieve a similar performance while offering the
advantage of endpoint transparency.

Index Terms—multipath transport, SDN, OpenFlow, Open
vSwitch

I. INTRODUCTION

IP networks are inherently multipath. Yet, the existence of

multiple paths between two endpoints is rarely leveraged. This

issue can be ascribed to the fact that only lower layers can

establish an accurate view of the network topology, while

only upper layers are able to control transmission rate and

end-to-end connectivity.

Nonetheless, solutions have been proposed at various layers

to enable specific use-cases and improve performance. Ex-

amples are given at layers 2–3 for data-centres with, e.g.,

BCube [1] or DCell [2], or at layer 4 for multi-homed devices

with Multipath TCP (MPTCP) [3] or Concurrent Multipath

Transfer for SCTP (CMT-SCTP) [4].

The most prominently quoted motivations for multipath are

the potential for continuity of connectivity in case of path

failure or congestion (i.e., fail-over or load-balancing), or

capacity aggregation to speed up high volume transfers between

endpoints [e.g., 5, for MPTCP].

Layer-2 multipath topologies [e.g., 6], have been successfully

deployed and used within fully-controlled data-centre networks.

End-to-end multipath support throughout the public Internet

is however limited [7] due to the requirement to modify end-

hosts. Heterogeneous network paths also worsen the issue

of packet reordering, creating head-of-line blocking delays,

and sometimes leading to worse performance than single-path

transfers [8].

In this paper,1 we attempt to join both lower- and upper-layer

approaches and merge their successes through the use of SDN.

We aim to satisfy the following goals: capacity aggregation,

ease of end-to-end deployment, adaptivity to failures, and

automatic path computation. To this end, we introduce the

MPSDN architecture, comprising an SDN controller with better

knowledge and control of available paths than endpoint-only

layer-4 solutions, as well as modifications of the Open vSwitch

implementation and OpenFlow protocol to enable finer packet

scheduling and reordering within the network, without need

for explicit end-host support.

The solution can be deployed with either layer-2 forwarding

or layer-3 routing or tunnelling, and the controller does not

require full control of the network hops. We show that this

approach enables performance similar to MPTCP’s while lifting

the requirement for end-host modifications. The focus of this

paper is on TCP, but we note that our proposal can handle

other transport protocol in a similar fashion [9]. Our work also

allows us to identify some non-trivial issues when implementing

layer-4 switching and scheduling with SDN solutions.

The proposed mechanism can offer benefits in several scen-

arios where additional bandwidth would enhance the Quality of

Experience for users. A typical scenario is high-definition video

streaming where the bit-rate is higher than the capacity of a

single path.2 Another use-case for this proposal is that of multi-

cloud overlay networks between virtualised environments.3

In this scenario, a user controls the edges of the network

and deploys the proposed mechanism to maximise bandwidth

utilisation between clouds.

The remainder of this paper is organised as follows: The

next section reviews state of the art of multipath approaches in

line with the goals of our research. We present the proposed

architecture and its implementation in Section III and provide

a performance evaluation in both emulated conditions and

1This paper improves on the first author’s MSc thesis but focuses on TCP
only; please refer to [9] for more details and other transport protocols.

2A video demonstration of this use-case can be found at https://www.youtube.
com/watch?v=hkgf7l9Lshw

3See, for example, Docker’s overlays https://docs.docker.com/engine/
userguide/networking/get-started-overlay/.
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Table I: Comparison of characteristics and fulfilment of our

goals of state-of-the-art multipath proposals and MPSDN.
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Layer 2 � � � † � � �

Layer 3 � � �

Layer 4 � � ‡
SDN-based solution � � �

Bandwidth Aggregation � � � � � �

Easy Deployability � � � � �

Adaptivity to Failures � � � � � �

Load-Balancing � � � � � � � �

Automatic Path Computation � � � � �

† MPTCP was used for aggregation on top of a multihomed L2 network
‡ MPSDN uses L4 knowledge, e.g., sequence numbers, to reorder packets

in a real multi-homed testbed in Section IV. We give some

insight and lessons learnt about mixing SDN and multipath in

Section V and offer concluding remarks in Section VI.

II. RELATED WORK

Multipath topologies in both layer 2 and layer 3 networks are

common, offering multiple communication options for capacity

aggregation, load-balancing, and congestion avoidance. This

section reviews the state-of-the-art of solutions proposed to

leverage those capabilities. We do this layer by layer, from 2

to 4, and offer some insight about previous uses of SDN for

this purpose.

Table I summarizes the discussed work in light of our

design goals. With “easy deployability” we denote the use

of software/hardware that can be incrementally deployed and

used on real networks and that is not only an experimental

proof-of-concept.

A. Link-layer Multipath

The spanning tree (STP) protocol is extensively used on L2

networks to ensure loop-free forwarding in Ethernet networks.

It has the downside of actively pruning paths from the networks

which could be utilized for increased bandwidth. Cisco’s layer-2

multipath [10] attempts to remediate this by enabling the use of

alternate paths, while the IEEE 802.3ad amendment introduces

provisions for link aggregation [11]. Neither solution however

offers full multipath support across complex topologies.

TRILL (Transparent Interconnection of Lots of Links) [12]

uses IS-IS routing to ensure that every bridge has full know-

ledge of the network, allowing for the creating of an op-

timal forwarding tree with support for Equal-Cost Multipath

(ECMP) [13]. 802.1aq SPB (Shortest Path Bridging) [14] also

leverages IS-IS to compute a shortest path through the network.

A designated MAC address (used with SPB-MAC) or VLAN

ID (SPB-VID) is assigned for each switch, and used as label

on each received frames. Packets travel on the shortest path

to the edge switch, which again de-encapsulates the frame

and sends it to the end device. Neither of these techniques

allows aggregated bandwidth because of their use of ECMP-like

hashing.

MPTCP, discussed in more details below, has also been

suggested as a way to leverage multiple layer-2 paths in data-

centres and improve performance and robustness [15]. It has

been shown that, with a sufficiently high number of subflows,

it is possible to aggregate capacity and increase load-sharing.

The downsides of this approach are the necessary end-host

support, the lack of multipath capability for other protocols

such as UDP or SCTP, and its limitation to data-centres.

B. Network-layer multipath

Flowlet Aware Routing Engine (FLARE) [16] is a dynamic

multipath load balancing technique. It uses time delays between

packets of the same flow to split them into flowlets that may

be distributed on different paths. This allows to distribute the

traffic between available paths more accurately, as compared to

flow-based distribution, while maintaining in-order arrival at the

receiver. FLARE has shown, through trace-driven simulations

of tier-1 and regional ISPs, that highly accurate traffic splitting

can be implemented with very low state overhead and negligible

impact on packet reordering. However its focus is on load-

balancing and does not offer capacity aggregation.

The Harp network architecture prioritizes foreground traffic

and uses multipath to dissipate background transfers [17]. It

can leverage path diversity and load imbalance in the Internet to

tailor network resource allocation to human needs (foreground

vs. background traffic). It also provides better fairness and util-

ization compared to single-path end-host protocols. Moreover,

it can be deployed at either end-hosts or enterprise gateways,

thereby aligning the incentive for deployment with the goals

of network customers. Packet reordering is performed at the

exit gateways to cope with different path latencies. Its focus on

background traffic at the exception of all other traffic, however,

makes it ill-fitted for our goals.

C. Transport-layer multipath

Extensions to two main transport protocols have been pro-

posed to support multipath. MPTCP [3] introduced a new set of

TCP options to enable negotiation between multipath-capable

hosts while using backward-compatible TCP packets on each

path. SCTP’s fail-over supports load-balancing [18] and has

been extended to support concurrent multipath transfer [19].

Despite their intrinsic limitation to a single transport protocol,

those approaches have seen reasonable success in the lab, with

their main barrier to deployment being the need for end-host

support.

A very active area of research with transport-layer multipath

is enabling packet schedulers to deal with path asymmetry

without introducing head-of-line blocking [8]. Most schedulers

attempt to distribute packets unevenly or out-of-order across

available paths, so they arrive in order at the destination [20]–

[26]. An adequate scheduling policy is important to enable the

benefits of capacity aggregation in heterogeneous scenarios.
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Figure 1: Multipath SDN Architecture

D. SDN-based multipath solutions

Multipath in OpenFlow has been proposed back in 20104 and

later implemented through Groups (such as Select or All) to

enable L2/L3 multipath forwarding for load-balancing purposes.

It has since then been researched extensively [27]–[29], but

none of these approaches allows for aggregated bandwidth as

they all rely on flow hashing (as does OpenFlow at its core).

Adaptive Multipath Routing (AMR) has been used to perform

layer-2 aggregation in data-centres [30]. It splits flows over

multiple paths and introduces an architecture which adapts

dynamically to network congestion and link failures. An inter-

esting aspect of this approach is its computation of max-flow

paths throughout the network to determine the best combination

to use. An analogous technique has also been used in OLiMPS

(OpenFlow Link-layer Multipath Switching) to utilize robust

inter-domain connectivity over multiple physical links.

Overall, existing proposals can either not provide aggregated

path capacity or are limited to layer-2 forwarding. Layer-4

solutions, while supporting aggregation as their main advantage,

lack in deployability as they require end-host support. AMR

comes closest to our goals, but is an L2-only solution. Moving

forwards, we propose an architecture able to handle both layer-2

and -3 multipath scenarios, while accounting for the scheduling

and reordering requirements of heterogeneous paths.

III. ARCHITECTURE

Our proposed architecture for an endpoint-transparent mul-

tipath network consists of a centralized controller with know-

ledge of the network topology which dynamically sets up

loop-less forwarding rules on SDN switches under its control

(Figure 1). For the presented proof-of-concept, we focus on

two path scenarios only.

4http://archive.openflow.org/wk/index.php/Multipath_Proposal

The controller has some knowledge of the network state and

views the underlying infrastructure as a directed graph, where

costs between switches are given by the latency and capacity

of the paths. With this knowledge it computes the optimal

multipath forwarding table to send data from one node to the

other, maximizing the capacity usage with an algorithm based

on the maximum-flow problem. This is similar to AMR [30],

but we extend it to layer-3 infrastructures. In case of failure

or heavy congestion, the controller will compute an updated

forwarding table and push it to the SDN switches.

In the remainder of this section, we present the key concepts

of our architecture: the topology discovery and path selection,

as well as the packet scheduler and reordering buffer. We also

describe how we implemented this architecture in the Ryu

OpenFlow controller5 and how we modified Open vSwitch to

support packet reordering on edge switches.

A. Topology Discovery

In order to discover the network topology, we both query

the forwarding devices using the Link Layer Discovery Pro-

tocol (LLDP) when available (i.e., layer 2) or deploy ad hoc

mechanisms to estimate end-to-end latency and throughput

(i.e., layer 3). In particular, we estimate path latency with a

slightly modified Bouet’s algorithm [31], which yields high

accuracy and has a low network footprint. Unlike NetFlow or

measurements using ICMP echo requests, this does not require

additional servers or components. The algorithm is run using

controller-to-switch messages only.

We use port statistics counters for bandwidth estimation.

As shown in OpenNetMon [32], we can accurately monitor a

flow’s throughput by probing flow statistics periodically. The

controller uses a similar approach by periodically requesting

port statistic messages from its switches (every 2 seconds in

the current implementation). The per-port available capacity

is determined by subtracting the maximum capacity with the

utilization from the last period of observation.

B. Path Selection

In order to maximize the aggregated capacity of multiple

paths, the controller uses an algorithm similar to the Edmonds-

Karp algorithm to solve the maximum flow problem, with a

Breadth First Search to find the augmenting paths. It uses the

Dijkstra algorithm with min-priority queue to find the shortest

paths from source to destination. The estimated available

bandwidth between the nodes is used to maximize the overall

throughput between the sender and the receiver.

Pilot experiments showed that, in a similar manner as for

layer-4 multipath, not all paths are compatible and a very high

delay imbalance was detrimental. To select compatible paths,

we introduce the concept of maximum delay imbalance,

MDI =
dmax

dmax + dmin

− 0.5 , (1)

where dmin and dmax denote the minimal and maximal delays

from the candidate paths, and 0.5 a rescaling factor. Its range

5https://osrg.github.io/ryu/
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is [0, 0.5], where 0 represents completely balanced paths and

0.5 is the limit of imbalance.

This metric is used for different purposes in our solution.

If the computed MDI among the selected paths is higher

than a reordering threshold, a flow reordering rule is set up

at the receiving edge router. Similarly, if the MDI is above

another threshold, the delay difference is considered too high

to provide any aggregated capacity advantage. We determine

those thresholds in Section IV

C. Packet Scheduler

The common challenge for every multipath protocol is

deciding how to send data over the available paths. The task

is usually done by a scheduling algorithm. This scheduler can

rarely work in isolation as it needs to adapt to changing path

characteristics, mainly in terms of delays and congestion. There

are many approaches to multipath scheduling [20], ranging

from simple information agnostic round-robin approaches to

omniscient algorithms.

To maximize the performance, a multipath scheduler should

push the right amount of data over different paths, without

overloading already congested ones and ensuring full utiliz-

ation of the available capacity. MPTCP uses subflows with

independent congestion windows [3], [5] and can buffer some

packets before sending them on the desired path [24], [26].

In the case of in-network multipath, however, neither the per-

path window information nor the advance buffering option are

readily available. To maximize application throughput, we use a

Weighted Round-Robin (WRR) scheduler which sends bursts of

packets along the paths, weighted according to their capacity as

wj = cj/
∑n

i ci, where wj is the weight associated with path j,

and cj its estimated capacity. While not as fine-grained as layer-

4 scheduling, this approach maps well to OpenFlow’s Groups

approach and our measurements, presented in Section IV, show

the performance difference is acceptable.

D. Reordering Mechanism

By selecting multiple paths with potentially different char-

acteristics, our mechanism introduces packet reordering. To

avoid a performance impact due to out-of-order packets, we

implemented a corrective mechanism that can be deployed on

the edge switches.

Layer-4 multipath algorithms (Section II) solve this problem

by using out-of-order queues at the receiver, which resequence

packets in the desired order prior to passing them to the

application.

We introduce a resequencing buffer at the receiving edge

switch in order to address this problem in a similar fashion,

albeit without the receiver node’s involvement. The buffer

temporarily stores packets received ahead of time. It does

so by maintaining a record of the next expected sequence

number for each flow, in a similar fashion as TCP, and only

forwards packets if the sequence numbers match. This is show

in Algorithm 1.

This can cause a problem in case packets are lost prior to

reaching the resequencing buffer. To avoid timeouts at the

Algorithm 1 Resequencing for each flow

Require: buffer B of size S
Require: buffering threshold T
Require: loss-recovery factor LRF

while pkt← receive packet do

if pkt is SYN then

expected← pkt.seq + pkt.size
forward pkt

else if pkt.seq < expected then

forward pkt {immediately forward duplicates}

else if pkt.seq = expected then

for all p ∈ B|p.seq < expected do

forward p {send all delayed packets in order}

end for

forward pkt
expected← expected+ pkt.size

else if B.use > T then

store pkt in B
for all p ∈ B do

forward p {send all packets in order, ignoring gaps}

lastp < −p
end for

expected ← lastp.seq + lastp.size · LRF {account

for bursty losses}

else if B.use < S then

store pkt in B
else

spkt← p ∈ B|p.seq = minp∈B(p.seq)
if spkt.seq ≤ pkt.seq then

send spkt {send the packet with the lowest sequence

number}

store pkt in B
else

forward pkt
end if

end if

end while

TCP sender, our proposed solution implements dynamic buffer

sizes based on a buffering threshold T , sized as a function

of the MDI and the bandwidths of the selected paths for the

flow. If the number of packets buffered for a flow exceeds

its threshold, the buffer releases them all in order, ignoring

gaps. This may trigger some unnecessary retransmissions, but

endpoints supporting SACK should see only minimal impact.

Additionally, to protect against bursts of losses in the net-

work, the next expected sequence is further increased by a

loss-recovery factor LRF after a threshold-triggered release.

This causes the buffer to forward packets with lower sequence

numbers in their order of arrival, ignoring other lost packets

of the burst, until the new expected value is reached, thereby

ignoring any other missing packets from the loss burst. Ex-

perimental tests showed that a value of 20 allowed the buffer

to recover from bursty losses while limiting the amount of

out-of-order packets during this recovery period.
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Figure 2: Topology model in our emulation (East Asia Internet

Backbone).

E. Implementation Considerations

We implemented the WRR scheduler using the existing

Select group in Open vSwitch. The resequencing buffer required

the addition of a new group in Open vSwitch, as well as a

new OpenFlow message to configure it. The code for these

modifications is available online6, as is that of our Ryu-based

controller.7

While layer-2 path capacity was estimated using port statist-

ics, a dynamic layer-3 equivalent was not fully implemented—

the controller currently needs manual configuration of path

capacities. We expect the switches could use client traffic to

implement methods such as packet dispersion [33]. Such an

approach is, however, beyond the scope of this paper.

IV. PERFORMANCE EVALUATION

We evaluated MPSDN using both emulation and large-

scale deployment on a multihomed testbed. We first used

emulation of an L2 topology to explore the sensitivity of our

approach to variations in conditions. We then performed use-

case experiments in real-world L3 deployments to confirm

the feasibility of our solution. In both cases, we provide

comparisons with MPTCP.

All measurements were done using Linux with default TCP

parameters. In particular this means that CUBIC was used as the

congestion avoidance algorithm for all TCP flows throughout

this section.

A. Emulation

We used Mininet [34] to create an L2 topology mirroring

the East Asia Internet Backbone,8, shown in Figure 2. As our

setup could not emulate the Gigabit speeds of the backbone,

we scaled the capacities down. However, we chose realistic

delays between the routers, as estimated by probing their real

counterparts with ICMP echo requests.

1) Throughput Measurements: In the following experiments,

we used iperf 3,9 netperfmeter [35], netcat and

d-itg [36] to generate traffic. We measured flow parameters

(cwnd, rtt) with ss and captcp.

6https://github.com/dariobanfi/ovs-multipath
7https://github.com/dariobanfi/multipath-sdn-controller
8http://maps.level3.com/default/
9http://software.es.net/iperf/

Table II: Evaluation of throughput with MPSDN multipath

forwarding.

Path Capacity Latency Throughput

BEJ–SHA–TOK–HAW 10Mbit/s 95 ms
18.2Mbit/s

BEJ–HKG–MAN–HAW 10Mbit/s 95 ms

TOK–SIN–SYD 10Mbit/s 60 ms
26.8Mbit/s

TOK–SYD 20Mbit/s 60 ms
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Figure 3: Impact of the maximum delay imbalance MDI on the

aggregated throughput, with and without resequencing buffer

(base latency 25ms, 10Mbit/s paths, 15-seconds iperf)

We measured the throughput our solution achieved without

cross-traffic. The results are shown in Table II. In this first

scenario, the capacity was close to the aggregated bandwidth

of the single paths.

We also measured the throughput achieved with unbalanced

latencies. The result of these measurements is shown in Figure 3.

These measurements were performed on a simple topology

with just two direct paths. One path has a 25ms latency, the

other path’s latency is increased to obtain the different MDI
values (x-axis). The measurements were done both with and

without enabling the resequencing buffer. The effectiveness of

the buffer within a certain range of MDI values can be clearly

observed.

2) MDI cutoffs: Figure 3 also shows that using the resequen-

cing buffer for MDIs beyond 0.15 improves performance quite

vastly, while for path capacities beyond 0.4 the aggregated

bandwidth falls below the bandwidth of a single path even

when using the resequencing buffer.

3) Intra-flow fairness: We also verified that introducing

MPSDN in a network does not have an adverse effect on intra-

flow fairness. We started 10 30-second iperf transmissions

over an MPSDN network and reported the flow throughput

every second. We computed Jain’s fairness index [37] for each

period. Overall, the mean fairness was 0.81 (σ = 0.042), which
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Figure 4: Impact of transient congestion of one of the paths.

we find to be quite good.10

4) Impact of path congestion on transport: We then eval-

uated the resilience of our approach to dynamic congestion,

both in terms of path recomputation and transport resilience

to changes.

We used the same topology and source/destination as before.

At time T1, we start an iperf UDP with a target rate of

1Gbit/s to completely saturate the link between Singapore

(SIN) and Sydney (SYD). At T2, our controller measures the

available path capacity and recomputes bucket weights. As one

path is completely congested, it switches to forwarding on one

path only.

Figure 4a shows the impact of the path congestion on the

transport’s throughput, where it quickly drops to 0 before our

mechanism reconfigures the paths, after which the throughput

slowly grows to the new one-path capacity of 10 Mbit/s.

While the controller adequately updated the path selection,

the transport is badly impacted during the congested period—

even though only one path is congested—and slow to respond

after the path recomputation. This is due to the TCP sender

only maintaining a single congestion window for all the paths,

and reducing it drastically when losses start to occur on the

congested path, as shown in Figure 4b.

5) Comparison with MPTCP: MPTCP and MPSDN differ

in the requirements they impose on implementing systems:

multi-homing in the case of MPTCP, and SDN support with

measurement capability for MPSDN. Nonetheless, they share

10The best fairness index would be 1, but anything above 0.5 is considered
“reasonably fair” [38].

the same objective of capacity aggregation. We therefore

compared the goodput achieved by our solution to MPTCP’s,

in systematic experiments varying the delay on the second

path.

We set up a basic topology composed of just two hosts. For

MPTCP, the hosts are multi-addressed. For MPSDN, each host

has only one IP address, but there are two available paths in

the network. For MPTCP, we use two subflows and the default

scheduler. The sender starts a 30 seconds transmission; the

application-layer goodput is measured at the receiver.

Figure 5 shows the TCP goodput for the single paths and

compares it to MPTCP and MPSDN performance. In sub-

figures (b) and (c), which have a high delay difference (25ms
and 50ms corresponding to an MDI of 0.17; 25ms and 100ms
corresponding to an MDI of 0.3) the reordering buffer is used.

Our results show that MPSDN performance remains close

to that of MPTCP when the paths are balanced (although

with a higher variance) and performs slightly worse, but still

comparable, when the delay differences are high.

B. Real-world deployment

We now verify that our proposal is usable in real world

deployments. The most notable difference is that, instead

of an L2 topology, we now consider an L3 network where

we only control the edge switches. Apart from quantitative

measurements, our goal is also to qualitatively explore the

deployability of our solution over the real Internet.

We deployed our MPSDN solution on the NorNet11 Core

testbed, which offers distributed, multihomed, and program-

mable nodes [39], where static IP tunnels are established to

form a full mesh between nodes, and packets are routed based

on their source/destination address.

We ran our experiments on Ubuntu 14.04 LTS virtual

machines with kernel 3.13.0-68-generic, 1 GB RAM, and

2.60 GHz CPUs. The VMs were multi-addressed and used

the aforementioned IP tunnelling. We simply installed our

modified Open vSwitch directly on the VMs and used it to

route the traffic. This allows the application to create normal

TCP connections and keeps the multipath splitting transparent.

We chose the sites at the Simula Research Laboratory

near Oslo (NorNet’s home) and one in Longyearbyen, just

1300 km from the North pole, in the Svalbard archipelago. The

switch on the sender side was configured to rewrite the layer-3

source/destination addresses to trigger the Weighted Round

Robin Scheduling and forward packets onto their selected path.

The receiving switch performed the reverse address mapping.

1) TCP Goodput: We first tested the scheduling without any

reordering buffer between two endpoints with paths of equal

capacity to determine how many packets would arrive out-of-

order and cause performance degradation. We used two of the

multiple paths/ISP combinations between both endpoints, which

had at least 10 Mbit/s of capacity. As discussed in Section III-E,

we manually set the weights for both paths in the scheduler.

We set them to equal values. Both paths have RTTs around

40 ms.

11https://www.nntb.no/
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Figure 5: Comparison of MPSDN goodput to MPTCP with varying path delays. Error bars show the standard deviation of 10
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Figure 7: TCP sequence numbers at the receiver.

Figure 6 shows the goodput over 140 seconds as measured by

iperf 3 periodic reports, with the default settings. Multipath

forwarding succeeds in aggregating paths capacities, resulting

in a roughly doubled throughput, compared to single-path.

As Figure 7 shows, the TCP sequence numbers at the

receiving end are growing almost monotonically, showing only

very light packet reordering. It is interesting to note the jagged

profile of the curve, where bursts of packets arrive at different

rates, depending on which paths they had been forwarded on.
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Figure 8: Multipath throughput with different traffic types.

2) Application use-cases: We continued with the same

configuration, and experimented with a number of differ-

ent application workloads. We first tested with the same

setup, but also launched netperfmeter using TCP and

the default flow settings, which attempts to maximise the

throughput. We then ran two other experiments. We used

Python’s SimpleHTTPServer12 module and wget13 to

simulate the transfer of a 70MB file over HTTP, and over

FTP using vsftpd.14

Figure 8 shows our results. Multipath forwarding consistently

delivered on its promise of capacity aggregation. This is best

shown for applications which actively attempt to saturate the

network capacity, but all significantly benefit from MPSDN.

V. DISCUSSION AND LESSONS LEARNT

In this section, we reflect on the proposed architecture,

influence of the design choices, and resulting performance

12https://docs.python.org/2/library/simplehttpserver.html
13https://www.gnu.org/software/wget/
14https://security.appspot.com/vsftpd.html
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and usability of MPSDN.

1) Impact of buffer and MDI: The MDI proved to perform

quite well in our experiments. However, all our measurements

have a somewhat similar latency (with the faster path usually

having a latency of either 10ms or 25ms). We later realised

that using a purely relative measurement for the imbalance

does not allow the MDI to work equally well for all latencies.

It needs to be refined to also incorporate the absolute difference

between the latencies.

2) Path selection: In the evaluated version of our proposal,

we did not consider a dynamic and continuous estimation of

the paths’ capacity, but rather focused on the feasibility of our

solution in a stable environment. We showed in this context that,

in conjunction with the MDI metric, it was possible to identify

suitable complementary paths. Nonetheless, as future work,

we plan to investigate the possible addition of a measurement

mechanism (active or passive) to estimate these capacities. In

particular, we aim to determine the trade-off between adding

more measurements and accidentally contributing to congestion.

It might also be worthwhile to replace a currently-congested

path with another, uncongested, path.

3) Impact on Vanilla TCP: Our solution successfully enables

transparent capacity aggregation by scheduling bursts of packets

on different paths, and prevents spurious retransmissions by

reordering datagrams before delivering them to the end node.

Nonetheless, TCP’s control loop can become disrupted due

to transient issues on any single path, leading to performance

degradation for the whole transfer.

This is due to the fact that the TCP has no knowledge of the

use of multiple paths. Its RTT estimate is that of the longer

path and reordering buffer, while its congestion window covers

the aggregated capacity. In case one path experiences a spike

in delays, or a burst of losses, TCP will react by reducing its

sending rate for the whole transfer. As a result, only paths

of similar characteristics (as determined by metrics such as

the MDI) will aggregate well, but the throughput will be very

sensitive to the performance of the worst path.

4) Comparison to MPTCP: Even without a reordering

buffer, our in-network multipath solution achieves a very good

aggregated bandwidth and similar goodputs as MPTCP while

not requiring end-host support.

An SDN solution, with its advantages of being network

stack-agnostic, can achieve a performance that is similar to

that of MPTCP. While MPTCP’s challenge is endpoint support,

the challenge with MPSDN lies in determining the parameters

for path setup and packet reordering.

5) Ease of deployability: Our MPSDN proposal reduces the

deployability issues seen with MPTCP. While each end-host

needs to be separately enabled to support MPTCP, MPSDN

only requires leaf networks to deploy at least one edge switch

supporting our extensions to provide multipath connectivity

from all hosts on that network to any other MPSDN-enabled

network. Some deployment considerations were however not

addressed, such as when two MPSDN networks are not under

the jurisdiction of the same controller. Access control and

delegation in SDN is beyond the scope of this paper, but

can be adequately addressed by a broader research agenda in

SDN [e.g., 40].

VI. CONCLUSION

We have presented a solution to enable the use of multiple

paths in a layer-2 or -3 topology. The main objective is to use

alternate paths in parallel to aggregate capacity and provide

higher goodputs. Unlike solutions such as MPTCP or CMT-

SCTP, our approach leverages an SDN infrastructure to provide

path selection, packet scheduling, and packet reordering in

the network, without the need to modify the endpoints. We

have evaluated the solution in a range of emulated scenarios

and showed that it is able to adequately provide capacity-

aggregation benefits that are similar to what MPTCP achieves.

We have also demonstrated the deployability of the solution in

a real multi-homed scenario over the Internet.

Our work highlighted the need that the various aspects

of multipath transfer are addressed in the right layer—path

discovery and selection belongs in the network, but the transport

needs to be aware of the existence of multiple paths and manage

them separately—and a richer communication between those

layers to support it. Future work should study how this split can

best be achieved. Unfortunately, TCP/IP networks are poorly

equipped for a lightweight upgrade that could unlock the full

potential of multiple paths.
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