
Distributed Cluster-Topology Maintenance
for Mobile Collaborative Applications

Jan Gäbler and Hartmut König
Computer Network and Communication Systems Group

Brandenburg University of Technology (BTU), Germany

{jan.gaebler, hartmut.koenig}@b-tu.de

Abstract—Nowadays, collaborative applications play an in-
creasing role in mobile communications in order to enable
cooperation among mobile and/or stationary participants – often
using the peer-to-peer (P2P) group communication paradigm.
The probability of communication failures increases in mobile
environments. As a consequence, frequent leaving and joining of
partners can be observed resulting in unstable group topologies.
A widely used approach is to divide the group into peer clusters
that are fully meshed among each other. In this paper, we propose
an application-independent approach for a periodic maintenance
of distributed cluster-based group topologies for mobile collab-
orative applications. The proposed approach also dynamically
adapts the overlay structure to changing network conditions. The
maintenance strategy can be parametrized by several metrics.
It outperforms simple overlay maintenance strategies, such as
round-robin, by respecting the resource and computation limi-
tations of mobile devices. The run-time is increased by 10% in
the best case compared to LEACH, and by 3− 5% on average.
We describe the approach and evaluate its performance w.r.t.
different metrics.

Index Terms—mobile collaborative applications; clustering
algorithm; closed group topology maintenance; P2P cluster-
topology optimization; application independent optimization;

I. MOTIVATION

Collaborative applications play an increasing role in mobile

communications, e.g., for audio/video conferences, collabora-

tive writing, and mobile gaming. A new kind of collaborative

applications that emerged from the traditional stationary ones

– called mobile collaborative applications [1] – use group
communication systems to support the collaboration among

mobile as well as stationary participants (peers). The partici-

pants can be located in a single network (covering small local

areas) or in different networks interconnected via the internet

or other backbone networks. A close collaboration between

the participants is a key property of collaborative applications.

The number of participants typically varies between only a

few and up to a hundred. The collaboration takes place in

a decentralized closed group, whereby each participant has

a comprehensive knowledge of all the others. Effects like

churns, missing network coverage, resource limitations of the

mobile devices, however, significantly increase the probability

of communication failures. As a consequence, the participants

frequently leave and join the group, thus leading to unstable

group topologies.

There are a number of group communication systems [2]

that offer message transfer services based on virtual synchrony

[3] to ensure a global knowledge among the group members.

These services operate without any kind of infrastructure. They

are only using peer-to-peer (P2P) techniques [4] to distribute

messages within the group. A widely used approach in this

context is to divide the group into clusters of peers that

are fully meshed, such as in TRANSIS [5], SpovNet [6], or

Moversight [7]. Each cluster is managed by a certain peer –

the master – that is responsible for all the other peers in the

cluster which are hence called slaves. A good cluster topology

is characterized by a reasonable number of peers per cluster,

a homogeneous distribution of the peers (w.r.t. peer resources

and mobility properties), and well-chosen masters.

In order to increase the stability of the cluster topology

and to optimize its structure, a topology maintenance service

should be provided by the underlying group communication

system. This can be done either in a centralized or in a

distributed manner. For mobile collaborative applications, the

distributed variant should be preferred to avoid the single

point of failure issue and to ensure an equitable use of the

peer resources. Note that such a maintenance service is also

required in other cluster-based topologies. Such can be found,

for instance, in mobile ad hoc networks (MANETs) or in

sensor networks.

The design and implementation of a maintenance service

is challenging in different ways. (1) The topology has to be

optimized periodically based on the resources available to each

peer. (2) This optimization has to be performed by each group

member literally at the ”same time”. (3) Although performed

locally, each peer must preserve the global group knowledge

w.r.t. the global state of the supported application.

In this paper, we propose a generic distributed approach

of a maintenance service for cluster-based network topolo-

gies that is, besides mobile collaborative applications, also

applicable to other areas, as mentioned above. It aims at a

periodic and dynamic adaptation of the cluster structure to

changing network conditions. The maintenance strategy can be

parameterized by certain metrics. The remainder of the paper

is structured as follows: The subsequent section discusses

existing approaches for optimizing cluster-based topologies.

In Section III we describe the applied system model followed

by a presentation of the proposed maintenance approach in

Section IV. Next, in Section V, we describe the integration of

the service into the Moversight [8] protocol. Section VI deals

with some synchronization issues that have to be solved in

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Jan Gäbler. Under license to IEEE. 271

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Jan Gäbler. Under license to IEEE.

DOI 10.1109/LCN.2016.55

271

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Jan Gäbler. Under license to IEEE.

DOI 10.1109/LCN.2016.55

271



order to preserve group consistency. Thereafter, in Section VII,

we evaluate the performance of our approach using various

metrics. We conclude the paper with some final remarks.

II. RELATED WORK

The communication topology is a crucial property of a dis-

tributed system. Its optimization represents a classical design

issue. Therefore, we will focus on protocols that manage the

placement of peers in a distributed topology – called clustering

protocols. They can be classified into (1) centralized, (2)

distributed, and (3) hybrid ones. Various distributed clustering

protocols have been proposed (see [9] and [10] for comprehen-

sive overviews). Most of these approaches relate to MANETs

and sensor networks rather than to mobile collaborative appli-

cations.

SONDe [11] represents an example of a class of LAN

and WAN protocols, which create clusters merely based on

the number of logical hops between the master and the

slaves using a constant lower boundary h for the maximum

number of hops to the master. Each peer observes its h-hop

neighborhood and decides to become a master or a slave.

Thus, the composition of the clusters is changing dynamically

depending on the nodes neighborhood. The resulting topology

is unstable and not well balanced. Since this may result in

single points of failure and resource exhaustion of the mobile

peers, these protocols are not suitable for mobile collaborative

applications.

Protocols like NONSTOP [12] and others [13]–[15] rely on

peer properties such as node mobility. NONSTOP addresses

foremost aspects of network partitioning and user mobility.

Nodes with comparable properties are clustered together. Peer

properties are distributed in the neighborhood by piggyback-

ing. Based on partition prediction techniques, the peers es-

timate the place and time at which the next partition will

occur. After that the protocols select a new master in advance

that can bridge the predicted partition. The number of peers

per cluster and their load vary over time. Therefore, these

protocols merely reach a master availability rate of 80% which

destroys the group synchronicity. Furthermore, the created

topologies are unbalanced and cost more energy compared to

an optimized topology.

Sensor network protocols, such as LEACH [16] and [17],

use stochastic techniques to build a cluster topology. Dur-

ing each round, LEACH selects P master nodes, where P
is a predefined value. To reduce the communication-related

energy consumption the distributed selection algorithm uses

the current available energy resources per peer as a criterion.

Slaves are assigned to the cluster with the closest master and

time slots are used for the communication between masters

and slaves. Stochastic approaches lower the complexity of the

selection algorithm, but the slave assignment to clusters tends

to be unstable and leads to highly dynamic topologies that

do not guarantee a group consistency as required for mobile

collaborative applications.

Fig. 1. Message delivery scheme in cluster-based topologies

III. SYSTEM MODEL

Mobile collaborative applications usually consist of closed

groups in which participants enter by invitation. In order

to ensure group consistency and to synchronize the applica-

tion context, these groups often apply the virtual synchrony
paradigm [18]. Multicast is used for exchanging messages

and the groups must handle time constraints, responsiveness,

connectivity loss, and mobility.

Virtual synchrony models the group composition as a

sequence of views ordered by a strict < relation. A view
comprises the set of peers that currently form the group and

each view is referenced by an ID. All peers locally store the

global knowledge of the group. This knowledge consists of

the group composition including the state, transport address,

role and resources of each peer as well as the state of the

application, which is derived from the application messages

exchanged within the group.

The group communication system ensures updates and

constant accuracy of the global knowledge. If accuracy is

not ensured, the group disintegrates into partitions and the

distribution of messages will fail. Every change in the group

composition results in a new view. There are different proper-

ties used in view-aware groups [2] of which the most important

one is that all messages have to be delivered in a totally

ordered manner. A group member receives these messages if

and only if it is connected to the group and runs error-free.

Closed P2P groups often use a cluster-based overlay topol-

ogy (also called P2P-super-peer formation) below the group

abstraction layer. The message delivery follows the abcast
approach of Isis [3] (see Figure 1). A peer first sends a message

to its master that distributes it within the local cluster and

forwards it to the masters of the other clusters that in turn

disseminate it within their cluster. To ensure a totally ordered

delivery a virtual logical time is applied [19], which – to put

it in simple terms – models an event counter for each peer.

This is used to bring the messages exchanged in the group in

a total order. If a slave receives the message, it acknowledges

the reception to its respective master by sending the logical

local reception time (LT). All masters collect the LTs of their

clusters and send the maximum LT to the master of the sending

slave, which in turn calculates the logical global reception
time (GT) of the message. This GT is eventually broadcasted

back into the group and used as a reference value to order the

messages.

272272272



(a) Intra-cluster Level (b) Inter-cluster Level

Fig. 2. Cluster levels

IV. A DISTRIBUTED TOPOLOGY MAINTENANCE

APPROACH

In order to guarantee a stable and optimized cluster topol-

ogy, a maintenance service is required that is able to handle

peer failures and cluster instabilities as well as optimize the

topology [17]. A failure handling should immediately be

triggered, if either a single peer fails or whole parts of the

network are no longer reachable. In general, these situations

are detected by network failure detectors and usually induce a

partial or complete reset of the overlay. The network failure de-

tector is a distributed monitoring service running on each peer

within the group. The goal of the optimization maintenance is

to continuously improve the structure of the overlay, e.g., by

using view changes for an adaptive optimization. Clustered

topologies can be divided into an intra-cluster and an inter-

cluster level [10]. The intra-cluster level (see Figure 2a) only

considers the structure of a single cluster, i.e., the contained

peers, their roles, and the internal topology of the cluster. The

inter-cluster level (see Figure 2b), in contrast, characterizes a

cluster by its properties, e.g., the number of peers, the available

resources per peer, and other specific relations among the

clusters.

The optimization of a clustered overlay is generally a NP-

hard problem [20]. Combinatorial approaches are based on

the bell-number [21] and often result in a variety of possible

solutions. Therefore, it is preferable to optimize the topology

regarding dedicated parameters instead of pursuing an optimal

topology. A decisive impact on the overlay performance has

the number of clusters [14]. If the number of clusters is too

small, each master has to maintain a large number of slave

connections. Too many clusters, in contrast, impair the inter-

cluster communication in fully-meshed cluster overlays and

increase the number of connections that have to be monitored

by the masters failure detector. The number of connections that

a master has to handle affects its resources and the overall

performance of the overlay. In addition, overlays consisting

only of one or two clusters tend to behave like a star topology,

i.e., the master becomes a single point of failure.

A. Optimizing the Number of Clusters

In order to optimize the number of clusters we first analyze

the connections of the cluster overlay. The optimal number of

clusters C depends on the optimal number of connections in

the cluster overlay E for a group of N peers.

The total number of connections in the cluster overlay

E is determined by Formula 1. The referenced number of

connections among the masters Em is given by Formula 2,

where M depicts the number of masters. Formula 3 defines

the number of connections to the slaves.

E = Em + Es (1)

Em = 1/2 (M2 −M) (2)

Es = N −M (3)

To determine the optimal number of clusters C we have

to represent E as a function of C, called e(C), as shown in

Formula 4.

C = M => e(C) = 1/2 (C2 − C) +N − C (4)

The determination of the first and second derivation of

e(C) results in the optimal number of clusters. The result is

independent of N with 1.5 clusters. Figure 3 shows the graph

of the function e(C) for groups of 4, 9, 16, and 25 peers.

Fig. 3. Number of edges per cluster

As argued above, an overlay with one or two clusters acts

like a star topology. In this case, it is not possible to optimize

the topology solely based on the number of clusters. Since

a master has the largest number of connections to manage,

we have to find a trade-off between the desired number of

clusters C and the number of edges to be managed by a master.

273273273



Fig. 4. Master edges for different numbers of clusters in a group of 16 peers.

The number of edges of the master belonging to cluster x is

referred to as Emx. It depends on the number of edges to the

other masters and the number of slaves in cluster x – referred

as Scx. Formula 5 shows this relationship.

Emx = α · (M − 1) + β · Scx (5)

Figure 4 depicts the curve of the function Emx for a

group of 16 peers. The left branch of the parabola can be

approximated by g(C) = N
C − 1, and the right one by

f(C) = C−1. In addition, g(C) describes the average number

of slaves per cluster and f(C) the number of edges to other

masters.

In Formula 5 the expression M−1 can be replaced by f(C)
and Scx by g(C). This leads to Formula 6.

ed(C) = α · (C − 1) + β · (N
C
− 1) (6)

If we assume that the less connections a master has to

manage, the better it is for energy consumption, then the

minimum of Formula 6 results in Formula 7. For actual use,

the value of C has to be rounded appropriately.

C = ±
√
β/α ·N (7)

C =
√
N, for C ∈ N (8)

Since there is no difference between an edge connecting

two masters and an edge between a master and a slave, we

apply α = β. The resulting optimal number of clusters C is

given in Formula 8.

Letting the maximum number of peers in a group being

limited to 100 peers, then the maximum number of clusters

would be Cmax =
√
(100) = 10. Figure 5 shows the trend of

the number of clusters in a group up to 100 peers. It indicates

the optimal number of clusters for a given number of peers.

Fig. 5. Example curse of the cluster count for a group of 100.

B. Optimizing the Cluster Heterogeneity

After determining the optimal number of clusters in the

overlay, we have to reduce the cluster heterogeneity regarding

the cluster properties, e.g., the number of slaves or their

resource values. The heterogeneity indicates the deviation of

the current situation from a defined reference value [9].

The resource value represents the state of a peer regarding a

selected set of resources. There are various resources that can

be considered for this. The selected subset is mapped onto a

normalized value. A simple example is the normalized battery

charge of a mobile device. Analogously, it is possible to use the

available bandwidth, signal strength, latency to a well-known

Internet host, and the devices class (e.g., smart phone, laptop,

sensor node) for the calculation. The reference value is usually

defined as an average or optimal resource value. It is calculated

by the system or defined by the application developer. Due to

the fluctuating nature of mobile communication, the property

values, such as latency, data rate, and signal strength, have to

be smoothed over the time before they are used in the resource

value calculation. The mapping of various resource properties

onto a single value is discussed in [15].

According to the observed deviation, a cluster is marked

either as overloaded, loaded, or unloaded. Based on the

deviation, the distribution of the selected property for the

overlay can be calculated. The result can then be used, for

instance, to select the optimal cluster for a joining peer.

The outlined approach is generic and can be used to define

a three step iterative optimization algorithm, as shown in

Algorithm 1. The algorithm first determines the number of

optimization rounds. Then the topology is optimized in for-

ward direction by moving peers from overloaded to unloaded

clusters – a step which is called forward balancing. If the

used optimization property is specific to each peer, a third

step – the backward balancing – is required to relieve possible

overpopulated clusters.

We explain the principle with an example. To balance the

274274274



Algorithm 1 balance()

1: max rounds⇐ N − C
2: balancingForward(max rounds)
3: if property is peer specific then
4: balancingBackward(max rounds)
5: end if

peer load of each cluster based on the cluster size property, the

reference load has to be determined using the load caused by

the number of peers per cluster. In addition, we have to define

an allowed deviation for this value. To balance the peer load,

the load of each cluster has to be determined. The forward

balancing is executed as shown in Algorithm 2.

Algorithm 2 forwardBalancing()

1: for i = 0 to max rounds do
2: if exists overloaded cluster then
3: srcC ⇐ getMostOverLoadedCluster()
4: dstC ⇐ getLeastLoadedCluster()
5: if isBalancingPossible(srcC, dstC) is true then
6: moving peer ⇐ srcC.getPeer()
7: memRegister.movePeer(moving peer, dstC)
8: calculateClusterLoad()
9: determineReferenceV alue()

10: end if
11: end if
12: end for

In each round, the most loaded peer from the most over-

loaded cluster (line 3) is transferred to the least loaded one

(line 4). In our example, we randomly select a peer in the

source cluster (line 6). If the used optimization property is

specific to the peer, we have to choose the most loaded peer

w.r.t. the selected property. For example, the current stage of

the battery charge is a peer-specific property. In the next step

the least loaded peer from the least loaded cluster is moved

to the most loaded one (line 7). Afterwards, the load and the

reference values of the clusters are recalculated (line 8 and line

9). This procedure is repeated for at most N-1 peers. Now the

topology is balanced regarding the number of peers per cluster.

If the procedure stops the peer load of every cluster is as close

as possible to the given reference value.

C. Optimizing the Master Selection

The previous steps optimize the overlay regarding to the

number of clusters and the distribution of the peers over the

clusters. The latter are populated in a way that the degree

of heterogeneity is minimized regarding the selected peer or

cluster properties. Now we have to select in each cluster the

most suitable peer as master. In general, a master should

possess the necessary resources to cope with the cost of being

master and to ensure stable network connectivity. The selection

of a master represents, therefore, a protocol strategy, which can

again be applied in a centralized or a distributed manner. We

consider only the distributed strategy here. There are several

ways to do this.

Round-robin methods sequentially select a new master per

cluster in each round independently of the peer properties.

This strategy is often used in wireless sensor networks, e.g., in

[16]. Since mobile collaborative applications are view-aware,

each peer can locally apply the strategy without any further

communication overhead.

Resource-aware methods select the peer that possesses the

”best” resources. They ignore poorly equipped peers that are

not suitable for being master. For this, the resource value of

each peer must be part of the global knowledge of the group.

In addition, also the amount of time a peer has to be master

could be taken into account. A fair strategy distributes the

burden of being the master equally within the cluster. Last but

not least, the connection properties of each peer can be used

as a selection criterion.

Auction-based methods [22] use bids offered by the peers.

They are difficult to implement because each peer has to send

its bid to the group which causes an extra communication

overhead. In addition, the fairness of each bid has to be

guaranteed. This is a well-known P2P problem. Since a

distributed implementation that meets view-aware restrictions

is hard to find, auction-based strategies have to mitigate these

drawbacks.

V. INTEGRATION INTO MOVERSIGHT

We have integrated our topology maintenance approach into

the Moversight protocol [7]. The implementation consists of

two parts. The first part enhances the existing membership

service of the protocol by a new peer-placing strategy. The

second one is a dedicated service that manages the periodic

master changes during periods where no peers join or leave.

A. Dynamic Peer Placing

The dynamic clustering strategy (DCS) applies the cluster

balancing algorithm described in Section IV. The used opti-

mization property is encapsulated in a metric which manages

the fair distribution of peers over the clusters. Each time a peer

enters or leaves the group, the balancing algorithm is triggered

locally by each peer.

In each round, the metric determines the current cluster load

and rates the cluster. If balancing is necessary, the most loaded

peer is moved. We apply three metrics to handle the cluster

heterogeneity as argued in Section IV-B: (1) a cluster-size
metric, (2) a resource-value metric, and (3) a mixed metric.

The average number of peers per cluster determines the

cluster-size metric, as shown in Formula 9. The goal of this

metric is the balancing of the number of peers per cluster.

The most loaded cluster is the one with the largest number

of peers over the average. For each cluster, the metric prefers

to select the slave with the smallest ID as the new master,

since it represents the most stable member of the cluster. For

example, if a cluster consists of peers with IDs 1, 3 and 5, peer

1 is chosen. The resource-value metric aims at balancing the

average resource value among all clusters. For this purpose, it

275275275



uses the average of the resource value of each peer (RVi) as

shown in Formula 10.

ClusterSizeavg = N/C (9)

ResourceV alueavg = 1/N ·
N∑

i=1

R · Vi (10)

The mixed metric combines the two metrics. It moves peers

between clusters based on the cluster-size metrics and selects

the master based on the resource value. The concrete relation

between the cluster and the node load depends on the chosen

metric. If the cluster size metric is applied, any node may

be selected for move from an overloaded cluster. In case of

the resource value metric, the most loaded peer (regarding

the currently available peer resources) is selected for move.

Moving a peer may overload the destination cluster. This is

fixed during backward balancing.

B. Role Maintenance Service (RMS)

The DCS strategy balances the overlay whenever a peer

joins or leaves the group. If the group composition does not

change, the role maintenance service (RMS) is responsible to

replace ”bad” masters over the time. RMS is a decentralized

service that is applied and synchronized locally. It works

without any additional communication overhead and ensures

the continuous communication in the group. Each time a

peer receives a group message, the service checks whether an

optimization is required. If so, the collaboration is interrupted

and messages that do not belong to the current view are

stored in a next-view buffer. When the last message currently

in transmission is delivered, new masters are selected for

each cluster using the DCS strategy. To keep the overlay

stable no peers are moved across the clusters. As soon as

the optimization is finished, the collaboration is re-enabled

and the messages from the next-view buffer are processed. To

determine the necessity of an overlay optimization, we have

defined different role change metrics based on the following

three criteria: (1) the number of processed messages, (2) the

elapsed logical time since the last optimization, and (again)

(3) the resource value. The processed message criterion further

differentiates (a) the number of messages sent by the master,

(b) the number of messages sent by peers of the local cluster,

and (c) the total number of messages sent to the group. The

logical time criterion counts the logical time steps that are

generated by the message transfer of the group. As the logical

time correlates with the number of processed messages, the

role-change probability depends on the group size or the

number of messages which have been disseminated within

the group, respectively. The resource criterion monitors the

minimum resource value of a master and intervenes if the

resource value drops significantly.

VI. SYNCHRONIZATION ISSUES

Messages exchanged in the collaborating group are associ-

ated to a certain view. A maintenance operation may reorder

the role and cluster assignment of the peers. Due to network

latency, the views of the peers may differ for a small period

of time. Thus, it is possible that peers receive messages from

older or newer views, respectively. This can destroy the virtual

synchrony of the group.

We illustrate this with a group of at least two peers p1 and

p2 of which p1 is the master. A message sent by p1 may

trigger a role change. If the global reception time (GT) of this

message is delayed for p2, p1 may switch to a new view and

a new role, whereas p2 remains in the old view. Immediate

additional messages sent by p1 will never be accepted by p2
until the peer updates its view. Under poor network conditions,

this destroys the group synchrony.

There are two possible solutions to this problem: (1) in-

creasing the timeout values and the number of allowed retrans-

missions for each transfer, and (2) buffering messages from

future views in the meantime. The first approach increases

the communication overhead and resource consumption. It

also implies the risk of false failure detection assumptions.

Therefore, we prefer the second approach. Messages arriving

from future views are stored in a next-view buffer. When a peer

switches to the new view, this buffer is checked for messages.

If there are any, they are handled like normal message transfer.

Another synchronization issue occurs when p2 sends a

message to p1 in an old view, while p1 has changed to a new

one due to a role change. The message is dropped because it

belongs to the past view. This delays the message processing

and causes several retransmissions, because p2 expects an

acknowledgement for its message before it is able to update the

view. In combination with network latency effects and other

group operations, this also destroys the group synchronization.

To solve this problem, sending of messages has to be delayed

by the local peer when it is currently processing a message

that may change the view, until this processing has finished.

However, on application layer, there is no blocking issued by

the optimization. The optimization results only in a delayed

message dissemination.

VII. PERFORMANCE EVALUATION

In order to prove the applicability of our approach we

tested the Moversight protocol using the OMNeT++ simulator

[23]. Our test principle was inspired by [10]. We test the

accuracy of our solution and the maximum reachable run-

time of the entire group. The group communication protocol is

responsible for the accuracy of the information disseminated in

the group. If the information accuracy is not given, a dissem-

ination of a message after applying a new topology will fail.

Since each peer determines the optimized topology locally,

divergent results will destroy the groups virtual synchrony.

This results in an impossibility to successfully disseminate

messages within an inaccurate topology. Based on this fact,

the test proves the accuracy of our solution. Our performance

evaluation consisted of 250 test cases. Each test case created

a defined group and was executed on a simulated wireless

network. During the test, we compared our approach to the

one of LEACH, which is – from our perspective – the most

276276276



relevant clustering protocol usable in the area of pure P2P-

networks with closed groups that offer a global knowledge.

The network consisted of up to 20 access points which were

interconnected by a wired backbone network consisting of

20 connected routers. The backbone network added a delay

between 10ms and 200ms to each transmission. The data rate

was uniformly distributed between 100Kbps and 100Mbps. In

addition, a random packet loss probability was defined, also

uniformly distributed between 1% and 5%. Each access point

managed at most five wireless hosts. It was connected to the

backbone network via a 100Mbps Ethernet connection.

Each simulated host was connected wirelessly to the net-

work and used the Moversight protocol on top of an UDP/IP

stack. The network was configured using DHCP. In addition,

all hosts used a small battery with a nominal capacity of 10kJ.

The wireless part of the network was specified by means of the

OMNeT++ INET framework and simulated an IEEE 802.11g

network with 54Mbps at 2.4Ghz. The consumption of the

wireless interface is characterized by the following settings:

Off = 0.0W

Sleep = 0.0495W

Idle = 0.6696W

Reception = 1.0791W

Transmission = 1.7787W

Each test case distinguished two phases. In the first phase the

group was set up with peers that joined and left the group

until the desired group size was reached. This simulated a

high group dynamic and tested the optimization algorithm

for join and leave operations. When the desired group size

was reached, the second phase started simulating a stable

group without any changes in its composition. If required, the

group could select a new master for certain clusters. To test

the operation of the role maintenance service (RMS) a peer

periodically sent messages to the group. This tested the service

execution. The test stopped when any of the group members

ran out of energy.

A test case represented a specific collaborating group

described by (1) the size of the group and (2) a specific

combination of maintenance strategies. (1) The size of the

group scaled from ten to one hundred peers, in steps of ten

peers. (2) A maintenance strategy X-Y-Z combined each one of

three peer placing strategies X, one of six DCS strategy metrics

Y, and one of the seven role change metrics Z. Peer placing

strategies were: a sequential (X = 0), a parallel (X = 1), and a

DCS strategy (X = 2). The DCS strategy metrics comprised the

cluster-size (Y = 0), the resource-value (Y = 1), and the mixed

peer placing metric (Y = 2). The sequential strategy populated

the clusters one by one, the parallel strategy similarly selected

clusters in parallel. The applied role change metrics were: no

role change at all (Z = 0), total number of messages sent in the

group (Z = 1), number of messages sent by a master (Z = 2),

number of messages sent by the cluster (Z = 3), the elapsed

virtual time (Z = 4), the resource value (Z = 5), and resource

value using larger thresholds (Z = 6). A notation of the form

Z0 depicts, for instance, the role change metric with Z = 0,

TABLE I
SIMULATION RESULTS

Run 10 20 30 40 50 60 70 80 90 100

0-0-0 90.1 92.3 93.7 92.3 89.9 93.8 95.2 92.9 94.6 95.7

1-0-0 89.3 92.0 91.2 90.4 89.1 94.9 96.7 93.8 95.5 96.6

2-0-0 89.6 92.0 93.7 91.8 89.6 93.2 94.9 92.6 94.3 95.1
2-0-1 89.9 92.3 93.7 91.8 89.6 93.2 94.9 92.6 94.3 95.1
2-0-2 96.0 92.3 93.7 91.8 89.6 93.2 94.9 92.6 94.3 95.1
2-0-3 89.9 92.3 93.7 91.8 89.6 93.2 94.9 92.6 94.3 95.1
2-0-4 89.9 92.3 93.7 91.8 89.4 93.2 94.9 92.6 94.3 95.1
2-0-5 92.5 95.3 98.5 95.7 94.1 97.9 97.0 90.9 89.5 90.6
2-0-6 92.5 95.3 98.5 96.6 94.9 98.5 96.4 90.9 89.5 90.6
2-1-0 89.6 91.2 95.7 92.1 92.7 98.2 99.7 97.3 98.8 100
2-1-1 89.9 91.2 95.7 92.1 92.7 98.2 99.7 97.3 98.8 100
2-1-2 89.9 91.2 95.7 92.1 92.7 98.2 99.7 97.3 98.8 100
2-1-3 89.9 91.2 95.7 92.1 92.7 98.2 99.7 97.3 98.8 100
2-1-4 90.1 92.5 91.8 92.1 92.7 97.9 99.7 97.3 98.8 100
2-1-5 100 94.2 91.8 90.6 89.1 99.1 100 90.3 98.5 92.4
2-1-6 100 94.2 94.6 92.1 91.6 98.8 100 92.9 99.7 97.5

2-2-0 89.6 92.0 98.0 98.8 93.5 95.2 99.1 90.3 91.9 93.6
2-2-1 95.7 92.5 98.0 94.0 93.5 94.6 99.1 90.3 91.9 93.6
2-2-2 96.5 92.5 98.0 98.8 93.5 95.2 99.1 90.3 91.9 93.6
2-2-3 95.7 92.5 98.0 94.0 93.5 94.6 99.1 90.3 91.9 93.6
2-2-4 93.3 95.8 95.7 92.6 93.5 97.9 99.1 90.3 98.2 93.6
2-2-5 99.2 96.9 97.1 96.8 92.1 100 94.6 90.6 100 92.1
2-2-6 99.2 100 99.4 100 92.1 100 94.6 100 91.6 91.8

L-D 92.0 96.1 100 98.8 100 99.4 95.8 90.6 89.8 89.7
L-S 91.5 94.2 96.0 95.4 93.8 96.4 95.5 90.9 90.7 93.9

notations like X0 or Y0 are to be understood accordingly.

In total, 23 different strategy combinations were applied for

each desired group size. In conjunction, we evaluated two

peer placing strategies of LEACH. The two were used in

combination with Z3 to select the masters and implemented

a round-robin based optimization, as discussed in [16]. Our

LEACH implementation L-S statically selected the number of

masters depending on the group size. For a group up to 20

members, we selected N/2 masters, N/2.5 masters for groups

of up to 60 members, and N/5 masters for larger groups. We

believe that this is a fair setup to compare our approach with

that of LEACH. L-D is a dynamic variant of LEACH that

selects its masters like DCS. The master role was changed

in round-robin manner within a cluster. In total, we applied

250 test cases. During the tests we measured the simulation

run-time. They varied from approximately 5500s up to 8000s.

Table I shows the run-time of each test case relative to the

longest run for each group size. The best results are marked

in bold font. The first column defines the test case with its

corresponding combination of strategies – X-Y-Z. The results

of the test run for each group size were cumulated depending

on the used parameter combination X-Y-Z. Figure 6 shows

the resulting maximum run-time and the average run-time of

each combination. The relative maximum run-time of each run

varied between 89.3% (1-0-0) and 100% (2-1-5), the relative

average run-time between 96.92% (2-0-1) and 104% (2-2-6).

The results of DCS were overall the most stable ones. In

other words, the maximum run-time of all test cases was close

to the average run-time of all test cases for this parameter

combination. The mixed DCS metrics performed better than

the resource-based DCS metrics. In particular, the results of the

277277277



combinations 2-1-5 and 2-1-6 were the most stable individual

combinations, followed by the combinations 2-0-0, 2-2-5, and

2-2-6. The most unstable strategies were the sequential (0-0-

0) and the parallel (1-0-0) peer placing strategies, if used in

combination with the role change metric Z0. The results of

the L-D and L-S algorithms were also quite unstable with a

difference of 5% and 8%, respectively.

Afterwards, we cumulated the results of the different runs

depending on the used peer placing strategy. Figure 7 shows

the cumulated results for each strategy, again for the maxi-

mum run-time and the average run-time of each peer placing

strategy. The abbreviation x-0-x refers to the parallel strategy,

x-1-x to the sequential one, x-2-x to DCS, and L-D and L-S

to the results of the LEACH variants. The average run-time of

the DCS strategy outperforms the sequential and the parallel

strategies on average by 2%. The average run-time of L-D and

L-S is more or less similar to the one of DCS. The maximum

run-time of the DCS strategy is 10% better than that of the

sequential strategy, 11% than the parallel one, 5% better than

L-D, and 10% better than L-S.

Figure 8 shows the cumulated results of the DCS strategy

compared to the ones of L-D and L-S. The average run-time

of the mixed DCS metrics was the best and the resource-based

was the second best. The average run-time of L-D is similar

to the mixed DCS metrics caused by the same cluster creation

scheme, and 3% better than the one of L-S.

Figure 9 shows the cumulated results of the RMS metrics.

The worst maximum run-time achieved the no-role-change

metrics (x-x-0) with 93%, followed by the elapsed-virtual-

time metrics (x-x-4) with 95, 48%. The best maximum run-

time reached the resource-value metrics with larger thresholds

(Z6, combination x-y-6) with 100%. The worst average run-

time was reached by the RMS metrics total-number-of-sent-

messages Z1 with 76%. L-D had an average run-time of 103%
and L-S of 102%. The metrics Z6 attained the best average

performance with 105%.

To sum it up, the performance of the combinations 2-1-5 and

2-1-6 outperformed L-D and L-S by 3-5% on average and 10%

in the best case. In addition, we have to take into account that

the performance of LEACH depends on the predefined number

of clusters. If the number of masters is not suitable for the

application use case, its performance may decrease. For this

reason, the LEACH improvement L-D is preferable compared

to its original implementation, L-S. The performance of the

combinations 2-2-5 and 2-2-6 are close to the one of 2-1-

5, but it showed better results on average. Thus, we propose

DCS in combination with the mixed-peer-placing metrics and

a resource-value-based role change as a general solution for

clustering and peer placing tasks.

VIII. CONCLUSION

In this paper, we have proposed a distributed maintenance

approach for cluster-based group topologies to support mobile

collaborative applications. The approach is generic and can

also be applied to other cluster-based topologies, e.g., in

mobile ad hoc networks and in sensor networks. The service is

activated periodically and consists of two parts: the dynamic

clustering strategy (DCS) and the role maintenance service

(RMS). DCS is activated when a peer joins or leaves the group

in order to dynamically improve the topology. It outperforms

simple placing strategies, such as the sequential or parallel peer

placing methods. DCS can be used with three metrics, with the

resource-based one performing best. RMS is applied in periods

without any changes of the group composition to replace

overloaded masters. It is based on the DCS strategy and defines

six metrics to determine the appropriate time for a role change.

The performance evaluation of the Moversight implementation

showed that the combination of the two strategies provides a

stable basis for applications. It increases the run-time in the

best case by 10% compared to LEACH, and 3−5% on average.

The resulting loads are fairly distributed within the group with-

out any additional communication. DCS itself does not issue

any additional traffic, instead the global knowledge is used,

already accessible locally by the peer. Optimization decisions

are derived by each peer locally from the global knowledge.

It ensures small blocking times and a good responsiveness

to messages. In detail, from the application perspective, there

is no blocking period during the maintenance operation. This

enables mobile collaborative applications to progress largely

continuously without remarkable interruptions. The proposed

metrics can be enhanced by further parameters in the future,

e.g., the network bandwidth, the latency of each peer, its

CPU load, and its device class. To ensure the quality of the

optimization, it is required to periodically refresh the relevant

parameters. Furthermore, it could be beneficial to announce

this to the group by a lightweight update service instead of

using piggybacking. Currently the metrics thresholds are de-

fined hard. An adaptive computation would be advantageous.

In addition, new RMS metrics could be created based on a

combination of the proposed basic types.

REFERENCES

[1] J. Gäbler, R. Klauck, M. Pink, and H. König, “uBeeMe; A platform
to enable Mobile Collaborative Applications,” in Proc. of the 9th Int.
Conf. on Collaborative Computing (CollaborateCom). Austin, TX,
USA: IEEE, 2013, pp. 188–196.

[2] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communica-
tion specifications: A comprehensive study,” ACM Computing Surveys,
vol. 33, no. 4, pp. 427–469, 2001.

[3] K. P. Birman and R. V. Renesse, Reliable Distributed Computing with
the Isis Toolkit. IEEE Computer Society, 1994.

[4] R. Schollmeier, “A definition of peer-to-peer networking for the classi-
fication of peer-to-peer architectures and applications,” in Proc. of the
1th IEEE Int. Conf. on Peer-to-Peer Computing, 2001. IEEE, 2001,
pp. 101–102.

[5] D. Dolev and D. Malki, “The transis approach to high availability cluster
communication,” Communications of the ACM, vol. 39, pp. 64–70, 1996.

[6] O. Waldhorst, C. Blankenhorn, D. Haage, R. Holz, , G. Koch, B. Kolde-
hofe, F. Lampi, C. Mayer, and S. Mies, “Spontaneous Virtual Networks:
On the Road towards the Internet’s Next Generation,” it - Information
Technology, vol. 50, no. 6, pp. 367–375, Dec. 2008.

[7] J. Gäbler and H. König, “Moversight: An approach to support mobility
in collaborative applications,” in Proceedings of the 10th Annual Confer-
ence on Wireless On-Demand Network Systems and Services (WONS),
2013. IEEE Communication Society, March 2013.

[8] ——, “Moversight: a group communication protocol for mobile scenar-
ios,” Telecommunication Systems, vol. 61, no. 4, pp. 1–22, May 2015.

278278278



Fig. 6. Maximum and average run-time per test case.

Fig. 7. Cumulated placing strategies results compared to L-D and L-S.

Fig. 8. Cumulated placing strategies metrics compared to L-D and L-S.

Fig. 9. Cumulated results of the RMS metrics compared to L-D and L-S.

[9] A. Olteanu, F. Pop, C. Dobre, and V. Cristea, “An adaptive scheduling
approach in distributed systems,” in Proc. of the IEEE 6th Int. Conf. on
Intelligent Computer Communication and Processing. IEEE, 2010, pp.
435–442.

[10] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for
wireless sensor networks,” Computer Communications, vol. 30, no. 14-
15, pp. 2826–2841, Oct 2007.

[11] V. Gramoli, A.-M. Kermarrec, E. L. Merrer, and D. Neveux, “Sonde, a
self-organizing object deployment algorithm in large-scale dynamic sys-
tems,” in Proc. of the 7th European Dependable Computing Conference
(EDCC 2008). IEEE, 2008, pp. 157–166.

[12] B. Li and K. H. Wang, “Nonstop: Continuous multimedia streaming in
wireless ad hoc networks with node mobility,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 10, pp. 1627–1641, 2003.

[13] C. Fu, R. H. Glitho, and F. Khendek, “Signaling for multimedia
conferencing in stand-alone mobile ad hoc networks,” IEEE Trans. on
Mobile Computing, vol. 8, no. 7, pp. 991–1005, 2009.

[14] B. Elbhiri, S. Fkihi, R. Saadane, N. Lasaad, A. Jorio, and D. Abouta-
jdine, “A new spectral classification for robust clustering in wireless
sensor networks,” in Proc. of the 6th Joint IFIP Wireless and Mobile
Networking Conference (WMNC 2013), April 2013, pp. 1–10.

[15] S. Basagni, “Distributed clustering for ad hoc networks,” in Proc. of the
4th International Symposium on Parallel Architectures, Algorithms, and
Networks, 1999. (I-SPAN ’99), Australia, June 1999, pp. 310–315.

[16] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Trans. on Wireless Communications, vol. 1, no. 4, pp.
660–670, 2002.

[17] M. Frincu, N. M. Villegas, D. Petcu, H. A. Müller, and R. Rouvoy,
“Self-healing distributed scheduling platform,” in Proc. of the 11th
IEEE/ACM Int. Symposium on Cluster, Cloud and Grid Computing
(CCGrid), Newport Beach, USA, 2011, pp. 225–234.

[18] K. P. Birman, “Building secure and reliable network applications,” in
Worldwide Computing and Its Applications, ser. LNCS. Springer, 1997,
vol. 1274, pp. 15–28.

[19] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, pp. 558–565, 1978.

[20] P. K. Agarwal and C. M. Procopiuc, “Exact and approximation algo-
rithms for clustering,” Algorithmica, vol. 33, no. 2, pp. 201–226, 2002.

[21] M. Aigner, “A characterization of the bell numbers,” Discrete Mathe-
matics, vol. 205, no. 1-3, pp. 207–210, 1999.

[22] N. Mohammed, H. Otrok, L. Wang, M. Debbabi, and P. Bhattacharya,
“Mechanism design-based secure leader election model for intrusion
detection in manet,” IEEE Trans. Dependable and Secure Computing,
vol. 8, no. 1, pp. 89–103, 2011.

[23] A. V. Rudolf and Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in Proc. of the 1st Int. Conf. on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops,
Belgium, 2008, pp. 1–10.

279279279


