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Abstract—Seamless computing and service sharing in commu-
nity networks (CNs) have gained momentum due to the emerg-
ing technology of community network micro-clouds (CNMCs).
However, deploying and running services in CNMCs confront
enormous challenges to cope with, such as the dynamic nature
of micro-clouds, limited capacity of nodes and links, asymmetric
quality of wireless links, geographic singularity based deployment
model rather than network QoS based, etc. CNMCs have been
increasingly used by network-intensive services which exchange
significant amounts of data between nodes, therefore their per-
formance heavily relies on the available bandwidth resource in a
network. This paper proposes a novel bandwidth-aware service
placement algorithm which aims to replace the current random
placement adopted by Guifi.net. Our experimental results show
that the proposed BASP algorithm consistently outperforms the
random placement in Guifi.net by 35% regarding its bandwidth
gain. More promisingly, as the number of services increases, the
gain tends to increase accordingly.

Index Terms—service placement; community network;

I . I N TRODUCT I ON

Community networks (CNs) or Do-It-Yourself networks are
built in a bottom-up and fully decentralized fashion, and are
usually maintained by their own users. Early in the 2000s, CNs
already gained momentum in response to the growing demands
for network connectivity in rural and urban communities. One
successful effort of such a network is Guifi.net, located in the
Catalonia region of Spain. Guifi.net is defined as an open, free
and neutral CN built by its members: citizens and organizations
pool their resources and coordinate efforts to build and operate
a local network infrastructure. Guifi.net was launched in 2004
and till today it has grown into a network of more than 30,000
operational nodes, which makes it the largest CN worldwide1.
Figure 1 shows the evolution of total inbound and outbound
Guifi.net traffic to the Internet for the last two years. Pink colour
represents incoming traffic from Internet and yellow represents
outgoing traffic. For two years, the traffic has tripled and peaks
are as a result of a new users and bandwidth-hungry services
in the network.

1http://guifi.net/

Figure 1. Guifi.net inbound and outbound traffic

Similar to other CNs, Guifi.net aims to create a highly
localized digital ecosystem. However, the predominant usage
we have observed, is to access cloud-based Internet services
external to a CN. For instance, more than 50% of user-oriented
services consumed in Guifi.net go through gateway proxies
which provide Internet connectivity hence impose a heavy
burden on the limit backbone links [1]. For a very long time in
the past, user-oriented services had not been developed locally
because of the lack of streamlined mechanisms to exploit all the
available resources within a CN as well as other technological
barriers [2]. With the adoption of community network micro-
clouds2, i.e. the platform that enables cloud-based services in
CNs, local user-oriented services gained a huge momentum.
CN users started creating their own homegrown services and
using alternative open source software for many of today’s
Internet cloud services, e.g., data storage services, interactive
applications such as Voice-over-IP (VoIP), video streaming,
P2P-TV, and etc [3]. In fact, a significant number of services
were already locally deployed and run within Guifi.net includ-
ing GuifiTV, Graph servers, mail and game servers etc. All
these services are provided by individuals, social groups, small
non-profit or commercial service providers.

Because Guifi.net nodes are geographically distributed, given
this set of local services, we need to decide where these
services should be placed in a network. Obviously, without

2http://cloudy.community/
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taking into account the underlying network resources, a service
may suffer from poor performance, e.g, by sending large
amounts of data across slow wireless links while faster and
more reliable links remain underutilized. Therefore, the key
challenge in CN micro-clouds is to determine the location
of deployment [4], i.e. servers at certain geographic points
in the network, with the different services multiplexed on a
shared infrastructure. Although conceptually straightforward,
it is challenging to calculate an optimal decision due to the
dynamic nature of CNs and usage patterns. In this work we
aim to address the following question: "Given a community
network cloud infrastructure, what is an effective and low-
complexity service placement solution that maximises end-to-
end performance (e.g., bandwidth)?" Our preliminary results
show that the proposed algorithm consistently outperforms
the current random placement adopted in Guifi.net by 35%
regarding its bandwidth gain. More promisingly, as the number
of services increases, the gain tends to increase accordingly.

The rest of the paper is organized as follows. Section II
defines our system model and presents the bandwidth-aware
placement algorithm. In Section III we discuss the evaluation
results. Section IV describes related work and section V
concludes and discusses future research directions.

I I . BANDW IDTH -AWARE PLACEMENT

The deployment and sharing of services in CNs is made
available through community network micro-clouds (CNMCs).
The idea of CNMC is to place the cloud closer to community
end-users [5], so users can have fast and reliable access to the
local services. To reach its full potential, a CNMC needs to be
carefully deployed in order to utilize the available bandwidth
resources.

Currently, the service deployment (much as network de-
ployment) at Guifi.net is not centrally planned but initiated
individually by CN members. Public, user and community-
oriented services are placed randomly on supernodes, and
user’s premises respectively. Hence there are imbalances on
the service placement, fluctuations and inefficiencies in service
performance.

Currently used organic (random) placement scheme in
Guifi.net is not sufficient to capture the dynamics of the
network and therefore it fails to deliver the satisfying QoS.
The strong assumption under random service placement, i.e.,
uniform distribution of resources, does not hold in such
environments. Furthermore, in Guifi.net the wireless links are
with asymmetric quality for services (30% of the links have a
deviation higher than 30%) and we observed a highly skewed
traffic pattern and bandwidth distribution [6]. Based on this,
our goal is to design a bandwidth-aware service placement
algorithm that will improve the service quality and network
performance by optimizing the usage of scarce resources in
CNs such as bandwidth.

A. Formulation and Notations
We call the CN the underlay to distinguish it from the

overlay network which is built by the services. The underlay
network is supposed to be connected and we assume each node
knows whether other nodes can be reached (i.e., next hop is

known). We can model the underlay graph as: G← (OR,L)
where OR is the set of outdoor routers present in the CNs and
L is the set of wireless links that connects them.

Let fi j be the bandwidth of the path to go from node i to
node j. We want a partition of k clusters: S← S1,S2,S3, ...,Sk
of the set of nodes in the mesh network. The cluster head i
of cluster Si is the location of the node where the service will
be deployed.The partition maximizing the bandwidth from the
cluster head to the other nodes in the cluster is given by:

argmaxS

k

∑
i=1

∑
j∈Si

fi j (1)

B. Proposed Algorithm: BASP
We designed a bandwidth-aware algorithm that allocates

services taking into account the bandwidth of the network. We
monitored a production CN over five months such as QMP
(i.e., subset of Guifi network in the city of Barcelona). We took
a network snapshot (capture) from QMP network regarding
the bandwidth of the links3. Our bandwidth-aware service
placement algorithm BASP (see Algorithm 1) runs in three
phases.

(i) Initially, we use the naive k-means partitioning algorithm
in order to group nodes based on their geo-location. The idea
is to get back clusters of locations that are close to each
other. The k-means algorithm forms clusters of nodes based
on the Euclidean distances between them, where the distance
metrics in our case are the geographical coordinates of the
nodes. In traditional k-means algorithm, first, k out of n nodes
are randomly selected as the cluster heads (centroids). Each
of the remaining nodes decides its cluster head nearest to it
according to the Euclidean distance. After each of the nodes
in the network is assigned to one of k clusters, the centroid
of each cluster is re-calculated. Grouping nodes based on geo-
location is in line with how Guifi.net is organized. The nodes
in Guifi.net are organized into a tree hierarchy of zones [7]. A
zone can represent nodes from a neighborhood or a city. We
use k-means with geo-coordinates as an initial heuristic for
our algorithm.

(ii) The second phase of the algorithm is based on the
concept of finding the cluster heads maximizing the bandwidth
between them and their member nodes in the clusters Sk
formed in the first phase. The bandwidth between two nodes
is estimated as the bandwidth of the link having the minimum
bandwidth in the shortest path. The cluster heads computed are
the candidate nodes for the service placement. This is plotted
as Naive K-Means in the Figure 2.

(iii) The third and last phase of the algorithm includes
reassigning the nodes to the selected cluster heads having the
maximum bandwidth, since the geo-location of nodes in the
clusters formed in the phase one is not always correlated with
their bandwidth. This way the clusters are formed based on
nodes bandwidth. This is plotted as BASP in the Figure 2.

Regarding computational complexity, the naive brute force
method can be estimated by calculating the Stirling number
of the second kind [8] which counts the number of ways to
partition a set of n elements into k nonempty subsets, i.e.,

3http://tomir.ac.upc.edu/qmpsu/index.php?cap=56d07684
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Algorithm 1 Bandwidth-aware Service Placement (BASP)

Require: G(Vn,En) � Network graph
S← S1,S2,S3, ...,Sk � k partition of clusters
bwi � bandwidth of node i

1: procedure PER FORMKMEANS(G,k)
2: return S
3: end procedure
4: procedure F I NDCLUS T ERHEADS(S)
5: clusterHeads← list()
6: for all k ∈ S do
7: for all i ∈ Sk do
8: bwi← 0
9: for all j ∈ setdi f f (S, i) do

10: bwi← bw+ estimate.route.bandw(G, i, j)
11: end for
12: clusterHeads←maxbwi
13: end for
14: end for
15: return clusterHeads
16: end procedure
17: procedure RECOMPUTECLUS T ER S(clusterHeads,G)
18: S′ ← list()
19: for all i ∈ clusterHeads do
20: clusteri← list()
21: for all j ∈ setdi f f (G, i) do
22: bw j← estimate.route.bandw(G, j, i)
23: if bw j is best from other nodes i then
24: clusteri← j
25: end if
26: S′ ← clusteri
27: end for
28: end for
29: return S′
30: end procedure

1
k! ∑k

j=0(−1) j−k
(n

k

)
jn ⇒ O(nkkn). However, for BASP, finding

the optimal solution to the k-means clustering problem if k and
d (the dimension) are fixed (e.g., in our case n= 54, and d = 2),
the problem can be exactly solved in time O(ndk+1 logn),
where n is the number of entities to be clustered. The
complexity for computing the cluster heads in phase two is
O(n2), and O(n) for the reassigning the clusters in phase three.
Therefore, the overall complexity of BASP is O(n2k+1 logn),
which is significantly smaller than the brute force method.

I I I . A LGOR I THM I C BEHAV IOUR & PER FORMANCE

Solving the problem stated in Equation 1 in brute force for
any number of N and k is NP-hard. For this reason we came
up with our heuristic. Initially we used k-means algorithm for
a first selection of the clusters. Then, we limit the choice of the
cluster heads to be inside the sets of clusters obtained using
k-means. Inside these clusters we computed the cluster heads
having the maximum bandwidth to the other nodes. This is
our baseline and is plotted in the graphs as Naive K-Means
algorithm. Although we have the results, we do not consider
the pure random placement actually used in Guifi.net since
it is a very naive and not realistic approach for comparison

Figure 2. Average bandwidth to the cluster heads

(i.e., the results are much worse and we are not showing in
the graphs).

To emphasise the importance of phase two and three, in this
section we compare BASP to Naive K-Means. BASP groups
nodes according to their bandwidth. The nodes assigned to
a selected cluster heads in the phase two, are re-assigned in
phase three (e.g., BASP) and clusters are formed according to
their bandwidth and not geo-location.

Our experiment is comprised of 5 runs and the presented
results are averaged over all the runs. Each run consists of
15 repetitions. Figure 2 depicts the average bandwidth to
the cluster heads obtained with Naive K-Means algorithm
and our BASP algorithm. Figure reveals that for any number
of k, our BASP algorithm outperforms the Naive K-Means
algorithm. For k=2 the average bandwidth to the cluster head
is increased from 18.3 Mbps (obtained with Naive K-Means)
to 27.7 Mbps (obtained with our BASP algorithm) i.e., 40%
increase. The biggest increase of 50% is when k=7. Based
on the observations from the Figure 2, the gap between two
algorithms is growing as k increases. K increases as network
grows.

Note that our heuristics enables us to select nodes (cluster
heads) that provide much higher bandwidth than any other
random or naive approach. But, if we were about to look
for the optimum bandwidth within the clusters (i.e., optimum
average bandwidth for the cluster), then this problem would
end up to be an NP-hard. Finding the solution is NP-hard,
because finding the optimum entails running our algorithm
for all the combinations of size k from a set of size n .
This is a combinatorial problem that becomes intractable
even for small sizes of k or n (e.g., k = 5, n = 54). For
instance, if we would like to find the optimum bandwidth
for a cluster of size k=3, then the algorithm would need to
run for every possible (non repeating) combination of size 3
from the set of size 54. That is for 54 nodes we would end
up having 25K combinations (choose(54,3)), or 25K possible
nodes to start with. We managed to do this and the optimum
average bandwidth obtained for k = 3 was 62.7 Mbps. The
optimum bandwidth obtained for k = 2 was 49.1 Mbps, and
for k = 1 was 16.9 Mbps. However, the computation time took
very long in a machine with Intel Atom N2600 CPU and 4
GB of RAM (65 hours for k = 3, 30 minutes for k = 2 etc.),
comparing to BASP where it took 23 seconds for k = 3 and 15
seconds for k = 2. To summarize, BASP is able to achieve good
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bandwidth performance with very low computation complexity.

IV. RELATED WORK

Data centers: Choreo [9] is a measurement-based method
for placing applications in the cloud infrastructures to minimize
an objective function such as application completion time.
Volley [10] is a system that performs automatic data placement
across geographically distributed datacenters of Microsoft.

Distributed Clouds: The work in [11] proposes efficient
algorithms for the placement of services in distributed cloud
environment. The algorithms need input on the status of the
network, computational resources and data resources which are
matched to application requirements. In [12] authors propose
a selection algorithm to allocate resources for service-oriented
applications and the work in [13] focuses on resource allocation
in distributed small datacenters. Some recent work focuses on
service migration in the distributed clouds. The authors in
[14] study the dynamic service migration problem in mobile
edge-clouds that host cloud-based services at the network edge.

Our context is a real CN such as Guifi.net and this differs
from traditional data centers (cluster) environments. Devices
and the network in data center are homogeneous whether in our
case are very heterogeneous. In terms of demand distribution, in
clusters there are load balancers whether in CNs the demand
comes directly from the edge so there are no central load
balancers. Topology is different, in clusters fat tree or leaf-spine
topology is used whether in CNs we have a mesh topology.
Underlying physical layer in clusters is wired whether in CNs
it is wireless. Clusters are more reliable and robust to failures
and CNs are not.

V. CONCLU S I ON

The prime motivation of the paper was to assess the current
service placement in effect in a representative Guifi.net CN,
analyse its inefficiencies, and propose and evaluate a feasible
and effective solution to improve it. CNs provide a perfect
scenario to deploy and use community services in contributory
manner. Previous work done in CNs has focused on better
ways to design the network to avoid hot spots and bottlenecks,
but did not related to schemes for network-aware placement
of service instances.

However, as services become more network-intensive, they
can become bottle-necked by the network, even in well-
provisioned clouds. In the case of CN clouds, network aware-
ness is even more critical due to the limited capacity of nodes
and links, and an unpredictable network performance. Without
a network aware system for placing services, locations with
poor network paths may be chosen while locations with faster,
more reliable paths remain unused, resulting ultimately in a
poor user experience.

We proposed a low-complexity service placement heuristic
called BASP to maximise the bandwidth allocation in de-
ploying a CNMC. We presented algorithmic details, analysed
its complexity, and carefully evaluated its performance with
realistic settings. Our experimental results show that BASP
consistently outperforms the currently adopted random (e.g.,
Naive K-Means) placement in Guifi.net by 35%. Moreover, as
the number of services k increases, the gain tends to increase
accordingly.

As a future work, we plan to look into service migration, i.e,
the controller needs to decide which CNMC should perform
the computation for a particular user, with the presence of user
mobility and other dynamic changes in the network. In this
problem, the user may switch between CNMCs thus another
question is whether we should migrate the service from one
CNMC to another cloud when the user location or network
condition changes.
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