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Abstract—In this paper, we investigate the influence of intra-
and inter-cell mobility of users on performance of 4G/5G cellular
networks, such as LTE and LTE-A. To this end, we develop
a multi-class PS queue model that captures mobility of users
between zones of a cell and between cells, through a simple
mobility model, that is decoupled from the cell model itself,
enabling to directly apply the approach to more realistic mobility
patterns. We first show that this model is consistent with known
analytical bounds corresponding to a system with either static
users or users having an infinite speed. We then compare our
model to simulations for more realistic speeds, and show that it
provides user and cell performance with a very good accuracy.
The outcomes of our model confirm that mobility may improve
both users and cells performance, and enable to quantify the
gain as a function of users speed.

I. INTRODUCTION

In LTE systems modulation and/or coding can change with

time for a given user depending on its location and its channel

quality. This is especially true when users are mobile, high-

lighting the influence of mobility on user and cell performance.

The resulting variations in the transmission rates is exploited

by opportunistic schedulers to increase overall throughput of

data transmissions [1], [2], [3]. But even schedulers with fair

resource sharing strategy can take advantage of users mobility.

The fact that mobility may improve performance has already

been observed in the literature (e.g., in [4], [5], [6], ). These

papers mainly present theoretical properties and performance

bounds. For example, authors in [4] identify two limit regimes

of infinitely fast and infinitely low channel variations, and

show that these limit regimes provide simple bounds on

performance at a flow-level. [5] also develop lower and upper

bounds for the flow-level performance measures, showing that

mobility tends to increase the overall capacity of the network.

The most related work is [7], in which authors assess

the impact of users mobility on cell performance, under a

* This work has been carried out in the framework of IDEFIX project,

funded by the ANR under the contract number ANR-13-INFR-0006.

fair and an opportunistic scheduling scheme. They show that

under both scheduling policies, mobility improves throughput

performance at cell edge. But as the Markovian process

associated with their model is no longer reversible in the

case where mobile users fairly share resources, they can only

develop closed-form expressions in two limiting cases, namely

when users are static and when users have an infinite speed.

In this paper we develop a multi-class Processor Sharing

(PS) queue model, that captures mobility of users through

the distribution of the time a given user physically stays in

the different coding zones of cells. Contrarily to previous

studies, our model does not rely on the numerical analysis of

complex Markov chains, or on limiting assumptions such as

infinite speed of users, and as such is one of the first tractable

and accurate approximations for 4G/5G cellular networks with

mobile users. The originality of the approach is to decouple

the mobility model from the cell model itself, by relating input

parameters of the PS queue to physical mobility parameters.

We show that our model is consistent with aforementioned

analytical bounds for realistic speeds of users. Thanks to our

model, we quantify the gain of speed on both the performance

of the cell and the end-to-end performance of users, and

investigate the influence of intra- and inter-cell mobility.

The paper is organized as follows. Section II presents

system and trafic assumptions used in the model. Section III

develops the PS queue model and all performance parameters

of interest. The model is validated through simulation in

Section IV that also investigates the impact of users speed

on performance. Finally, Section V concludes the paper.

II. SYSTEM AND TRAFFIC ASSUMPTIONS

We consider a LTE macrocell with a round robin scheduling

discipline. For a given number of active users, Resource

Blocks are equally divided among users. A user that is alone

in the cell will have different bit rates if he is close to the base

station, compared to the case where he is far from it. The cell

can thus be divided into J zones of equal radio conditions, or
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classes, each characterized by an achievable throughput, i.e.,

a throughput that can be achieved by a user when scheduled

by the base station [8]. A user of class j, j = 1, ..., J , i.e.,

currently present in zone j, will obtain a throughput Cj , if he

is alone in the whole cell. We can assume as, e.g., in [9], that

the J zones form concentric circles of radius Rj , where zone

1 is the central zone and zone J is the peripheral zone.

We consider that connection demands arrive to the cell

according to a Poisson process of rate Λ. We assume that

a user that carries a new connection demand has a probability

pj to start its download in zone j. As a result, new connection

demands arrive in zone j according to a Poisson process with

a rate Λj = pjΛ. Contrarily to previous classical works on

PS queue models (e.g., [8]), we assume that users are mobile,

and can thus change zone during their download or leave the

cell before completing their transfer. The mobility model we

consider is the following. It is important to emphasize that it

is a physical mobility model of users that is decoupled from

the utilization of the resources by users. We denote by Θj the

physical sojourn time of a user in zone j at each visit of the

zone, that is, the time duration he physically stays in zone j

at each visite before moving to another zone or another cell.

We then define Pjk, the probability that a user that physically

exists in zone j (active or not) move to a neighboring zone k.

If the outside of the cell is labelled 0, Pj0 is the probability

that a user exits the cell from zone j, and P0j is the probability

that a user enters the cell by zone j.

We assume that each new connection demand (regardless

of its initial class) brings an identically distributed volume Σ

of data to be downloaded. As soon as a new request arrives, it

triggers the start of a new data transmission (in the zone where

the request appears). This transmission ends either because

the user has completed its transfer before leaving the cell

(whatever the number of zones he has visited meanwhile),

or because he has left the cell before completing its transfer.

As a result, the volume actually transferred by a given user in

the cell is, in average, less than Σ.

We consider in this paper that random variables Σ and

Θj are exponentially distributed. The first assumption is

necessary for the derivations presented below. On the other

hand, assuming exponential sojourn time in each zone is only

made for simplification purposes, and other distributions can

be considered.

We now consider the special case where the J zones form

concentric circles of radius Rj , and see how we can estimate

the traffic and mobility parameters. First, the surface of zone j

is Sj = π(Rj
2−Rj−1

2), for j > 1, and S1 = πR1
2. If arrivals

of new connection demands are uniformly distributed over the

whole surface of the cell, the probability pj is proportional

to the surface of zone j as show in equation 1. Concerning

the mean sojourn time in zone j, E(Θj), we can reasonably

assume that it is proportional to the square root of the surface

of the zone and inversely proportional to the speed V of users.

If we denote by K the proportionality coefficient, the mean

sojourn time in zone j, can be expressed as in equation (1).

When zones form concentric circles, a user that physically

exists in zone j, j = 2, ..., J − 1, has a probability Pj j−1 to

move to zone j−1, and a probability Pj j+1 to move to zone

j + 1 (with, of course, Pj j−1 + Pj j+1 = 1). For zone 1,

obviously, P12 = 1. And from zone J , a user can either move

back to zone J − 1 with a probability PJ J−1, or exit the cell

with a probability PJ0. All these probabilities clearly depend

both on the radius Rj of zones and on the real mobility of

users. However, without additional assumptions on physical

mobility of users, we can use the following approximation:

pj =
Sj

πRJ
2 , E(Θj) = K

√
Sj

V
and Pj j−1 =

Rj−1

2Rj
, j > 1.

(1)

Note that probabilities pj and Pij , as well as mean sojourn

times E(Θj), are input parameters for our PS queue model.

Any alternative expressions, resulting from a realistic physical

mobility model of users, can be alternately used without

changing the development presented below.

III. MODEL

The cell occupancy can be represented by a multi-class Pro-

cessor Sharing queue with J classes. Each class corresponds

to a zone of the cell. Customers of class j arrive to the queue

according to Poisson process of rate λj , j = 1, ..., J . It is

important to note that, contrarily to [10], λj is different from

the rate Λj of new connection requests that appear in zone

j, as it must include the arrival of users moving from other

zones while still being active. If we denote by Λij the rate of

active users moving from zone i to zone j and by Λ0J the

rate of active users making a handover from the outside, then:⎧⎨
⎩

λ1 = Λ1 + Λ21

λj = Λj + Λj−1 j + Λj+1 j , j = 2, ..., J − 1

λJ = ΛJ + ΛJ−1 J + Λ0J

(2)

Class-j rate can in turn be expressed as in [10]:

μj =
Cj

xj
, (3)

where xj is defined as the average number of bits transferred

by an active user in zone j, for each visit of the zone.

As a result, we are left to estimate all the input parameters

of the PS queue, namely λj and μj , for j = 1, ..., J , or more

precisely all Λij , xj and Λ0J . If we denote by hj the handover

probability from zone j, i.e., the probability that an active user

in zone j leaves the zone without having finished its transfer,

we can express Λj j+1 and Λj j−1 as:{
Λj j+1 = λjhjPj j+1, j = 1, ..., J − 1

Λj j−1 = λjhjPj j−1, j = 2, ..., J
(4)
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To estimate the incoming handover Λ0J , we assume that

the considered cell is involved in a network of statistically

equivalent cells. If this is true, the incoming and outgoing

handover rates in the considered cell are equal, i.e., Λ0J =

ΛJ0 = λJhJPJ0. As a result, to take into account a cell

involved in a network of equivalent cells, the last equation of

system (2) must be replaced by: λJ =
1

1−hJPJ0
(ΛJ+ΛJ−1 J).

As shown in [7], the stability condition of this system is

independent of the speed V of users and is equivalent to the

stability condition of a system where users have an infinite

speed. It can be expressed as : Λ < C∞
E(Σ) , where C∞ is the

equivalent capacity of the system where users have an infinite

speed.

Standard results for the stationary multi-class Processor

Sharing queues can be readily applied to calculate the average

throughputs γj obtained by users in zone j during their

transfer:

γj = Cj(1− ρ), (5)

where ρ =
∑J

j=1 ρj and ρj =
λj

μj
. Therefore, applying the

methodology developed in [10] to each zone individually, xj

and hj can be expressed as:

xj =
E(Σ)E(Θj)γj

E(Σ) + E(Θj)γj

and hj =
E(Σ)

E(Σ) + E(Θj)γj

. (6)

We finally end up with a system of 5 dependent equations

(2-6) that will be solved using a fixed-point iterative technique.

We now see how we can derive from the model the

performance of an active user in the considered cell. Let us

denote by λ the total arrival rate of connection demands in a

cell.

From classical results of PS queues, we can calculate the

average number of active users in each zone, denote by Qj

and the probability qj that an active users is in zone j:

Q̄j =
ρj

1− ρ
and qj =

Q̄j∑J
i=1 Q̄i

. (7)

From Little’s law, we can express the average time R̄ spent

by an active user in the cell. From γ̄j and qj , we estimate

the average throughput γ obtained by an active user during

it whole sojourn in the cell. We finally estimate the global

handover probability H , i.e., the probability that an active user

leaves the cell before completing its transfers, whatever the

number of zones he has visited meanwhile. H is calculated as

the ratio between the average number of active users leaving

the cell by unit of time (from zone J) and the total number

of new active users that appear in the cell by unit of time:

R̄ =

∑J
j=1 Q̄j

λ
, γ =

J∑
j=1

qjγj , and H =
Q̄J

PJ0

E(ΘJ )

λ
. (8)

We now see how to derive the end to end performance of

users in case of network of statically equivalent cells. Because

the size Σ of data to be transferred by users is supposed

to be exponentially distributed, the remaining volume to be

transferred by a user after a handover has the same distribution

as the original one. As a result, the number nh of handovers a

user has to make and the number nc of cells a user has to visit,

before the completion of its transfer, are both geometrically

distributed with parameter H (starting from 0 for the first one

and from 1 for the second one), with means given by:

n̄h =
H

1−H
and n̄c =

1

1−H
. (9)

We denote by th the duration of a handover procedure, i.e,

the duration of the service interruption when a user change

cell. We can estimate with relation (10), the average end to

end transfer time T̄ of user, defined as the average time for

a user to complete a full transfer, whatever the number of

cells and the number of zones in each cell the user has visited

during its transfer. Finally, we obtain the average end to end

throughput Γ̄ a user obtains during its full transfer as:

T̄ = n̄cR̄+ n̄hth and Γ̄ =
E(Σ)

T̄
. (10)

IV. PERFORMANCE RESULTS

We compare the results of the proposed model with those

delivered by a home-made discrete-event simulator developed

in Matlab. We reproduce the traffic assumptions and the mobil-

ity model described in Section II. We assume that the cell uses

a number of 100 Resource Blocks for the downlink channel

and offers to users four MCS (28, 23, 16, 6). This results in

four transmission zones with corresponding capacity C1 = 75

Mbit/s, C2 = 51 Mbit/s, C3 = 31 Mbit/s and C4 = 10 Mbit/s

[11]. We set the constant K = 1√
π

and we take E(Σ) = 10 MB

for the mean data volume to be transferred by all users. We

use the following radius corresponding to the concentric circles

model of the cell: R1 = 100 m, R2 = 150 m, R3 = 200 m and

R4 = 250 m, R4 corresponds approximately to the operating

range of LTE antenna in urban environment. The mean sojourn

time in each zone E(Θj) is given by equation (1). According

to the estimations given in Section II, resulting probabilities

are reported in Table I.

TABLE I: Parameters of the cells

parameters zone 1 zone 2 zone 3 zone 4
new connection 0.16 0.20 0.28 0.36

probabilities pj

moving proba- P12 = 1 P21 = 0.33 P32 = 0.37 P43 = 0.40

bilities Pij P23 = 0.67 P34 = 0.63 P40 = 0.60

A. Validation
Figures 1 and 2 respectively show comparison of users’

throughput and handover probability in the considered cell,
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Fig. 3: Average Throughput obtain by
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speed taking into account the service

interruption due to handover proce-

dure when Λ = 0.15 .

as a function of the total arrival rate of new connection

demands Λ. We chose different values of speed V . We observe

that the predicted model is very close to simulation results.

The average relative error between performances predicted

by the model and those obtained by simulation is about 8%

in average. Mobile users’ throughput (Figure 1) is bounded

by the throughput obtained when all users are static (lower

bound) and the throughput obtained with infinite speed (upper

bound). As expected, users mobility improves the capacity, the

throughput and stability of the system, the latter being Λ <

0.24 for the system with static users and Λ < 0.30 when users

are mobile. The reason of this improvement is that, even if a

user that physically exits a zone is more likely to move to

a zone with poorer channel conditions, users in a favorable

conditions have a better chance to complete their transfers

before leaving the zone. Thereby, the average number of active

users moving from zone with good channel conditions to zones

with poor channel conditions by unit of time is lower than

the average number of active users moving in the opposite

direction. This improvement comes with an increase in the

handover rate (see Figure 2). The handover H starts from an

initial value that depends on speed and increases with Λ. H

converges to 1 when Λ→ 0.30.

B. Impact of inter-cell mobility

Figure 3 presents, for a total arrival rate of new connexion

demands Λ = 0.15, the end to end throughput as a function

of users’ speed with consideration of the duration of service

interruption due to handover procedure, which is set to 2s. This

curve shows how handover rate counterbalances the flow-level

performance improvement and proves that mobility gain is a

non-monotonic function of users’ speed.

V. CONCLUSION

We have developed a PS queue model for performance

evaluation of data cellular networks with a round-robin policy,

taking into account intra-and inter-cell mobility of users. We

have shown that this model is consistent with known analytical

bounds corresponding to static users or infinite speed, and

provides a very good accuracy for more general speeds. Our

model confirms that mobility may improve performance of

users in a given cell, and enables to quantify the gain. It also

provides end-to-end performance of users among a network

of statistically equivalent cells, and shows that performance is

not anymore a monotonic function of the speed.
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