
The Small, the Fast and the Lazy (SFL): A General
Approach for Fast and Flexible Packet Classification

Sven Hager Samuel Brack Björn Scheuermann

Computer Engineering Group

Humboldt University of Berlin, Germany

Email: {hagersve, samuel.brack, scheuermann}@informatik.hu-berlin.de

Abstract—Packet classification—the matching of packet head-
ers against a predefined rule set—is a crucial functionality of
firewalls, intrusion detection systems, and SDN switches. Most
existing classification algorithms trade setup time for classifi-
cation speed—that is, the packet classification is fast, but the
transformation of rules set into the corresponding search data
structure takes a considerable amount of time. This preprocessing
time, however, poses a significant challenge for systems where
rule sets can often change. Hence, these systems often use slow
classification algorithms that support frequent rule set updates,
which drastically limits their achievable throughput. In this work,
we present a novel algorithmic technique which is able to “up-
grade” an arbitrary existing classification algorithm to support
fast updates, while still providing high lookup performance. Our
evaluation demonstrates that our proposed technique exceeds
the matching performance of existing dynamically updatable
algorithms by an order of magnitude while providing the same
level of update responsiveness.

Index Terms—Packet classification; Hybrid search structure

I. INTRODUCTION

Network packet classification is a core functionality at the

heart of packet processing systems such as routers, SDN

switches, and firewalls. These devices distinguish between

incoming network packets based on header information carried

within the packets to implement QoS routing, forwarding

tables, or security policies [1], [2]. To this end, a set of

selected header fields, such as IP addresses, protocol numbers,

or transport layer ports, is matched against a rule set installed

on the device which specifies how different classes of packets

should be treated [3], [4]. For example, a firewall could

be configured to drop every incoming packet which is not

addressed to an institution’s web server, whereas an OpenFlow

switch could notify the controller for each packet directed to a

specific application. The matching process itself is driven by

a classification algorithm which determines the most highly

prioritized matching rule for the currently regarded packet.

The difficulty of network packet classification arises from

the high performance requirements in order to meet line

speed. Accordingly, the research community has proposed

a wide variety of approaches to accelerate the classification

process, ranging from fast classification algorithms [5]–[11]

and rule set optimization techniques [12]–[17] to hardware-

centric approaches [18]–[24]. Most of these works require

significant preprocessing times to set up their search data

structures, which in turn can be traversed quickly when a

packet enters the classification system. In consequence, they

provide excellent lookup performance in setups where the rule

set does not change often, such as static security policies.

However, if the classification system is used in dynamic envi-

ronments with frequent rule set changes at run time, such as

an SDN, the ability to quickly update the search structure is of

paramount importance. Unfortunately, existing approaches that

support dynamic updates either come with slow classification

performance [9] or require specific hardware setups [19], [24].

In this work, we contribute the SFL approach, which is

a technique to equip a given classification algorithm with

the ability to quickly process updates while still maintaining

high lookup performance. Specifically, we can augment an

arbitrary existing classification algorithm A (the Fast) with a

list-based update buffer B (the Small). Rule set updates for the

classification system, which are applied at system run time, are

not installed immediately in the search structure of A, but are

inserted in the update buffer B (the Lazy). When a network

packet is to be classified, its header fields are first matched

using A’s search data structure to compute a preliminary

classification decision. Subsequently, this decision is checked

based on the buffer contents whether it is in conflict with a rule

set update and is potentially modified. After sufficiently many

updates have been collected, the classification data structure

can be re-built once, thereby flushing the update buffer.

The main results of our evaluation are threefold: first, we

demonstrate that existing fast classification algorithms fail

to meet the requirements of highly dynamic environments,

which results in severe throughput penalties. Second, we show

that existing algorithms which support high update rates fall

short in terms of throughput. Third, we show that fast SFL-

“upgraded” algorithms perform significantly faster in dynamic

environments than both existing fast and updateable classifica-

tion algorithms. Specifically, some SFL-equipped algorithms

can perform about an order of magnitude faster than the state-

of-the-art dynamic algorithm Tuple Space Search [9], [25]

while processing up to 60 updates per second.

The remainder of this paper is structured as follows: in

Section II, we discuss related work. In Section III, we in-

troduce the packet classification and rule set update problems.

Section IV describes the proposed SFL algorithm, which is

subsequently evaluated in Section V. Finally, we conclude this

paper in Section VI.

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Sven Hager. Under license to IEEE. 43

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Sven Hager. Under license to IEEE.

DOI 10.1109/LCN.2016.125

43

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Sven Hager. Under license to IEEE.

DOI 10.1109/LCN.2016.125

43

II. RELATED WORK

Existing approaches to solve the packet classification prob-

lem can be subdivided into three not strictly disjoint categories:

classification algorithms, rule set optimization techniques,

and hardware-based approaches. This section discusses these

existing schemes and points out the differences to the proposed

SFL approach.

A. Classification Algorithms

Packet classification algorithms are at the heart of every

networked system, which has to distinguish network packets

based on their header data. The most straightforward classifi-

cation algorithm is a linear search through the installed rule

set: as the name suggests, each rule in the rule set is tested

whether it matches the currently regarded packet, until the first

matching rule is found. Tuple Space Search [9] is a hash-based

classification algorithm that partitions the rule set into equiv-

alence classes, which are searched by hashing certain parts of

the packet header. Both linear search and Tuple Space Search

have a small memory footprint and provide excellent update

performance if the rule set is to be modified, as the search

data structure can be updated incrementally. Accordingly, these

algorithms are implemented in classification engines such as

the netfilter/iptables [26] and ipfw [27] firewalls

or the Open vSwitch [25].

They stand in contrast to most other advanced classification

algorithms which trade memory footprint and especially up-

date latency for significantly better classification performance.

Decision tree algorithms, such as HiCuts [7] or HyperSplit [8],

transform the rule set into a multi-dimensional search tree

during a preprocessing step, which is traversed in order to clas-

sify incoming packets. Decomposition-based schemes like bit

vector algorithms [5], [6] and crossproducting approaches [10],

[11], such as RFC [10], first divide the multi-dimensional

classification problem into one-dimensional search problems,

which each can be solved efficiently through binary searches

or lookups in precomputed tables. The partial solutions of the

one-dimensional problems are subsequently merged in order

to obtain the desired classification result. Decision tree or

decompositional algorithms are typically significantly faster

than linear search or Tuple Space Search when it comes

to classification performance [25] for most but the smallest

rule sets. However, their search data structure preprocess-

ing and update times are comparatively time-consuming, as

demonstrated in Section V. This restricts their practical use to

scenarios where the underlying rule set does not change too

frequently.

With SFL, we propose a methodology to combine the

good classification performance of static algorithms with the

adaptability of dynamic algorithms in order to obtain the

benefits of both worlds.

B. Rule Set Optimization

Rule set optimization aims at improving the classification

performance of a packet classification engine by adapting

the rule set in a way that the resulting search data structure

can be traversed faster at run time. To this end, rule set

optimizers modify the rule set before it is installed in the

classification engine. This is done by either reducing the

number of rules [12]–[14] or by exploiting certain matching

capabilities of the underlying classification engine in order

to reduce the number of tests that have to be performed for

incoming packets [15], [16]. Hence, rule set optimization can

be considered orthogonal to SFL, as it can be executed on the

initial rule set before it is installed in the classification engine.

C. Hardware-based Approaches

In order to push the achievable classification throughput

to the limit, some classification architectures utilize special-

purpose hardware with massively parallel computing capa-

bilities, such as GPUs (Graphics Processing Unit), TCAMs

(Ternary Content-Addressable Memory), or FPGAs (Field-

Programmable Gate Array). These approaches are often based

on a parallel and/or pipelined implementation of a classifica-

tion algorithm [18], [19], [21], [22], [28] or match incoming

packets against the entire rule set in parallel [20], [23], [24].

Although some of these architectures support dynamic rule set

updates [19], [23], [24], [28], they are restricted to a specific

hardware setup. In contrast, the proposed SFL approach is

more general: it does neither require a specific hardware

platform, nor does it assume a specific matching algorithm.

III. PROBLEM STATEMENT

In this section, we first introduce the reader to the packet

classification problem. Building thereupon, we subsequently

introduce the rule set update problem, which is mainly ad-

dressed in this paper.

A. The Packet Classification Problem

The goal of packet classification is to find the most highly

prioritized rule in a rule set that matches a selected set of

header fields of an incoming network packet. Formally, the

d-dimensional packet classification problem can be defined as

follows [3]: let H be a packet header, which is modelled as

a d-tuple

H = (h1, . . . , hd) ∈ U ,

where U = D1 × . . . × Dd. The Dj are the domains of the

individual header fields, e. g., the interval [0, 232− 1] for IPv4

addresses or [0, 216− 1] for TCP/UDP ports. Furthermore, let

R be a rule set over U that consists of N rules Ri, i. e.,

R = 〈R1, . . . , RN 〉.
The order of the rules Ri in R implies priorities in case

more than one rule matches a given packet. Without loss of

generality, we assume that a rule with a smaller index in R
has a higher priority. Each rule Ri ∈ R is a (d + 1)-tuple

consisting of an action Ai and d checks Ci
j with

Ri =
(
Ci

1, . . . , C
i
d, A

i
)

.

Each check Ci
j is a function

Ci
j : Dj → {true, false}

444444

that performs a test on the jth header field of H . These

tests are typically simple equality, range, or prefix tests. For

example, it could be tested whether the protocol header field

equals 17 (for UDP) or if the destination IP address is in the

subnet 1.2.3.0/24. A rule Ri matches a packet header H iff

all tests succeed on the corresponding header fields, i. e., iff

∀j ∈ {1, . . . , d} : Ci
j(hj) = true.

Two rules Ri and Rk, i �= k, are said to overlap iff a header

H ∈ U exists, such that both Ri and Rk match H . The

objective is to find the smallest index i∗ for a given packet

header H so that rule Ri∗ matches H . Subsequently, this

matching index i∗ is used to look up the action Ai∗ that

determines the packet’s fate (e. g., DROP or ACCEPT). We

call an algorithm A a classification algorithm, if it computes

the correct matching index i∗ for a given rule set R and a

given packet header H ∈ U .

B. The Rule Set Update Problem

In an actual implementation of a packet classification sys-

tem, the rule set R is transformed into a suitable search

data structure SR,A for a classification algorithm A. SR,A is

traversed by A to compute the matching indices. We denote

the computation of SR,A by spawnA(R) and the computation

of the matching index for a packet header H using SR,A
by classify(SR,A, H). Furthermore, we denote the insertion
of a rule R∗ at index i ∈ {1, . . . , N} into a rule set

R = 〈R1, . . . , RN 〉 by

insert(R∗, i,R) := 〈R1, . . . ,Ri−1, R
∗, Ri, . . . , RN 〉.

The deletion delete(i,R) is defined likewise as

delete(i,R) := 〈R1, . . . ,Ri−1, Ri+1, . . . , RN 〉.
An update to a rule set R is either a deletion or an insertion.

If the rule set R changes to another rule set R′ due to a

sequence of update operations Δ = 〈Δ1, . . . ,Δm〉, SR,A must

be adjusted in order to correctly classify packets with respect

to the rule set change. This can either happen incrementally or

through a complete rebuild of the search data structure. Let the

expression Δ(SR,A) denote the incrementally updated search

structure, and SR′,A the search structure which is obtained

through spawnA(R′). It is indispensable that Δ(SR,A) and

SR′,A are equivalent, i. e.,

∀H ∈ U : classify(Δ(SR,A), H) = classify(SR′,A, H). (1)

Unfortunately, for many fast classification algorithms, both

spawnA(R′) as well as incremental updates take a consid-

erable amount of time. In fact, for most decompositional or

decision tree algorithms there are no known efficient update

operations, therefore, the computation of Δ(SR,A) is actually

implemented as spawnA(R′). Hence, frequent rule set updates

can severely diminish the achievable classification throughput.

In this paper, we address this problem and propose an

approach that allows, for an arbitrary classification algorithm

A, the fast computation of Δ(SR,A) that is correct with

respect to (1) and can be searched efficiently.

(a) SFL classification.

(b) Non-SFL classification.

Fig. 1: Control flow in non-SFL and SFL classification.

IV. THE SFL APPROACH

The main idea of the SFL approach is to equip an arbitrary

classification algorithm A, as defined in Section III, with the

ability to perform quick updates on A’s search data structure

SR,A for an initial rule set R. Hence, the SFL technique

can be regarded as an algorithm-agnostic “upgrade” for a

classification algorithm A. Accordingly, we denote an SFL-

augmented algorithm A as SFL(A). SFL(A) is a classification

algorithm which mainly relies on the search structure SR,A for

an initial rule set R to classify network packets, and uses an

update buffer B as well as a master rule set RM to quickly

process a sequence of incoming rule set updates Δ. At each

point, the master rule set always stores the up-to-date rule set,

where all updates Δi ∈ Δ have been applied to R. Initially,

RM is equal to R.

If a packet with header H enters the classification system,

it is first classified by the search data structure SR,A, which

computes a temporary index itmp. However, itmp is possibly

incorrect due to updates to the rule set (for example, rule Ritmp

could have been deleted). Therefore, the update buffer B is

used to correct the index itmp to the actual matching index

i∗. Finally, i∗ is used to look up the action A∗ in RM that

belongs to Ri∗ . In contrast, a non-SFL classification algorithm

would simply apply its search structure to H to compute i∗.
However, it is forced to directly apply all rule set updates to

SR,A, which could result in long update durations where no

fast classification can happen. Figure 1 sketches both the SFL

and the classic approach. In the remainder of this section, we

explain in detail how insert, delete, and classify operations are

performed using the update buffer B, the (non-updated) search

data structure SR,A, and the master rule set RM .

A. Rule Insertion

The first update operation being considered is the insert

operation insert(R∗, i,RM) which inserts the rule R∗ into

RM at position i. Inserting a rule into RM causes an index

shift of all rules located behind the inserted rule. If rules

located in front of the inserted rule have been inserted or

deleted previously, i changes accordingly, so that i equals

the rule’s actual position relative to the master rule set RM .

Figure 2 shows a set of rules R1 to R4 that is incorporated into

SR,A using the spawnA(R) function associated with A. The

update buffer is empty because no updates occurred so far. In

this example, rules match one dimension and specify an action.

454545

Fig. 2: SFL data structure without updates.

Now consider an insertion of a new rule R∗ at index 3 into the

master rule set RM , as shown in Figure 3. In consequence,

the matching indices which are computed for all rules located

behind the inserted rule must be incremented by one in order

to be correct. For example, classification of a packet which

is matching rule R3 has to return a matching index of 4.

Thus, only rules located behind R∗ are actually affected by

that insertion. If a rule Rold is located above R∗, neither is its

priority changed nor can it be overruled by R∗. However, if

Rold is located behind R∗, R∗ and Rold may overlap, meaning

that R∗ could match some packets that originally would have

matched Rold. For example, in Figure 2, the search structure

SR,A computes the temporary index itmp = 3 from R3 for

a header H1 with value h1 = 2. Since no updates have yet

occured in Figure 2, i∗ = itmp. According to RM in Figure 3,

the newly inserted rule R∗ matches H1, too, yielding i∗ = 3
because R∗ is the third rule in the updated master rule set. H2

with h1 = 4 matches R3 in both cases, resulting in i∗ = 3
before the insertion of R∗ and in i∗ = 4 after R∗’s insertion.

The required index transformations are implemented by the

update buffer B. In case of an insertion of rule R∗ this buffer

checks which rule Rj is the first one behind the inserted rule

that exists in the initial rule set R. When Rj is determined,

a new update node with index j is created and inserted into

a linked list. Update nodes store the index j and – in case

they represent an insertion – a list of inserted rules. All rules

inserted directly in front of a rule present in SR,A are stored

in the same node in the order of their priorities. If a rule

is inserted behind the lowest-prioritized rule R|R| in R (i. e.,

there is no rule index behind the new rule which determines the

index of the update node), the update node with index |R|+1
is chosen. The procedure that inserts R∗ into the update buffer

B is depicted in Algorithm 1. For a rule R, the R.old_index
variable refers to R’s index in the original rule set R.

B. Rule Deletion

The second possible update operation supported by SFL

is the delete operation delete(i,RM), which deletes the rule

Ri from RM which is located at position i. Rules in the

master rule set RM either already exist in R (and are therefore

incorporated in SR,A) or have been inserted by an insert

operation as described above. Therefore, a deletion falls into

one of two categories: the first scenario is deleting a rule R∗

Fig. 3: SFL data structure after one rule insertion.

Algorithm 1 Insert rule R∗ into update buffer B at index i.

1: function INSERT(Update Buffer B, Rule R∗, Index i,
Master Rule Set RM)

2: j ← GET_NEXT_OLD_RULE(RM , R∗).old_index

3: node ← SEARCH_NODE(B, j)

4: if node = invalid then
5: node ← CREATE_NODE(B, j)

6: INSERT_RULE_IN_NODE(node, R∗)
7: return

that has been inserted by a previous insert operation. In this

case, R∗ is simply removed from the corresponding hybrid

node in the update buffer B. In the other case, a rule from the

original rule set R is to be deleted, so that this information

has to be represented in B.

Consider the situation in Figure 3 as a starting point and

assume that R2 is picked for deletion. R2’s index in RM is

2. The resulting data structure is displayed in Figure 4, where

RM no longer contains R2 and the update buffer contains one

more update node. A deletion is encoded by creating a new

(or retrieving the existing) update node with index i. In order

to distinguish between insertions and deletions, every update

node explicitly stores a delete flag, which is set in case of a

deletion. This flag is denoted “D” in Figure 4.

Assume that a packet header H3 with h1 = 13 arrives at

the SFL(A) search structure. SR,A calculates a temporary

matching index of itmp = 2. Before the deletion occurred,

the update buffer passes this index unchanged as the final

matching index i∗ because no changes are stored that affect

rule R2. After the delete operation, however, the update buffer

has indeed information on matching index itmp = 2. The

active delete flag in update node 2 indicates that the highest-

prioritized matching rule in R has been deleted and is no

longer valid. Therefore, every rule located behind the deleted

rule Ri in the master rule set RM might match H3 and has

to be searched accordingly. This results in a search for the

first matching rule in the master rule set suffix, i. e., all rules

464646

Fig. 4: SFL data structure with one insertion and one deletion.

that were located behind R2 in RM immediately before its

deletion. Thus, rules R∗, R3, and R4 are tested. R4 at index

4 in RM matches H3. Hence, the final matching index i∗

calculated by SFL(A) is 4.

The procedure for deleting rule Ri is listed in Algorithm 2.

In case Ri does not exist in the original rule set R (i. e., its

old_index equals 0), it is deleted from RM and its containing

update node is removed from the update buffer. If the node is

otherwise empty, the node itself is removed, too. If Ri ∈ R,

the mentioned activation of the delete flag in the corresponding

update node takes place. Update nodes can concurrently hold

information on both deletions and insertions by having an

active delete flag and a non-empty list of inserted rules.

C. Classification

Despite the newly introduced ability to handle dynamic

rule set updates, the most commonly executed function of

the SFL(A) search structure will be the classification function

classify(SRM ,SFL(A), H) for a header H . Algorithm 3 shows a

detailed overview of this function. Internally, the first step of

a call to that procedure generates a temporary matching index

itmp using SR,A. After that, the first update node in B’s list of

Algorithm 2 Delete rule at index i from the update buffer B.

1: function DELETE(Update Buffer B, Index i, Master Rule

Set RM)

2: rule ←LOOKUP_IN_MASTER_RULESET(RM , i)
3: if rule.old_index= 0 then
4: n← DETERMINE_CONTAINING_NODE(B, rule)

5: DELETE_RULE_FROM_NODE(B, n, rule)

6: else
7: node ← SEARCH_NODE(B, rule.old_index)

8: if node = invalid then
9: node ← CREATE_NODE(B, rule.old_index)

10: SET_DELETE_FLAG(B, node)

11: return

nodes is retrieved and checked if it has an index less or equal

than itmp. If true, all rules that have been inserted into that

node are checked if one of them matches H . Such rules are

more highly prioritized than the rule found at itmp. Therefore,

if a rule Rk of these rules matches, k is retrieved, i∗ is set to

k, and the procedure finishes. If no matching rule is found, an

offset counter is updated where the number of inserted rules in

the current node is added to the counter. A traversed node with

an active delete flag decreases that counter. This operation is

necessary due to the shifted indices in RM after updates have

been applied. For example, in Figure 3 rule R4 is shifted to

index 5 in RM due to the insertion of R∗. After updating that

offset counter, the next update node is retrieved.

When a node is found that carries itmp as its index, that

node is checked for an active delete flag. If that check is

successful, two deductions can be made: first, there was no

insertion of a more highly prioritized matching rule in RM ,

otherwise classification would have ended already. Second, the

rule itmp has been deleted and therefore is no longer valid.

These two conditions imply that any possibly matching rule

must be located behind the original position of rule itmp in

RM . Thus, a linear search in RM starting at the position of

the removed rule is executed that determines if there exists

any matching rule. The result of that search is returned as

the final matching index i∗. However, if itmp is the highest

prioritized matching index, the final matching index i∗ is set

to itmp, shifted by the calculated index offset.

D. Rebuild Operations

The downside of storing rule set updates in the update

buffer is the degradation of classification performance with an

increasing number of updates. Each update causes the creation

of a new node or at least the insertion of a pointer to a rule

from RM which may be traversed during the lookup process.

Algorithm 3 Perform a classify operation with SFL(A).
1: function CLASSIFY(Master Rule Set RM , SRM ,SFL(A) =

(Search Structure SR,A, Update Buffer B), Header H)

2: i∗ ← invalid

3: offset ← 0
4: itmp ← CLASSIFY_HEADER(SR,A, H)

5: node ← H.HEAD

6: while (node.index ≤ itmp) or (node �= invalid) do
7: i∗ ← SEARCH(node.inserted_rules, H)

8: if i∗ �= invalid then
9: return i∗

10: if node.delete_flag = 1 ∧ node.index = itmp then
11: return RULESET_SEARCH(RM , H , itmp)

12: offset ← offset + LEN(node.inserted_rules)

13: offset ← offset − (node.is_delete_node ? 1 : 0)

14: node ← node.next

15: if i∗ = invalid then
16: i∗ ← itmp+ offset

17: return i∗

474747

After several updates, the performance penalty induced by the

growing size of B requires a rebuild of SR,A using RM in

order to restore matching performance to the level usually

reached by A. Depending on A, a rebuild operation takes a

considerable amount of time. Therefore, rebuilds should not

be triggered too often. On the other hand, executing rebuilds

too seldom may result in poor classification performance over

time. Thus, we propose to use an update threshold δ, which

determines how many update operations can be applied to the

update buffer before the search data structure of A is rebuilt.

Note that if δ = 0, then SFL(A) behaves exactly like A.

V. EVALUATION

In this section, we evaluate the proposed SFL approach by

comparing it to the existing classification algorithms linear

search, Tuple Space Search [9], Bit Vector Search [5], Hy-

perSplit [8], and RFC [10]. We choose this set of algorithms

because they cover the most important flavors of classification

algorithms, as defined in [4]: exhaustive search (linear search),

decomposition approaches (Bit Vector search, RFC), decision
tree schemes (HyperSplit), and tuple space techniques (Tuple

Space Search). Furthermore, this algorithm selection exhibits

widely different algorithmic ideas as well as distinctive update

and classification performances, which makes them a suitable

test base for the proposed algorithm-agnostic SFL approach.
In our evaluation, we first provide a complexity analysis

of the relevant operations update (i. e., insert or delete) and

classify. Second, we conduct a series of experiments in order to

evaluate the classification and update performances using our

implementations of each of the abovementioned algorithms as

well as their SFL-enhanced variants.

A. Complexity Analysis
The SFL(A) algorithm can perform δ consecutive rule set

updates in O(δ + N) steps per update, as both the update

buffer B and the master rule set RM are modified. Here,

N is the number of rules in RM , while δ is the update

threshold of B. As the (δ + 1)-st update operation requires

a rebuild of the search data structure of the algorithm A as

well as the deletion of existing nodes in the update buffer, it

takes the same number of steps as spawnA(RM) plus O(δ)
steps. SFL(A)’s classification performance depends on the

time needed by classify(SR,A, H), since A’s search structure

is queried first. Subsequently, the update buffer B is searched,

which takes at most δ steps if no update node with active

delete flag is hit, and otherwise at most N steps due to the

subsequent linear search in the master rule set RM . Note,

however, that this linear search starts at the index of the deleted

rule, which will reduce the cost of the linear search, if any rule

but the first rule is deleted. Hence, classifying a packet header

H using SFL(A) takes classify(SR,A, H) plus O(N) steps in

the worst case. Table I summarizes the runtime complexities

for classification and update operations.

B. Isolated Operations Benchmark Scenario
In our first set of measurements, we investigated the rule

insertion, rule deletion, and classification performances of

the SFL approach in an isolated scenario. All experiments

were conducted on a machine with an Intel Xeon E5-1660v3

CPU with eight physical cores and 128 GB of main memory,

running Ubuntu 14.04 LTS. The classification algorithms were

implemented in C and compiled using gcc 4.8.4. For rule

set insertions, we used the ClassBench benchmark tool [29]

in order to generate ten different five-dimensional rule sets of

2,000 + k rules, where k represents the number of inserted

rules (k ∈ {10, 20, . . . , 100}). The used dimensions were

IPv4 source and destination addresses, the transport layer

protocol, as well as source and destination ports. For each

rule set of size 2,000 + k, we then removed k rules at

randomly chosen positions. That is, the initial rule sets and

search data structures in our experiment stored 2,000 rules.

Subsequently, we measured for each k, how long it takes to

execute k rule insertions of the previously removed rules into

the search data structure. We also conducted this experiment

for k rule deletions with ten different rule sets with 2,000
rules for each k. The results for insertion and deletion times

are shown in Figures 5a and 5b. It can be seen that the

classic variants of RFC, HyperSplit, and Bit Vector search

require large amounts of time to process k insertions and

deletions. In contrast, the linear search and Tuple Space Search

approaches can process updates several orders of magnitudes

faster, as they do not have to rebuild their search structures,

but instead perform incremental updates. Also, we observe that

the SFL(A) algorithms (A ∈ {RFC, HyperSplit, Bit Vector})
require the least amount of time, as the updates can be quickly

inserted into the update buffer. Note that we did not perform

a rebuild operation for the SFL algorithm versions in these

experiments.

Next, we measured the classification performance of the al-

gorithms after k updates by classifying ClassBench-generated

traces of 100,000 packet headers, which are uniformly dis-

tributed over the installed rule sets. The results are shown in

Figures 5c and 5d. It can be seen that non-SFL algorithms

with long update times clearly beat linear search and Tuple

Space Search in terms of classification performance, with RFC

TABLE I: Runtime complexities of classification algorithms

N = |RM | d = #dimensions W = CPU word width

Algorithm Operation Runtime Complexity

SFL(A)

spawn spawnA
update (≤ δ ops) O(δ +N)
update ((δ + 1)-st op) spawnA +O(δ)
classify classifyA +O(N)

Tuple Space Search
spawn / update O(N)
classify O(N)

Linear search
spawn / update O(N)
classify O(N)

RFC
spawn / update O(Nd)
classify O(d)

HyperSplit
spawn / update O(Nd)
classify O(d · log (2 ·N))

Bit Vector
spawn / update O(d ·N2)

classify O(d · log N + d·N
W

)

484848

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 10 20 30 40 50 60 70 80 90 100

U
p
d
a
te

 t
im

e
 (

lo
g
.)

 [
m

s
]

Number of inserted rules

SFL(RFC)
RFC

SFL(HyperSplit)
HyperSplit

SFL(Bit Vector)
Bit Vector

Linear search
Tuple Space Search

(a) Mean update durations for rule insertions, 90% conf. ivls.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 10 20 30 40 50 60 70 80 90 100

U
p
d
a
te

 t
im

e
 (

lo
g
.)

 [
m

s
]

Number of deleted rules

(b) Mean update durations for rule deletions, 90% conf. ivls.

10
0

10
1

10
2

10
3

10
4

 10 20 30 40 50 60 70 80 90 100

C
la

s
s
if
.
ti
m

e
 (

lo
g
.)

 [
m

s
]

Number of inserted rules

(c) Mean classification times after rule insertions, 90% conf. ivls.

10
0

10
1

10
2

10
3

10
4

 10 20 30 40 50 60 70 80 90 100

C
la

s
s
if
.
ti
m

e
 (

lo
g
.)

 [
m

s
]

Number of deleted rules

(d) Mean classification times after rule deletions, 90% conf. ivls.

Fig. 5: Benchmark results for deletions and insertions, 10 rule

sets for each data point, starting with 2,000 rules.

delivering the best performance. Furthermore, the plots exhibit

that the SFL variants of RFC, HyperSplit, and Bit Vector are

also considerably faster than linear search and Tuple Space

Search. However, we observe that with an increasing number

of updates the performance of the SFL algorithms degrades.

This was to be expected, as the update buffer, which is

searched linearly for each packet header, becomes larger. Also,

this confirms that rebuilds of the efficient search structure are

needed after a certain number of updates.

C. Timing Behaviour Benchmark Scenario

In the second set of experiments, we studied the behaviour

of the SFL approach and the other algorithms in a system

simulation over a time period of 10 seconds. This experiment

was conducted by a simulator which runs four threads: one

thread drives the classification algorithm, which is constantly

fed with packet headers by a second thread as fast as possible.

The third thread applies either 10, 100, 300, or 600 rule

insertions or deletions to the installed rule set in fixed intervals.

Finally, the last thread counts the number of processed packet

headers every 100 milliseconds. At the start of the experi-

ments, we installed a ClassBench-generated rule set with 2,000
rules. As in the previous experiments, the used traces were

also ClassBench-generated and uniformly distributed over the

rule sets. For each number of updates and operation type

combination, we executed ten measurements with different

rule sets and traces. The δ parameter was set to 20.

Figures 6a and 6b show an excerpt of this evaluation

series, namely the classification performance trend of classic

RFC, SFL(RFC), and Tuple Space Search over the 10-second

time span for 100 insertions and deletions, respectively. We

observe that Tuple Space Search is able to provide near-

constant throughput of processed headers, despite the update

operations that are issued every 100 ms. This can be explained

by the algorithm’s support for quick incremental updates. In

contrast, the non-SFL RFC algorithm exhibits a heterogeneous

performance: due to the fact that it has to rebuild its data

structure with every update operation, it can seldom demon-

strate its excellent classification performance; linear list search

is used as a fallback search structure while the rebuild is

active. The SFL(RFC) algorithm, in contrast, can deliver a

high throughput most of the time, as only every 21st update

leads to a complete rebuild, while the first 20 updates are

inserted into the update buffer. Furthermore, the plots exhibit

that each buffer update leads to a small performance penalty,

as the linear component in the SFL(RFC) structure grows.

However, its overall performance is clearly superior to both

Tuple Space Search and classic RFC.

The complete results for all algorithms, update frequencies,

and operation types are shown in Table II. The table shows

the mean number of processed headers in millions as well

as the mean number of updates that could be processed

over the 10-second measurement durations. All mean values

are shown with their respective 90% confidence intervals.

It can be seen that in most cases, the SFL(A) algorithms

can provide a significantly better throughput than both their

classic counterparts as well as the incrementally updateable

algorithms linear search and Tuple Space Search. When it

comes to update performance, we notice that the SFL variants

are always equal or superior to their classic counterparts.

However, we also point out that the SFL(HyperSplit) and

SFL(RFC) algorithms are inferior to linear search and Tuple

Space Search in this respect, because every 21st update is

still expensive. In contrast, SFL(Bit Vector) provides the same

update performance as the updateable approaches, with more

than a tenfold increase in throughput.

D. Influence of the δ parameter

Finally, we examined how the choice of δ influences the

achievable classification throughput as well as the number of

feasible updates during a certain time period. To this end,

494949

10
5

10
6

10
7

10
8

 0 1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(l
o
g
.)

 [
h
e
a
d
e
rs

/s
]

Time [s]

RFC
SFL(RFC)

Tuple Space Search

(a) 100 rule insertions, issued periodically every 100ms.

10
5

10
6

10
7

10
8

 0 1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(l
o
g
.)

 [
h
e
a
d
e
rs

/s
]

Time [s]

RFC
SFL(RFC)

Tuple Space Search

(b) 100 rule deletions, issued periodically every 100ms.

Fig. 6: Throughput results over 10 s, starting with 2,000 rules. Data points show the classification throughput [headers/s].

TABLE II: Measurement results for 10 second evaluation runs with continuously issued updates, 2,000 rules

Insert operations Delete operations
10 ops 100 ops 300 ops 600 ops 10 ops 100 ops 300 ops 600 ops

Linear search HP 1.30± 0.01 1.20± 0.01 1.00± 0.01 0.80± 0.01 1.30± 0.01 1.30± 0.01 1.20± 0.01 1.10± 0.01
UP 10.00± 0.00 100.00± 0.00 299.70± 0.24 599.70± 0.24 10.00± 0.00 100.00± 0.00 299.90± 0.16 599.70± 0.24

Tuple Space Search HP 2.70± 0.71 2.40± 0.62 2.40± 0.64 2.30± 0.62 2.70± 0.70 2.60± 0.67 2.60± 0.66 2.70± 0.72
UP 10.00± 0.00 100.00± 0.00 299.70± 0.24 557.20± 49.16 10.00± 0.00 100.00± 0.00 300.00± 0.00 567.40± 45.37
HP 27.70± 3.71 4.50± 1.71 2.00± 0.25 1.90± 0.31 26.60± 4.64 3.90± 1.81 2.20± 0.42 2.30± 0.40HyperSplit UP 9.90± 0.16 75.60± 12.49 72.20± 19.02 81.10± 18.17 9.40± 0.93 72.90± 15.62 85.30± 24.91 85.00± 22.99
HP 35.00± 0.61 28.70± 1.28 19.00± 2.83 11.20± 1.78 32.10± 0.50 23.00± 2.16 18.50± 1.22 12.70± 1.63SFL(HyperSplit) UP 10.00± 0.00 100.00± 0.00 273.90± 40.09 560.10± 31.38 10.00± 0.00 99.90± 0.16 300.00± 0.00 586.00± 21.44
HP 50.60± 22.93 16.00± 9.03 5.50± 2.92 4.50± 2.15 47.30± 21.82 13.00± 10.03 5.70± 2.89 5.30± 2.63RFC UP 8.30± 1.39 44.10± 23.72 75.80± 52.84 64.10± 41.28 8.20± 1.48 45.20± 22.36 77.80± 51.68 74.20± 48.93
HP 81.60± 2.52 43.60± 15.22 30.50± 15.11 21.80± 11.21 67.80± 2.56 29.80± 9.84 22.10± 10.13 17.50± 8.44SFL(RFC) UP 10.00± 0.00 75.70± 12.78 159.80± 60.53 288.20± 132.77 10.00± 0.00 72.90± 15.77 172.40± 57.63 288.60± 132.77
HP 34.60± 1.31 17.80± 3.16 8.00± 3.08 5.40± 0.88 34.40± 1.48 17.80± 2.82 9.00± 3.29 7.10± 1.51Bit vector UP 10.00± 0.00 100.00± 0.00 244.20± 16.07 264.30± 45.13 10.00± 0.00 100.00± 0.00 270.90± 8.68 324.90± 68.94
HP 32.40± 0.87 31.00± 1.04 27.90± 1.34 23.00± 1.61 30.70± 1.06 25.60± 0.96 24.00± 1.24 22.20± 1.15SFL(Bit vector) UP 10.00± 0.00 100.00± 0.00 299.70± 0.24 599.70± 0.24 10.00± 0.00 99.90± 0.16 299.90± 0.16 599.70± 0.24

HP: Mean number of processed headers in millions with 90% confidence intervals UP: Mean number of processed updates with 90% confidence intervals

we used the same experimental setup as in Section V-C,

but varied the δ parameter from 0 to 100 in steps of 5.

Figure 7 shows the total number of classified headers after

10 and 25 seconds, with 100 issued updates (either insertions

or deletions) evenly distributed over the measurement time

span. The figures reveal that for δ ≤ 10, the SFL variants of

Bit vector search, HyperSplit, and RFC always perform better

than their non-enhanced counterparts. However, if δ is chosen

too large, the throughput finally starts to decrease and can even

become worse than the original algorithm due to the search

overhead introduced by the update buffer. This characteristic

is particularly well visible for the Bit vector algorithm in

Figures 7a and 7d and can be explained by its relatively short

update times, in comparison to HyperSplit and RFC.

The number of updates that could be carried out during

the measurement periods is shown in Figure 8. Figures 8a

and 8d indicate that both variants of the Bit vector search can

process all 100 issued updates. In contrast, SFL(HyperSplit)

and SFL(RFC) require δ parameters of 10 and 50, respectively,

to handle all issued updates, as shown in Figures 8b, 8c, 8e,

and 8f. As expected, the figures also show that the SFL variants

of HyperSplit and RFC can always process more updates than

their non-enhanced counterparts for δ > 0.

VI. CONCLUSION

We proposed and evaluated the SFL approach, a technique

to increase the update responsiveness of fast packet classi-

fication algorithms. The idea behind SFL is to provide an

update buffer that lazily propagates rule set changes into the

core search data structure of the used classification algorithm.

Due to its algorithm-agnostic design, SFL can be used with

any classification algorithm that computes the index of the

most highly prioritized matching rule. Furthermore, SFL is

tunable: through the δ parameter, it can be configured to

optimize the search data structure more or less aggressively.

Our evaluation results show that the SFL variants of the fast Bit

Vector, HyperSplit, and RFC algorithms perform significantly

better than their non-SFL counterparts in both update and

classification performance in highly dynamic environments.

In particular, the SFL(Bit Vector) algorithm yields the same

update responsiveness as linear search and Tuple Space Search

at a tenfold classification performance increase.

ACKNOWLEDGEMENT

We would like to express our gratitude to the BMWi

(German Federal Ministry of Economics and Energy), who

funded this research in the context of the HARDFIRE project.

REFERENCES

[1] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core
routers: Is there an alternative to CAMs?” in INFOCOM ’03, Mar. 2003,
pp. 53–63.

[2] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[3] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE
Network: The Magazine of Global Internetworking, vol. 15, no. 2, pp.
24–32, Mar. 2001.

505050

 0

 30

 60

 90

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 h

e
a

d
e

rs
[m

ill
io

n
s
]

δ parameter

SFL [10s]
Non-SFL [10s]

SFL [25s]
Non-SFL [25s]

(a) Bit vector, 100 rule insertions issued.

 0

 30

 60

 90

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 h

e
a

d
e

rs
[m

ill
io

n
s
]

δ parameter

SFL [10s]
Non-SFL [10s]

SFL [25s]
Non-SFL [25s]

(b) HyperSplit, 100 rule insertions issued.

 0

 30

 60

 90

 120

 150

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 h

e
a

d
e

rs
[m

ill
io

n
s
]

δ parameter

SFL [10s]
Non-SFL [10s]

SFL [25s]
Non-SFL [25s]

(c) RFC, 100 rule insertions issued.

 0

 30

 60

 90

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 h

e
a

d
e

rs
[m

ill
io

n
s
]

δ parameter

(d) Bit vector, 100 rule deletions issued.

 0

 30

 60

 90

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 h

e
a

d
e

rs
[m

ill
io

n
s
]

δ parameter

(e) HyperSplit, 100 rule deletions issued.

 0

 30

 60

 90

 120

 150

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 h

e
a

d
e

rs
[m

ill
io

n
s
]

δ parameter

(f) RFC, 100 rule deletions issued.

Fig. 7: Mean number of processed headers after 10 and 25 seconds with varying δ, 100 updates issued, 90% conf. ivls.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 u

p
d

a
te

s

δ parameter

SFL [10s]
Non-SFL [10s]

SFL [25s]
Non-SFL [25s]

(a) Bit vector, 100 rule insertions issued.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 u

p
d

a
te

s

δ parameter

SFL [10s]
Non-SFL [10s]

SFL [25s]
Non-SFL [25s]

(b) HyperSplit, 100 rule insertions issued.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 u

p
d

a
te

s

δ parameter

SFL [10s]
Non-SFL [10s]

SFL [25s]
Non-SFL [25s]

(c) RFC, 100 rule insertions issued.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 u

p
d

a
te

s

δ parameter

(d) Bit vector, 100 rule deletions issued.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 u

p
d

a
te

s

δ parameter

(e) HyperSplit, 100 rule deletions issued.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100P
ro

c
e

s
s
e

d
 u

p
d

a
te

s
δ parameter

(f) RFC, 100 rule deletions issued.

Fig. 8: Mean number of processed updates after 10 and 25 seconds with varying δ, 100 updates issued, 90% conf. ivls.

[4] D. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Computing Surveys, vol. 37, no. 3, pp. 238–275, Sept. 2005.

[5] T. Lakshman and D. Stiliadis, “High-speed policy-based packet for-
warding using efficient multi-dimensional range matching,” in SIG-
COMM ’98, Aug. 1998, pp. 203–214.

[6] F. Baboescu and G. Varghese, “Scalable packet classification,” in SIG-
COMM ’01, Aug. 2001, pp. 199–210.

[7] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in HOTI ’99, Aug. 1999, pp. 34–41.

[8] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in INFOCOM ’09, Apr. 2009,
pp. 648–656.

[9] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” in SIGCOMM ’99, Aug. 1999, pp. 135–146.

[10] P. Gupta and N. McKeown, “Packet classification on multiple fields,” in
SIGCOMM ’99, Aug. 1999, pp. 147–160.

[11] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” in SIGCOMM ’98, Aug. 1998, pp. 191–
202.

[12] A. Liu and M. G. Gouda, “Complete redundancy detection in firewalls,”
in DBSec ’05, Aug. 2005, pp. 193–206.

[13] A. Liu, E. Torng, and C. Meiners, “Firewall compressor: An algorithm
for minimizing firewall policies,” in INFOCOM ’08, Apr. 2008, pp. 691–
699.

[14] J. Daly, A. Liu, and E. Torng, “A difference resolution approach to com-
pressing access control lists,” IEEE/ACM Transactions on Networking,
vol. 24, no. 1, pp. 610–623, Feb 2016.

[15] S. Hager, S. Selent, and B. Scheuermann, “Trees in the list: Accelerating
list-based packet classification through controlled rule set expansion,” in
CoNEXT ’14, Dec. 2014, pp. 101–107.

[16] S. Hager, P. John, A. Fiessler, and B. Scheuermann, “Minflate: Com-

bining rule set minimization with jump-based expansion for fast packet
classification,” in ANCS ’16, Mar. 2016, pp. 115–116.

[17] H. Hamed and E. Al-Shaer, “Dynamic rule-ordering optimization for
high-speed firewall filtering,” in ASIACCS ’06, Mar. 2006, pp. 332–342.

[18] T. Ganegedara and V. Prasanna, “StrideBV: Single chip 400g+ packet
classification,” in ReConFig ’12, Dec. 2012, pp. 1–6.

[19] B. Vamanan and T. Vijaykumar, “TreeCAM: Decoupling updates and
lookups in packet classification,” in CoNEXT ’11, Dec. 2011, pp. 1–12.

[20] S. Hager, F. Winkler, B. Scheuermann, and K. Reinhardt, “MPFC:
Massively parallel firewall circuits,” in LCN ’14, Sept. 2014, pp. 305–
313.

[21] M. Varvello, R. Laufer, F. Zhang, and T. Lakshman, “Multi-layer packet
classification with graphics processing units,” in CoNEXT ’14, Dec.
2014, pp. 109–120.

[22] S. Zhou, S. Singapura, and V. Prasanna, “High-performance packet
classification on GPU,” in HPEC ’14, Sept. 2014, pp. 1–6.

[23] A. Fiessler, S. Hager, B. Scheuermann, and A. Moore, “HyPaFilter: A
versatile hybrid FPGA packet filter,” in ANCS ’16, Mar. 2016, pp. 25–36.

[24] D. Shah and P. Gupta, “Fast incremental updates on ternary-CAMs for
routing lookups and packet classification,” in HOTI ’00, Aug. 2000.

[25] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
NSDI ’15, May 2015, pp. 117–130.

[26] “The netfilter.org project,” www.netfilter.org, last access: August 9, 2016.
[27] “IPFW firewall,” www.freebsd.org/cgi/man.cgi?ipfw, last access: August

9, 2016.
[28] Y. Qu and V. Prasanna, “High-performance and dynamically updatable

packet classification engine on FPGA,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 1, pp. 197–209, Jan 2016.

[29] D. Taylor and J. Turner, “ClassBench: a packet classification bench-
mark,” IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 499–
511, June 2007.

515151

