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Abstract—Botnet threats include a plethora of possible attacks
ranging from distributed denial of service (DDoS), to drive-by-
download malware distribution and spam. While for over two
decades, techniques have been proposed for either improving
accuracy or speeding up the detection of attacks, much of the
damage is done by the time attacks are contained. In this work we
take a new direction which aims to predict forthcoming attacks
(i.e. before they occur), providing early warnings to network
administrators who can then prepare to contain them as soon as
they manifest or simply quarantine hosts. Our approach is based
on modelling the Botnet infection sequence as a Markov chain
with the objective of identifying behaviour that is likely to lead
to attacks. We present the results of applying a Markov model to
real world Botnets’ data, and show that with this approach we
are successfully able to predict more than 98% of attacks from
a variety of Botnet families with a very low false alarm rate.

I. INTRODUCTION

Botnet generated attacks such as high volume DDoS can

cause network outages resulting in financial losses to compa-

nies. Likewise, information stealing and phishing can compro-

mise users’ privacy and leak valuable financial information. It

is therefore important to focus Botnet security approaches on

identifying the possiblity of attacks rather than just identifying

infections that have occurred. In fact, the potent danger of

Botnet attacks is such that it is not even sufficient to merely

detect them; by the time an attack has been detected and

mitigated, much of the damage may have been done. Instead,

if these attacks can be predicted before they occur, preventative

measures can be taken so that they never materialise. If a host

is known to be at high risk of engaging in an attack soon, it can

be closely monitored, quarantined or taken off the network.

Existing work deals with the problem of detection and

speedy response to attacks, but predicting attacks has received

little attention. Currently, the work in this domain falls into

three categories: (1) those that can identify particular attacks,

but not predict them in advance; (2) those that can predict

particular attacks in advance, but are restricted to specific

attacks; and (3) those that can identify Botnet infections but do

not predict malicious behaviour that follows the infection. As

none of these solutions can provide advance warning of diverse

Botnet attacks, none of them can enable timely containment

of such attacks. This gap has motivated us to design a system

that can predict specific behavioural stages (i.e. attacks and

C&C communication) of potentially infected machines, while

remaining independent of attack or Botnet type.

In this work, we propose a Markov chain based approach

for predicting attacks before they occur. We postulate and

verify that Botnet infections show distinguishable malicious

behaviour other than just attacks. Earlier studies have shown

that infections often begin with a social engineering attack

or an exploit on a victim host, leading to the download

of a malicious binary, via a drive-by download or other

mechanism. If executed, the binary may then engage in an

attack, communicate with a C&C server or download further

updates. Given that attacks occur within this context, it is

possible to fit a model to the behavioural stages of an infected

host before and after it engages in an attack. Once we have

such a model, we can then predict when attacks will occur

within a hosts’ behavioural sequence, allowing us to generate

early attack warnings.

We identify the typical stages of a Botnet’s behaviour and

model the stages as states of a Markov chain. We train the

model to identify the likelihood of transitions between the

states and propose a methodology to predict future states based

on currently observed behaviour. Using real network traces

from a variety of Botnet families, we predict attacks with

98% accuracy. Perhaps more importantly, we show that our

methodology can even be extended to predict other behaviour

of interest, such as a bot’s “phone-home” communication with

its control server. The key novelty of our work is that we move

beyond merely identifying an infection; we are able to identify

and predict the specific behavioural stage that an infection has

reached, and at any given time calculate the probability that

it will start to attack other entities.

The remainder of this paper is organised as follows. Sec-

tion II outlines related work in this domain. In Section III we

define some key terminology and properties of Markov chains.

In Section IV we describe our model, instantiate it with Botnet

data and present the theoretical and empirical verification

that it represents a valid Markov chain. Section V presents

our attack prediction approach and experimental results. In

Section VI we outline the limitations of this work and future

directions. Section VII concludes the paper.
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II. RELATED WORK

While many solutions have been proposed for identifying

specific kinds of Botnet attacks, a general solution that is not

restricted to particular attacks remains elusive. In developing

such a solution, we draw inspiration from two classes of ex-

isting work: generic, behaviour-based approaches to detecting

Botnet infections, and the use of Markov chains and Hidden

Markov Models (HMMs) in intrusion detection.

Traditional attack detection methods monitor the character-

istics of network traffic during an attack, a classic example

being port scan detection based on features such as the

number of failed outgoing connections [13], [19]. In similar

vein is detection of outgoing DDoS attacks based on the

entropy of destination addresses at network routers [21] or of

incoming DoS attacks based on the arrival pattern of incoming

packets [22]. SPOT [6] identifies spam using a content filter to

examine the sequence of outgoing messages from each host.

As all of these methods identify traffic that is generated during

attacks, they cannot be used for attack prediction. While there

is little work in predicting attacks, one recent scheme [11]

uses the increase in traceroute packets in the network prior to

a target link DDoS attack to predict the attack itself, detecting

the preparation stage before the attack occurs. This approach

however is restricted to a specific attack; to the best of our

knowledge, no general attack prediction solution exists.

In our quest for generality, we draw on the idea that

Botnet infections follow a typical behavioural sequence, a bot

“lifecycle”. Several works have presented an analysis of this

lifecycle, and proposed approaches to identify its individual

stages – hosts are classified as infected based on the number

or sequence of stages they show [8]–[10], [14]. For example,

BotHunter [9] is an industry-standard Botnet detection tool

that employs various heuristics to detect lifecycle stages and

performs rule-based analysis to decide whether they constitute

a Botnet infection. While this approach forms an inspiration

for our work, we take it a step further and use the identification

of behavioural stages to predict future malicious behaviour (for

example, attacks) rather than simply identify an infection.

Markov models have been used in intrusion and anomaly

detection research. One such Markov chain based intrusion

detection system (IDS) [24] uses a stream of audit events to

train a Markov chain; event streams generated by hosts are

classified as attack streams based on their similarity with the

trained model. Similarly, In HMM-based approaches, some

aspect of Botnet behaviour is represented as a sequence of

symbols, and the states of the model are assumed to emit

those symbols [7]. [16] maps values of inter-packet delay to a

language of four symbols to generate a four-state HMM and

trains it on Botnet C&C communication traces. The similarity

of observed data to the model indicates Botnet communication.

A similar approach has used SNMP (Simple Network Manage-

ment Protocol) variables as the symbol sequence [23]. These

approaches allow attack identification but not prediction, and

neither Markov chains nor HMMs have been used in predicting

future behaviour of potentially infected hosts.

The closest inspiration for our research is another HMM

approach [15] which uses the set of bot lifecycle stages as the

symbol sequence combined with a “clean” symbol indicating

absence of infection. The HMM is used to compute the

most likely state of the host given the observed sequence.

However the objective of the work is to identify infection

rather than to predict attack or any other behaviour, and such

prediction ability is not investigated in it. In fact, to the best of

our knowledge there is no existing approach, whether using

Markov chains or otherwise, that addresses the problem of

providing early detection and prediction of Botnet attacks

while remaining independent of Botnet or attack type.

III. SOME TERMINOLOGY FOR MARKOV CHAINS

Markov chains are used to model systems that randomly

move among a set of states. A Markov chain is represented as

a state transition diagram, with the paths between the states

weighted by the probability of moving from one state to

another. In this work we use a discrete time Markov chain,

where the assumption is that transitions from one state to

another happen at discrete time steps; each transition from

a state Si to a state Sj has a probability ti,j of occurrence.

We briefly define some terminology that we later refer to in

developing and verifying our model. An irreducible Markov

chain is one in which all states can communicate - i.e. for each

pair of states Si and Sj , there exists a path from Si to Sj and

vice versa. A state is periodic if it can only be visited at time

values that are multiples of an integer greater than 1, e.g. at

time t = 3, 6, 9 and so on. States not exhibiting this property,

such as those with a self-transition, are aperiodic, and a chain

for which all states are aperiodic is an aperiodic chain. For an

irreducible Markov chain, it is possible to define a stationary

distribution representing the long-term probabilities of being

in each of the states, i.e. P (Si) for all states Si as time grows

large. This distribution should satisfy Pj =
∑

i∈S Piti,j and∑
i∈S Pi = 1, where S is the set of states in the model, Pi

is the stationary probability of being in state Si and ti,j is

the probability of going from state i to state j. If the chain is

aperiodic, then this stationary distribution is also the limiting

distribution for the Markov chain. Finally, a reversible Markov

chain has to satisfy for all pairs of states Si and Sj the property

Piti,j = Pjtj,i∀i, j where Pi and ti,j are as defined above.

IV. MODELLING BOTNET INFECTIONS AS A MARKOV

CHAIN

We now present our Markov chain model for Botnet infec-

tions and introduce the datasets used to evaluate the model.

A. Proposed Model

Prior studies [4], [9], [20] have suggested that bots follow

a well-defined sequence, beginning with a social engineering

attack or an exploit, which results in a malicious binary

download, followed by communication with a C&C server and

then launch of an outgoing attack, such as spam generation,

port scanning or DoS attacks. Outgoing attacks therefore occur

within a context that can be modelled; we capture this context
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Fig. 1: State transition diagram modelling Botnet infection stages.

as a state transition diagram, shown in Fig. 1, with each state

representing a different stage of infection.

We have based our state model on the models presented in

earlier studies and on the behavioural stages exhibited by a

range of modern Botnets, including mobile Botnets. Table I

describes the behaviour each state in our model represents. We

also exemplify each stage with a variant of a recent banking

trojan called Dridex, mapped to the relevant states of our

model. We derive this information from an analysis of a Dridex

variant (Dridex 120) published by CISCO [3]. We believe

that our model provides comprehensive coverage of behaviour

exhibited by a typical Botnet infection.

Unlike previous work, in which states are linked in a logical

flow that the infection should proceed in, we link the states

in a full mesh to avoid making prior assumptions about the

infection sequence. In the Botnet traces used in our work

(Section IV-C), Botnet stages often appear out of sequence,

such as an exploit occurring again after C&C communication,

rather than only once in the beginning. We design our model

to account for all such cases of unusual behaviour.

B. Current Model Limitations

Applying the comprehensive model of Fig. 1 entails being

able to detect activities falling within each state of the model.

To the best of our knowledge, this is not possible with existing

tools. Most detection tools only provide the user with a final

detection decision. Some rule-based or scripting tools, for

example Suricata [2], Bro [17] and Snort [18], are capable

of providing a break-down of the specific malicious behaviour

detected, but at present there is no rule set or script publicly

available with these tools that contains detection logic for all

the behavioural stages in our model.

Fig. 2: Limited state transition model used in our current work.

Designing a comprehensive detection tool is beyond the

scope of this work. Therefore, in this work we use a more

limited model whose states can be detected using currently

available tools, and leave the more comprehensive model as

future work. We use Snort as our detection tool, with Botnet

detection rule sets from Emerging Threats as well as rules

from BotHunter, an industry-standard Botnet detection IDS,

a combination that allows us to detect a greater variety of

malicious activities than any other existing tool. We redefine

our state model as shown in Fig. 2, removing the drive-by

download, social engineering and C&C discovery states as

these are beyond our current detection capability; likewise we

remove the Inbound Scan state as it is not applicable to our

current dataset. For the remainder of this paper, we work with

this limited model. However, all our methodology is applicable

as it is to the full model, including the calculations and the

proofs of validity that follow in the next section; with an

enhancement in the detection capability of the IDS used, our

approach can therefore be applied as it is.

C. Datasets

We used two Botnet datasets to instantiate our model.

However, it is only for evaluation purposes that we use datasets

of known infected hosts; in a practical deployment there is no

need to pre-label the hosts as infected or clean.

1) The SysNet Dataset: The SysNet trace has been gener-

ated by the SysNet lab [1] in July 2013 and contains traffic

from ten infected hosts. It was generated by running ten bot

binaries in separate virtual machines: four variants of Pushdo,

two variants of Sality, Kolabc, Virut, Dorkbot, and Bobax. This

covers HTTP, IRC, and P2P-based bots that engage in a range

of attacks including sending spam and outbound scanning. Full

packet traces from the virtual machines were captured for 24

hours using Wireshark on host machines.

2) The ISCX Botnet Dataset: This trace was collected by

researchers at the ISCX Laboratory at UNB, Canada and

made available publicly. It contains full traces of 30 infected

machines, nearly half of which are infected by IRC Botnets

and the remainder by a variety of P2P and HTTP Botnets,

including variants of Zeus, Virut, NSIS, Storm, and Zero

Access among others. Interested readers are referred to [5]
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TABLE I: Description of states of the Markov Chain and mapping Dridex 120 behaviour to each state (where applicable).

State Description of Behaviour Example of Dridex Behaviour

Inbound Scan An incoming port scan on any port of the host,
characterised by the same port being scanned on
many hosts (horizontal scan) or many ports being
scanned on one host (vertical scan).

N/A

Social Engineering Human users are tricked into compromising on usual
security practices, e.g. clicking on an intriguing (but
malicious) spam link in an email message.

Victim receives email with a malicious Microsoft
Word or Excel attachment.

Drive-by Download Malicious executables are downloaded without the
user’s consent during a web browsing session.

N/A

Exploit Any attack targeting application or OS vulnerabilities
for gaining “backdoor” access or remote execution
privileges on the victim machine, or web browser.

N/A

Binary Download The actual download of a malicious piece of code or
an executable, which may be disguised as legitimate
software or an image or document.

User opens the attachment, triggering execution of
embedded macro; intermediate dropper downloaded
which then downloads and runs the actual binary.

C&C Discovery When the downloaded binary is run and attempts
to contact the Botnet’s C&C server. Discovery be-
haviour may include contacting a list of servers one
by one over HTTP, opening multiple P2P connec-
tions, or a large number of DNS queries for a list of
possible domains.

Sends an HTTP Post request to a specific hard-coded
IP address.

C&C Communication Exchanges with the discovered its C&C server, over
IRC, HTTP, or in some cases, custom protocols.

If HTTP POST is successful, bot receives configu-
ration and instructions regarding which websites to
target for redirection attacks.

Outgoing Attack Either self-propagation by the Botnet e.g. through
port scanning or mass-emailing itself, or other attacks
such as information stealing, phishing, DoS or spam.

When victim visits a banking website included in the
configuration file, the bot can perform redirection to
a phishing website and credential stealing.

for details of the trace. The duration of the data varies from

a few minutes for some traces up to 3 days for others.

We combined traces from both datasets into a single dataset.

For training and testing the Markov chain, the traces first had

to be mapped to state sequences comprising the states in our

model, i.e. exploit, binary download, C&C communication and

attack. We currently relied on Snort for detecting the behaviour

represented by these states, using Botnet detection rulesets

from Emerging Threats and BotHunter. Snort performs deep

packet inspection over packet traces and generates alerts when

a rule is triggered. We post-processed the Snort logs for our

traces to classify the alerts as belonging to one of the states

in our model. We then generated a timestamped sequence of

states observed in each host’s network traffic. A snapshot of

the data used to instantiate our model is shown in Table II.

The timestamp represents minutes from start of the trace;

for example, “2:CNC” indicates that a C&C Communication

event was detected at time 2 minutes.

D. Instantiating the Markov chain

1) Calculating Transition and Limiting Probabilities: For

deriving the limiting distribution, we use the flow balance

condition of a Markov model, i.e. the probability of leaving a

state must equal that of entering it. This allows us to formulate

a balance equation for each state of the model. In general for

each state i that has incoming transitions from a set of n states

k and has outgoing transitions to a set of m states j:

n∑
k=1

Pktk,i =
m∑
j=1

Piti,j (1)

Based on this we define the following flow balance equa-

tions for each of the states in the model shown in Fig. 2 from

S1 to S4 respectively:

P2t2,1 + P3t3,1 + P4t4,1 = P1t1,2 + P1t1,3 + P1t1,4 (2)

P1t1,2 + P3t3,2 + P4t4,2 = P2t2,1 + P2t2,3 + P2t2,4 (3)

P1t1,3 + P2t2,3 + P4t4,3 = P3t3,1 + P3t3,2 + P3t3,4 (4)

P1t1,4 + P2t2,4 + P3t3,4 = P4t4,1 + P4t4,2 + P4t4,3 (5)

where Pi∀i1..4 is the limiting probability of being in each state,

and ti,j is the transition rate from state i to state j. In order to

calculate the value Pi for each state Si, we first need transition

probabilities ti,j . Therefore we first generate a transition

probability matrix T from the combined datasets with each

cell [i, j] representing the transition rate between states Si and

Sj . A common approach to calculate the transition probability

matrix is to build a training sequence of states by observing the

system for some length of time, and then generate a probability

for Ti,j , i.e. the transition from each state i to each state j as

follows: ∑
Ti,j∑

k∈S

Ti,k

(6)
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TABLE II: Example of event sequences generated for Markov chain.

IP Event Sequence

a.a.a.a 2:CNC, 3:CNC, 4:ATTACK, 7:EXPLOIT, 9:CNC...

b.b.b.b 0:EXPLOIT, 6:EXPLOIT, 7:BINARY, 19:ATTACK...

c.c.c.c 1:ATTACK, 2:ATTACK, 6:EXPLOIT, 7:BINARY...

d.d.d.d 1:CNC, 2:ATTACK, 6:CNC, 7:EXPLOIT, 15:CNC...

where
∑

Ti,j represents the total number of transitions

observed from state Si to Sj . For our model and data, T is

therefore a 4× 4 matrix and contains the following values:

T =

⎛
⎜⎜⎝

0.682 0.030 0.033 0.254
0.035 0.426 0.527 0.012
0.0001 0.001 0.926 0.073
0.001 0.00001 0.099 0.899

⎞
⎟⎟⎠

The states represented by each row and column are Exploit,

Binary Download, C&C Communication and Attack, respec-

tively. Using the values from the matrix T , and replacing

Equation 5 above with the conservation of total probability

equation (
∑

i∈S Pi = 1) allows us to solve for Pi. For our

dataset we obtain the stationary distribution shown in Table III.

2) Verifying Markov Chain Properties: We now discuss

and verify the properties of irreducibility, aperiodicity and

reversibility of the Markov chain, and then empirically ver-

ify that the stationary probability distribution that we have

obtained also fulfils the conditions for a Markov stationary

distribution.

Showing our Markov chain to be irreducible requires no

proof. As discussed earlier, irreducibility simply refers to a

chain where all states can communicate with each other. Fig. 1

shows that the states in our model are connected in a full

mesh so this is indeed the case. Also from the figure it is

apparent that all states in our model have self-transitions;

therefore the Markov chain is aperiodic. Note that this property

is important as we label the stationary distribution as the

limiting distribution for this chain, which can only be valid

if the chain is aperiodic. Reversibility requires that for all

states Si, Sj , Piti,j = Pjtj,i. Using the calculated limiting

probabilities and the matrix T , we verify empirically that this

holds for all states in the model. Finally, we verify empirically

that the stationary probability distribution holds true to both

conditions specified in Section III, i.e. the conservation of

total probability and the condition Pi =
∑

j∈S Pjtj,i. The

calculations are straightforward and we do not show them here.

V. EMPIRICAL ANALYSIS AND EXPERIMENTAL

EVALUATION

We now investigate the accuracy with which we are able to

predict attacks using the Markov chain1. Our basic method-

ology is as follows. To make predictions, we first learn a

transition probability matrix from training data, similar to the

1The attacks in our evaluation dataset are restricted to sending spam emails
and performing outbound scans; while the current results only reflect these
two activities, in theory our framework can predict any other attack.

TABLE III: Stationary probability distribution for dataset.

State Probability

Exploit P1 = 0.0025
Binary Download P2 = 0.0015
C&C Communication P3 = 0.5739
Attack P4 = 0.4222

matrix shown in Section IV-D. Then, given a set of states

S, the current state Si, and a set of transition probabilities

ti,j∀j ∈ S, we predict the next state to be the state Sj such that

the transition probability P (Si → Sj) = max
j∈S

ti,j . This means

that we predict the attack state whenever it is the destination

of the most likely outgoing transition from the current state.

We make this prediction at every time-step. Before we further

detail the experiment methodology and present the results, we

discuss an important issue: whether or not to consider self-

transitions in the data.

A. An Empirical Analysis of Self-Transitions in the Dataset

We first discuss why self-transitions arise in the data. As the

event stream is generated from an IDS, multiple consecutive

alerts for the same state may occur. For example, a host con-

tinuously engaged in C&C communication with a blacklisted

server will generate a stream of alerts as it repeatedly makes

connections to the server; we interpret this as a sequence

of self-transitions from the C&C Communication state, and

observe that such cases occur frequently in our dataset.

Therefore, we find that when we build a transition matrix

from the original dataset, as shown in Section IV-D, the

self-transition probabilities for the C&C Communication and

Attack states overwhelm the probabilities of transitions leading

to other states. C&C Communication has a self-transition

probability of 0.926 and Attack has a self-transition probability

of 0.90. This has a negative impact on prediction; as we predict

the most likely transition from the C&C state for example, we

end up always predicting the self-transition. In fact, the only

time we can possibly predict attack is when the current state is

the attack state. For practical purposes this is not useful, as we

need to know when a non-attack state will transition to attack,

not whether the attack state will remain in itself. Thus we

had to consider whether dropping self-transitions altogether,

by considering each set of consecutive alerts as a single alert,

was a viable option.

We argue that for the attack state, it does not matter whether

or how long it self-transitions. Firstly, we are interested in

predicting the first entry to the attack state from a different

state, not subsequent self-transitions within the attack state.

Secondly, we are only concerned with predicting the occur-

rence of attack events and not the duration. Once the host

has engaged in an attack, it no longer matters how long it

will remain in the attack state. Therefore we choose to ignore

self-transitions of the attack state in our data.

The next question is whether to ignore self-transitions in

other states too. For example, if the current state is the C&C

Communication state, we can predict whether the next state
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TABLE IV: Statistical properties of duration (in minutes) of self-
transitions for each state.

State Min. Max. Mode Mean Stdev.

Exploit < 1 6 < 1 1.3 2.2
Binary Download < 1 14 < 1 0.75 3.12
CNC Comm. < 1 1437 < 1 2.7 47.1
Attack < 1 1420 < 1 5.6 63.2

TABLE V: Statistical properties of the number of self-transitions for
each state.

State Min Max Mode Mean Stdev

Exploit 2 70 3 16.8 24.1
Binary Download 2 16 2 4.6 4.6
CNC Comm. 2 4266 2 18.1 93.2
Attack 2 23003 2 37.4 694.7

change is likely to be to the attack state. However should we be

concerned about how long the C&C Communication state will

self-transition before it goes to the attack state? We conclude

that this value is indeed important if there is a certain pattern

in non-attack states’ self-transitions before they go to attack;

for example, we may find that the C&C Communication state

mostly remains in self-transitions for some x minutes before

it transitions to the attack state. In this case we would find it

useful to generate a warning that an attack is likely to happen

x minutes later whenever we see the C&C Communication

state. To see whether such a pattern exists, we perform an

empirical analysis of the durations of the self-transitions of

each state in the data.

Table IV and V show the statistical properties of the

durations (in terms of number of minutes) and number (i.e.

number of consecutive alerts) respectively of self-transitions

of each state. We find that there is no predictable pattern in

either duration or number of transitions. The tables show that

the standard deviation of both the duration and number of self-

transitions is very high compared to the mean for almost all

states, and the difference between the minimum and maximum

is also generally very large. We do a similar analysis for each

individual host, not shown here owing to space constraints,

but find that even within individual hosts infected by a single

bot, the pattern is unpredictable, with values of both duration

and number widely scattered.

Table IV shows that the minimum duration of each state is

less than 1 minute, and this is also the modal value for all

states. This, combined with the fact that the actual duration is

unpredictable owing to its high variance, leads us to conclude

that whenever we predict an attack following another state,

we should conservatively always predict that it is likely to

follow in less than a minute. The actual duration after which

it will follow then becomes irrelevant. The downside of this

approach is that when an attack does not in reality follow

within a few minutes, but rather after many hours, valuable

resources will be wasted in monitoring the suspected host

for a long time, or its communications will be unnecessarily

restricted. However we find this acceptable because long

durations of self-transitions are uncommon. Out of a total of

1233 occurrences of the attack state in our dataset, only 27
times the duration is over 2 minutes in length. Similarly only

170 out of 3659 occurrences of the C&C Communication state

last longer than 2 minutes. Therefore, although self-transitions

are part of our original model, we now decide to ignore all

self-transitions in the data. In the training stage, we build

our transition matrix from a dataset where we collapse all

self transition sequences into a single state, i.e. a number of

consecutive alerts for a state will be considered a single alert.

In the testing stage, when we make a prediction from a state,

we ignore further alerts for the same state, until there is a state

change, at which point we make another prediction.

We now obtain the following transition probability matrix,

which we call T ′:

T ′ =

⎛
⎜⎜⎝

0 0.0938 0.1042 0.8021
0.0619 0 0.9175 0.0206
0.0018 0.0178 0 0.9804
0.0154 0.0002 0.9844 0

⎞
⎟⎟⎠

As before, the states represented by each row and column are

Exploit, Binary Download, C&C Communication and Attack,

respectively. The values along the diagonal are now equal to

0, as self-transitions have been removed. However, it can be

verified that this model still satisfies all Markov properties

discussed in Section III. We do not show the proof here.

B. Results: Predicting Attacks With the Markov Chain

We first divided the dataset temporally into training and

testing data - i.e. for each host, we considered the first 1.5
hours of data as training, and the remainder as testing data.

We chose this rather short training interval as the data duration

varies considerably across traces, with some traces lasting

only 2 to 3 hours. Therefore, using longer training intervals

leaves fewer hosts’ traces available for testing the model. We

then ran the Markov training process to obtain a probability

transition matrix from the training data, similar to matrix T ′

in Section V-A, but with different values as it was built on less

data. The testing phase worked as follows. We iterated over the

testing data, treating it as a real-time, previously unseen stream

of events. After observing each state, we predicted whether

the next state to follow was likely to be the attack state. As

described earlier, we made this decision based on whether the

transition to the attack state has the highest probability out of

all possible transitions from the current state.

The accuracy analysis of the experiment is shown in the first

row of Table VI. We achieve a very high percentage (98.3%)

of true positive predictions with a very low false alarm rate of

1.3%; i.e. only 1.3% of the time when we made an attack

prediction, the attack did not occur as the immediate next

transition. In this experiment, we achieve an overall accuracy

of 98.5%.

Finally we show the frequency distribution of the time that

elapsed after a correct attack prediction until the attack state
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TABLE VI: Accuracy analysis of predicting the Attack and C&C Communication states.

State True Positives False Positives True Negatives False Negatives Accuracy

Attack 98.3% 1.3% 98.7% 1.7% 98.5%

C&C Communication 99.8% 1.7% 98.3% 0.02% 99%
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Fig. 3: CDF of the amount of time (in minutes) between an attack
prediction and the attack itself.

actually occurred. Fig. 3 presents the CDF of these results. The

x-axis is log-scaled to magnify the variation in values smaller

than 10 minutes. The figure shows that in 81% of cases, the

warning time is less than 1 minute, i.e. after the majority of

predictions, less than one minute elapses before an attack is

seen. In the remaining 19% of the cases, the warning time

ranges from one minute and up to 865 minutes.

In an automated deployment, a minute’s time is sufficient to

direct defensive measures towards hosts predicted to engage

in attacks. However, a manual analysis of the data shows that

at worst there may only be a fraction of a second between

the attack prediction and the actual attack. In such scenarios,

our attack prediction is not meeting the desired objective of

having ample early warning to allow for selective defensive

measures. Hence, we investigate the possibility of increasing

the warning time by making the prediction even earlier.

C. Increasing Warning Time: Predicting C&C Communication

We now investigate whether it is possible to generate attack

warnings significantly earlier by predicting states that are

very likely to precede the attack state. The probabilities in

the transition matrix of Section IV-D are overwhelmed by

the effect of self-transitions; we use the transition matrix T ′

from Section V-A, calculated based on the model with self

transitions removed, to determine that the C&C Communi-

cation State, represented by the third row, has the maximum

likelihood of leading to attacks. We hypothesise that predicting

the C&C Communication state instead of directly predicting

the attack state would allow for earlier warning of attacks.

In the remainder of this section, we investigate three main
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Fig. 4: CDF of the amount of time (in minutes) between a prediction
of the C&C Communication state and an attack.

questions: (a) how accurately we can predict the C&C Com-

munication state, (b) how often the predicted C&C Commu-

nication state is actually preceding the attack state, i.e. the

accuracy of using C&C Communication as an indicator of

attack, and (c) how much of an earlier warning we can get

for attacks when predicting C&C Communication instead of

predicting the attack state directly. We run the CNC prediction

experiment exactly like the attack prediction: from each state,

we predict the next state to be C&C Communication if it is

the destination of the most likely outgoing transition.

The second row of Table VI shows that we are able to pre-

dict the C&C Communication state with 99% accuracy, with

99.8% true positive predictions and only 1.7% false positive

prediction. Further analysis of the true positives shows that

99% of the time the C&C Communication state was predicted,

it was indeed followed by the attack state, demonstrating that

it is a good indicator of future attacks. Finally, Fig. 4 plots the

distribution of the time difference between predicting the C&C

Communication state and the occurrence of the attack state.

Even with the earlier prediction capability, in the majority of

the cases we still have under a minute of warning. However,

the proportion of these cases reduces from 81% when we were

only predicting the attack state to 66% now that we are able to

predict the C&C Communication state. While we acknowledge

that a further improvement in this capability is needed, the

results do validate our hypothesis that as we move further back

in the state sequence, we should be able to increase the time

difference between an attack warning and the actual attack. We

hypothesise that for even earlier warning, we can predict the

state that most likely leads to the C&C Communication state,
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which in turn most likely leads to the attack state. However,

owing to data limitations we leave a formal investigation of

this approach as future work. In our current dataset, we only

see 102 occurrences of the Binary Download state and 96 of

the Exploit state, compared to nearly 5000 occurrences of both

the attack and CNC states. Clearly this dataset is insufficient to

investigate the temporal advantage of predicting these states.

VI. LIMITATIONS AND FUTURE WORK

In this work we have presented the idea of using Markov

chains for attack prediction; however, we acknowledge that

one of the key limitations of this work is the limited scope of

the state transition model used. Having validated the approach,

in future we would like to extend the model to cover a larger

range of malicious behaviour and replicate our experiments

with the complete state model of Fig. 1. Specifically, adding a

drive-by download state is crucial; as one of the most common

infection vectors in recent Botnets, it represents the starting

point of many infections. It is also important to extend the

types of attack we are able to capture, as at present we

only detect portscans and spam. Using a limited model is

necessitated by the limited detection capability of existing IDS

tools, since a capability to detect and label each state of the

model in the training data is essential if we are to use an

extended model. For this work, we are limited to using states

that can be detected using an existing IDS (Snort) with existing

rulesets; therefore, another important future direction for us is

to build our own detection tool that can detect a wider range

of Botnet behaviour.

Secondly, in the current work, the type of attack has no

bearing on the prediction; both spam and portscan are mapped

to the same state in the model. With a dataset including more

attack types, we would like to map different attack types to

different states in the model and investigate whether each

attack is preceded by unique behavioural patterns and whether

this knowledge can further improve our prediction capability.

Finally, we want to investigate the effect of using variations

of the simple Markov chain that we use in this work. One

possible direction is higher-order Markov models [12] where

future states depend on multiple past states rather than only

the current state; we believe that incorporating more history

in the decision will result in better prediction accuracy.

VII. CONCLUSION

In this work we investigated the intuition that we should be

able to predict Botnet attacks based on the malicious behaviour

observed in an infected host’s traffic before it launches an at-

tack. We designed a Markov chain model that predicted likely

future behaviour based on the currently observed behaviour,

using this capability to predict the probability of an attack. In

addition we demonstrated the novel capability of predicting,

in theory, any behavioural stage of an infection. Our results

showed this to be a promising approach to generating early

warnings of attacks, with over 98% of attacks predicted

accurately and a worst-case false alarm rate of 1.7%.
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