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Abstract—Datacenter transport has attracted much recent

interest, however, most proposed improvements require changing

the datacenter fabric, which hinders their applicability and

deployability over commodity hardware. In this paper, we present

a novel congestion controller, Logistic Growth Control (LGC), for

datacenters which does not require changes to the datacenter fab-

ric. LGC uses a similar ECN marking as in DCTCP, but adapts

to congestion using the logistic growth function. This function

has been proven to have nice characteristics including stability,

convergence, fairness, and scalability, which are very appealing

for congestion control. As a result, our LGC mechanism operates

in the datacenter network in a more stable and fair manner,

leading to less queuing and latency. LGC also behaves better

than DCTCP, and it converges to the fair share of the bottleneck

link capacity irrespective of the Round-Trip-Time (RTT). We

discuss the stability and fairness of LGC using a fluid model,

and show its performance improvement with simulations.

I. INTRODUCTION

Standard transport protocols, such as the Transmission Con-
trol Protocol (TCP), do not perform well in datacenters [1].
Optimizing both the end systems and network fabric to the
datacenter environment (e.g. [2]) has many benefits, but often
proves difficult or impossible to deploy (see [3]), and the net-
work fabric needs special approaches such as [4] to be able to
run the new algorithm. In addition, in spite of the performance
improvements achieved by custom-built datacenter fabrics,
the price differences of commodity versus non-commodity
networking hardware, especially at a large scale, has been a
strong motivation towards using commodity hardware [5], [6].

Another approach in datacenters has been to focus on
easily deployable solutions. These include purely end-system
modifications, such as Data Center TCP (DCTCP) [1]) as
well as scheduling transmissions [7], [8], though the later
has scalability concerns due to their complexity or the use
of a centralized arbiter [9]. Hence, like DCTCP [1], we too
focus on an easily deployable mechanism. Such a mechanism
operates purely at the transport layer of end systems and does
not require changes to network equipments such as switches
and routers.

Our work is inspired by logistic growth in nature [10] (see
section II-A). We build upon earlier work that has found
logistic growth to be a generally useful function for congestion
control [11], [12], [13], and present the design and simulation-
based evaluation of a new congestion controller for datacenters
that is based on logistic growth. Cornerstones of our design
are:

• Similar to DCTCP, we let packets be ECN-marked
when the instantaneous queue length exceeds a threshold
(which can be achieved using a special configuration of
the common RED Active Queue Management (AQM)
mechanism, and hence needs no hardware changes).
However, different from DCTCP where this threshold is
a function of the Bandwidth⇥Delay Product (BDP) [1],
which can be very large in modern datacenters [14], our
threshold is always set to only one packet, irrespective of
the BDP.

• We utilize a similar method of echoing ECN (acks and
delayed acks) as DCTCP. However, how sources react
to ECN signals is governed by our new congestion
controller.

• We do not let the queue grow, neither do we let the queue
length oscillate a lot. We achieve this by using a more
stable congestion controller that is based on the logistic
growth function. This function has stability properties
when used in congestion control (see Section IV-C), and
lets us attain fairness among flows irrespective of the
RTT, which is not the case for TCP and DCTCP.

Through presenting an analytical model, we discuss LGC
properties, and through simulation in OMNeT++ [15], we
show that it works under various scenarios. Simulation results
show that it can reduce the queue length and latency, and it
attains fairness among flows with heterogeneous RTTs.

Section II presents a congestion controller model based on
the logistic growth function. In Section III we develop our
congestion controller based on this model and then analytically
evaluate it in Section IV. We show how it can be further
improved in Section V before evaluating the performance of
our logistic growth based congestion controller through sim-
ulations in Section VI. We finish with an overview of related
work in Section VII and our conclusions in Section VIII.

II. CONGESTION CONTROLLER MODEL

A. Logistic Growth

The Logistic Growth (LG) function is often used to specify
the growth of a population/species over time. It is described
by the differential equation

˙

N =

rN(t)(K �N(t))

K

(1)
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TABLE I
NOTATIONS

Symbol Description

S the number of competing flows/species
xi the normalized rate of flow i

xi(0) the initial rate/population of flow/species i

ri the growth rate of flow i

aij the competitive effect of species i on species j

l(t) or l[n] S�1
S times the total load on the bottleneck link

l̂i(t) or l̂i[n] the approximation of l(t) and l[n] respectively
c(t) or c[n] the ECN-marking process

x̂i(t) or x̂i[n] an approximation of the fair sending rate of source i

K the carrying capacity: the source’s maximum sending
rate (the normalization factor)

k the ratio of the capacity of the bottleneck link to K

var(t) is used to represent a continuous time variable
var[n] is used to represent discrete variable at epoch n

where N is the size of a population, K the so-called “carrying
capacity” (the value that the equation converges to), and r the
maximum per capita growth rate for a population. We use
the dot notation for time differentiation, i.e. ˙

N =

dN

dt

. Table I
summarizes the notation we use throughout the paper.

The idea of growth constrained by a capacity limit has
direct parallels with network congestion control. It allows us
to draw upon the large body of analytic research work on
this model and its enhancements (e.g. [16]) which has proven
nice characteristics including stability, convergence, fairness,
and scalability. These properties make LG very appealing for
congestion control [13].

We normalize (1) by defining x(t) = N(t)/K, which yields

ẋ = rx(t) (1� x(t)) (2)

with the solution:

x(t) =

1

1 + (

1

x(0)

� 1)e

�rt

(3)

where x(0) denotes the initial population. Clearly,
lim

t!1 x(t) = 1. In the rest of the paper, we use LG
in this normalized form.

Fig. 1 plots (3) for different values of r, which affects
the speed of convergence. In this diagram, there is one
species with the normalized initial population of 0.1. We see
that larger values of r result in a faster convergence to the
carrying capacity 1. The LG function (3), however, models the
population of only one species. When there is a competition
among a number of species for a common resource, the
competition is modeled using the Lotka-Volterra model, which
can also parallel different network sources competing for
shared network capacity.

B. Lotka-Volterra Competition Model

We consider the general Lotka-Volterra model of compe-
tition [17], where S species compete for a common limited
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Fig. 1. Growth rate effects on the population growth of LG. x(0) = 0.1.

resource according to the Logistic Growth equation

ẋ

i

= x

i

r

i

0

@
1�

SX

j=1

a

ij

x

j

1

A (4)

where r

i

> 0 denotes the growth rate of species i.
A = (a

ij

) 2 RS⇥S is called the community matrix [18],
where the value of a

ij

determines the competitive effect of
species i on species j.

We define matrix A as

a

ii

=

2S � 1

S

, a

ij

=

S � 1

S

8i 6= j. (5)

When a

ij

> 0 8i 6= j, all species i have a competitive effect
on all species j. This parallels network flows competing with
one another. However if a

ij

and a

ji

have different signs, the
interactions are more complex with predation between species.
This can be used for more complex network analysis, but is
beyond the scope of this paper.

The definition of A directly affects the stability of the
system represented by (4) [19]; in the following, we elaborate
more on why we define A as (5).

1) Equilibrium: The equilibria of (4), denoted by x

⇤ in
the vector form with elements x

⇤
i

, are determined by solving
the system of equations ẋ

i

= 0 8i. This implies that either
x

i

= 0 or 1�
P

S

j=1

a

ij

x

j

= 0. If no species dies out, x
i

> 0

(or for network all flows are sending), and using (5), the only
equilibrium point we get is

x

⇤
i

=

1

S

. (6)

Thus all species, or flows in our case, converge to an equal
share of the capacity, jointly converging to 1.

2) Stability: It can easily be shown that because in our
case matrix A is symmetric with positive real elements,
its eigenvalues are real and positive. According to (5),
a

ii

> a

ij

8i 6= j, which makes all the pivots of A positive.
This accordingly implies that all eigenvalues of A are positive.
Thus the system represented by (4) is stable around the
equilibrium (6) [20]. The symmetric property of A with
a

ij

> 0 results in another nice property of the model: the
above equilibrium becomes globally stable because there can
be found a positive definite Lyapunov function minimized
at the equilibrium with positive values at other points [20],
[16]. In the networking context, this means that all network
flows competing for the bottleneck link capacity using (4) will
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Fig. 2. Competition of 10 species (the solid lines) with ri = 0.5 based on
the LV system. The dashed line is the total population.

eventually converge to a stable equilibrium (6), irrespective of
their initial sending rate.

3) Numerical evaluation: To illustrate how the system of
equations presented in (4) behaves, a sample trajectory of
10 species is plotted in Fig. 2. Each species starts with an
initial population of 0.01, but at different time instants. All the
numbers are normalized with the carrying capacity equal to 1.
It is clearly seen in Fig. 2 how each species’ population grows
until it receives its fair share of the total capacity, which is 0.1
once all 10 species have joined at around 400. As species leave
the competition one by one, meaning that they are removed
from the system, we can observe how the system converges to
the new equilibrium. The stable adaption for varying numbers
of species parallels varying number of network flows and how
capacity is shared between them in the networking context.

III. LOGISTIC GROWTH CONTROL (LGC)

A. Congestion Controller

Applying (4) to the context of a distributed congestion
controller that operates at discrete time intervals, we write (4)
with (5) as follows:

x

i

[n+ 1] =

x

i

[n]r

i

0

@
1� 2S � 1

S

x

i

[n]� S � 1

S

X

j,j 6=i

x

j

[n]

1

A
+ x

i

[n].

(7)

After simplifying the right-hand side of (7), we get

x

i

[n+ 1] = x

i

[n]r

i

(1� x

i

[n]� l[n]) + x

i

[n] (8)

where l[n] =

S�1

S

P
j

x

j

[n]. At equilibrium x

i

[n+ 1] = x

i

[n]

in (7), yielding x

⇤
i

=

1

S

8i at that fixed point. This shows that
the discrete equation has the same equilibrium point as (4).

Key to implementing LGC in a datacenter is being able
to estimate l[n]. This requires that each source, i, is able
to estimate the number of competing flows, S, as well as
the combined sources transmission rate,

P
j

x

j

[n] (Remember
these rates are normalized with respect to the source link’s
capacity). In the next section, we will explain how each source
can have a good approximation of l[n] without requiring to
know the exact value of S.

B. Estimating l[n]

In an unmodified IP-based datacenter fabric, exactly calcu-
lating l[n] is not possible. The only signal from the network
is the ECN flag in the packet header; a set flag indicates the
queue length has exceeded a particular threshold, and a clear
flag means it hasn’t. However, we show that it is possible
to accurately estimate l[n] using ECN in the datacenter envi-
ronment when for source i, ˆl

i

[n] = c

i

[n], where c

i

[n] is the
proportion of congestion indicating packets (ECN marked) in
epoch n. Thus equation (8) is implemented as:

x

i

[n+ 1] = x

i

[n]r

i

�
1� x

i

[n]� ˆ

l

i

[n]

�
+ x

i

[n] . (9)

When a source starts transmission, it does not have any
information to calculate ˆ

l[0] so we start with ˆ

l[0] = 0.
Section IV-D discusses the accuracy of this estimate in detail.

C. The Link Capacity

In (8) the capacity is normalized. Therefore, to send at a
specific rate, every source should send at x

i

K where K is
the maximum send rate of the source. In a general network
topology, the link capacities in a path might be different or
unknown. However, all the link capacities and the topology
are known in datacenters, and as a general rule, we assume
that K represents the smallest link capacity in a path. For
example, in a datacenter with 10Gbps links between servers
and TOR switches, and 40Gbps links between other switches,
we use 10Gbps as the carrying capacity, K, in the calculations.
We will show that if the 40Gbps link is congested, LCG is also
able to react appropriately to the congestion, i.e. congestion in
the backbone. This suggests that LGC may also be able to be
applied outside datacenters to networks where the bottleneck
capacity is not known.

D. Rate Update Time Intervals

The rate is regularly updated by each source using (9). As
we see in (9), the fair rate only depends on ˆ

l

i

, and as long as
all sources see the same ˆ

l (see Section IV-D), they converge
to the same rate. This means that the steady state behavior of
the controller is not sensitive to the update interval: updating
it more or less often will naturally make the control converge
faster or slower, but the point of convergence is not affected
(but updating it extremely fast could lead to oscillations).
There are several options for the update frequency such as
using the smallest RTT value seen over a certain time interval
(an estimate of the RTT without queuing delay). However,
using a flow’s smallest RTT can still be a long time interval
for a large-RTT flow, making it sluggish.

In LGC, we use equal-sized intervals. Based on our ob-
servation in simulations, performance is robust if a flow can
receive at least 4 acks per interval. Although there are many
active flows in a datacenter, the number of competing flows
for the same link is small [21], [9]. This means a rate update
interval as short as the minimum RTT in a datacenter will
still allow flows around 4 acks per interval (or the equivalent
information using DCTCP’s delayed ack mechanism).
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Fig. 3. Validation of the fluid model against simulation. The bottleneck link capacity is 10 Gbps, and the RTT is 200µs

IV. ANALYTICAL EVALUATION OF LGC

We use a fluid model of (9) to investigate its stability and
the accuracy of ˆl.

A. The Fluid Model

We model (9) as a continuous time fluid process:

ẋ

i

= x

i

(t)r

i

⇣
1� x

i

(t)� ˆ

l

i

(t)

⌘
(10)

˙

ˆ

l

i

= c (t� ⌧

i

)� c (t� 2⌧

i

) (11)
c(t) = 1{q(t)>0} (12)

q(t) = �k +

SX

i=1

x

i

(t) (13)

where c(t) is the ECN-marking process, ⌧

i

is the time that
takes for sender i to receive the ECN signal from the bot-
tleneck link, and k denotes the ratio of the bottleneck link
capacity to K. Unless otherwise specified we use k = 1 in
calculations.

B. Model Validation

We validate the fluid model using simulations of the LGC
mechanism performed in OMNeT++. Two scenarios are con-
sidered: 5 flows and 20 flows. Fig. 3 shows the comparative
results for the source send rates and bottleneck queue size.
We had two scenarios with 5 and 20 flows. In both scenarios
the bottleneck link capacity is 10 Gbps with a source RTT of
200µs. We see that in both cases, the rate of sources and the
queue length match the model.

C. Stability and Equilibrium

The stability of LGC cannot be directly investigated by
(9) because there is a delay in getting ECN signals from the
bottleneck link router, i.e. ˆl(t) = c(t� ⌧). As it is illustrated
in Fig. 3(a) and Fig. 3(c), this causes some periodic behavior.
However, assuming that c(t� ⌧) ⇡ c(t� 2⌧) and considering
the system model (10)-(13), we are able to 1) directly prove
the stability of (9) based on the discussion in II-B2, and
2) calculate the equilibrium of LCG. Setting the right-hand

side (RHS) of (10), (11), and (13) to zero and trying to solve
the equations yields

1� x

⇤ � ˆ

l

⇤
= 0 , (14)

c

⇤
=

ˆ

l

⇤
, (15)

S(x

⇤
+ x

⇤
r(1� x

⇤ � ˆ

l

⇤
)) = k . (16)

Assuming k = 1, the above system has a solution at equi-
librium of x

⇤
=

1

S

with ˆ

l

⇤
=

S�1

S

. This also reveals that
process c(t) approximates S�1

S

at equilibrium, i.e. S�1

S

percent
of packets are ECN-marked. Since the number of competing
flows is usually small in datacenters [21], [9], we do not
expect S�1

S

becomes very close to 1. In Section V-A, we
will discuss how we can have c(t� ⌧) ⇡ c(t� 2⌧), i.e. how
to get approximately the same ECN-marked percentage in
consecutive rate update intervals.

D. Accuracy of ˆl
i

(t)

We discuss in more detail why ˆ

l

i

(t) is a good approximation
of l

i

(t) especially when
P

j

x

j

(t) is close to 1, i.e. the sum of
source rates is close to the bottleneck link capacity. Formally
speaking, we claim that

lim

t

max

!1

✓
1

t

max

Z
t

max

0

c(t)dt

◆
=

S � 1

S

. (17)

However, without requiring to solve (17), we can look at the
RHS of (17) as how c behaves around the equilibrium. We
solve (10) to obtain the relationship between system variables;
this yields

x

⇤
1

+

ˆ

l

⇤
1

= 1 ,

x

⇤
2

+

ˆ

l

⇤
2

= 1 ,

...

x

⇤
S

+

ˆ

l

⇤
S

= 1 .

(18)

Let us assume that sources experience the same proportion
of ECN-marked packets (or very close to the same). We will
discuss how this can be assured in Section V-A. This yields
ˆ

l

⇤
i

=

ˆ

l

⇤ 8i. From (18) we obtain

x

⇤
1

= x

⇤
2

= ... = x

⇤
S

= 1� ˆ

l

⇤
. (19)

Since sources keep increasing their sending rate until the
bottleneck link is 100% utilized, we have at equilibrium
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Fig. 4. Source send rates with exponentially-distributed packet pacing.

P
S

i=1

x

⇤
i

= 1 and since all sources transmit at the same rate,
x

⇤
i

=

1

S

. Thus (19) yields ˆ

l

⇤
=

S�1

S

which confirms that
l

⇤
=

ˆ

l

⇤. This implies that the ECN marking process c(t) also
approximates S�1

S

.
1) Validation Results: We validated the above argument

using the simulation scenario of Section IV-B; the average
value of ˆl in case of 5 flows with three digit precision is 0.796
with a standard deviation of 0.124, and in case of 20 flows,
it is 0.937 with a standard deviation of 0.113. We see that in
both cases, the measured values by sources are very close to
S�1

S

, i.e. 0.8 in the first case, and 0.95 in the second one.

E. Different Bottleneck Link Capacity
Here we discuss what happens if the bottleneck link capacity

is not equal to the maximum sending rate of the sources.
Referring to (14)-(16), in general at equilibrium the normalized
source send rate and load indicator are:

x

⇤
=

(
k

S

k < S

1 k � S

and ˆ

l

⇤
=

(
S�k

S

k < S

0 k � S

If k > S, the sources combined maximum send rate
is less than the bottleneck link’s capacity, giving x

⇤
i

=

1 and ˆ

l

⇤
= 0. We ran a simulation experiment where

there are 10 competing nodes connected to a 10 Gbps link
(K=10 Gbps), and the bottleneck link capacity took the val-
ues {10, 20, 30, 40, 50, 60}Gbps resulting in respective values
of k = {1, 2, 3, 4, 5, 6}. We also added 40% of the link
capacity Poisson traffic as the background traffic. In all six
cases each nodes’ normalized send rate was very close to
x

⇤
i

=

k

S

; confirming the above argument.

V. FURTHER IMPROVEMENTS

A. Exponential Delay
As we discussed in Section IV-C, having

c(t� ⌧) ⇡ c(t� 2⌧) helps improve the stable behavior
of LGC. Although a moving average with a large-enough
window over ECN signals can reflect the same value, we
are able to improve it further by pacing packets with an
exponentially-distributed delay between them. The advantage
of rate-based transmission with exponentially-distributed
inter-packet delay is that, due to the PASTA property (Poisson
Arrivals See Time Averages) [22], sources in the limit observe
the same average congestion marking. When measured over
the epoch n we have ˆ

l

i

(n) ⇡ ˆ

l

j

(n) ⇡ S�1

S

8i, j.

r

init 

r

conv 

x

i

 

r

i 

x

i

 ˆ 

x

i

≠g

1 

ˆ 

x

i

≠g

2 

ˆ 

x

i

+g

1 

ˆ 

x

i

+g

2 

ˆ 

Fig. 5. Adapting r depending on the expected fair share and current rate.

Fig. 4 shows the send rates achieved by the LGC sources
over time when packets are paced with approximately
exponentially-distributed inter-packet times. Fig. 4(a) and 4(b)
can be compared with the results without pacing in Fig. 3(a)
and 3(c). From these figures, we observe that rates are more
stable with few large abrupt changes. It is worth noting that
pacing at a high rate in data centers needs special treatment
in terms of timers. The pacing performed by other methods
such as TIMELY [9] confirms that the high transmission rate
is not a barrier to pacing. In Section VI, we show how adding
exponentially-distributed delays affects queue length.

B. Adapting the growth rate
The performance of LGC can be improved by tuning the

growth rate parameter, r. Here, our goal is to be more
aggressive in changing the rate of a source that is getting
a smaller or larger amount of resource than the fair share.

Since ˆ

l

i

⇡ S�1

S

, and 1� ˆ

l

i

⇡ 1

S

, we estimate the fair share
as x̂

i

= 1� ˆ

l

i

. However, to avoid fluctuations we estimate this
over a larger time interval:

x̂

i

[n] , 1� 1

W

WX

w=1

c

i

[n� w]

where W denotes the moving average window size.
In Fig. 1, we see how r affects aggressiveness. We would

like to dynamically change r to decrease the convergence time
of sources that are far from their fair share and stably maintain
source rates when sources are close to their fair share. To
achieve this we define a range of values where r 2 [rconv, rinit].
rinit denotes the initial value of r. Sources start by setting
r = rinit, and they use rconv when x

i

⇡ x̂

i

. Fig. 5 shows how
LGC chooses the value for r

i

for source i. Depending on the
value of x̂

i

, we use a simple linear function which is bounded
by rconv and rinit. g

1

and g

2

denote the rate range used for
changing between rconv and rinit.

Fig. 6 illustrates three different scenarios: r = 0.1, r = 0.3,
and adaptive r. g

1

= 0.015 and g

2

= 0.45. We see that using
an adaptive r, as shown in Fig. 6(c), LGC takes advantage
of the stability seen in Fig. 6(a) and faster convergence of
Fig. 6(b) without any significant effects on the queue length
distributions illustrated in Fig. 6(d) using box-and-whisker1

plots.
Putting all together, Algorithm 1 shows how LGC conges-

tion control works: first, it initializes its variables, and then,

1Boxes span the middle 50% of data, with whiskers extending up to 1.5
times the interquartile range. Outliers are offset so the density of points is
clear.
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Fig. 6. The effect of the growth parameter, r, on source aggressiveness. 19 sources start sending at t = 0 s, with the 20th source joining at t = 0.1 s.

Algorithm 1 LGC congection control
1: procedure INIT
2: x xinit
3: l 0

4: r  rinit
5: end procedure

6: procedure ONINTERVALENDS
7: l ECN-marked percentage of ACKs
8: x̂ 1�movingAvg(l,W )

9: if |x� x̂|  g

1

then

10: r  rconv
11: else if |x� x̂| � g

2

then

12: r  rinit
13: else

14: r  |x� x̂| rinit�rconv
g

2

�g

1

+ rconv
15: end if

16: x max(xr(1� x� l) + x, xinit)

17: end procedure

at the end of every rate update interval, based on l, the ECN-
marked percentage of ACKs during that interval, new rate is
calculated. It also adapts r if the sending rate is not close to the
fair share approximation, i.e. x̂. The source then should send at
xK where K is the maximum sending rate. However, if there
are more than one packet in the transmission queue, the source
should not send them back-to-back; instead, it should add
exponentially-distributed inter-packet delay between packets
such that the sending rate is xK on average.

VI. COMPARATIVE PERFORMANCE RESULTS

In this section we present the comparative performance of
LGC with DCTCP. We chose DCTCP for comparison because
it is a well-known transport protocol for datacenters, and has
the same goals as LGC. We implemented both LGC and
DCTCP in the INET framework of OMNeT++ [15]. Our
OMNeT++ DCTCP implementation was validated against its
reference NS-2 implementation.

Results in this section are collected from a series of 10
simulation runs, each with unique random seeds. Sources ran-
domly start transmission in an interval shorter than one RTT.
Unless otherwise mentioned, we use the following parameters
for LGC: g

1

= 0.015, g
2

= 0.045, rinit = 0.3, rconv = 0.1,
w

l

= 40, and a rate update interval of 200µs. We use the
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Fig. 7. Queue length distribution of the three methods.

recommended configurations of DCTCP in [1] for optimum
operation.

A. Small-Scale Evaluation
We simulated an incast traffic pattern for evaluation. Incast

is an important scenario to evaluate congestion control in
datacenters [9]. This traffic pattern occurs when client sends
a request to several servers in the same rack connected to the
same switch, and the servers all respond at almost the same
time exceeding the capacity of the link to the client. In our
scenario, the link capacity between the rack devices and the
Top Of Rack (TOR) switch is 10Gbps.

1) Queue Length: To evaluate the effect the different mech-
anisms have on the bottleneck queue length distribution we test
5, 20, and then 40 sources (clients) sending data to the same
destination (server). Fig. 7 shows a box-and-whisker plot2 for
DCTCP, LGC without exponentially distributed packet pacing,
and LGC. We observe that LGC reduces the queue length
compared to DCTCP for a comparable average throughput
as reported in Table II. The exponentially distributed packet
pacing further reduces the queue length, though the benefit
diminishes as the number of flows increase because flows
get fewer acks per rate update intervals resulting in their
load estimate ˆ

l[n] becoming coarser. If LGC is to be used
in scenarios where more than 20 competing flows is common,
we suggest increasing the rate update interval to improve the
precision of ˆ

l[n]. In the “LGC - no exp. delay” case the
sources become synchronized when there are large numbers

2Boxes span the middle 50% of data, with whiskers extending up to 1.5
times the interquartile range. Outliers are offset so the density of points is
clear.
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TABLE II
THROUGHPUT COMPARISON UNDER DIFFERENT TOPOLOGIES

Topology

Throughput (Gbps)

DCTCP LGC LGC-no exp
Incast 9.64 9.50 9.52
Clos 9.56 9.45 -

Leaf-Spine 9.51 9.41 -
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Fig. 8. Short-term fairness of 5 competing flows using LGC and DCTCP
under equal and different RTTs using Jain’s fairness index. Error bars span
the range of values at 10 ms intervals.

of competing flows, resulting in load estimates of ˆl[n] = 1 for
most rate update intervals, and ˆ

l[n] = 0 for a small number
of intervals. The source synchronization, LG response to ˆ

l,
and more deterministic packet arrival pattern result in lower
queuing delays.

2) Fairness: We compare the short-term flow fairness of
DCTCP and LGC using Jain’s fairness index [23]. 5 sources
send data to the same destination, with Jain’s fairness index
calculated over 1 ms intervals. Both LGC and DCTCP are
tested in two scenarios: (i) all sources have homogeneous
RTTs of 200µs, (ii) the 5 sources have RTTs of 140, 170, 200,
230, and 260µs respectively. Fig. 8 illustrates four simulation
cases plotting the average of the 10 different runs. Error bars
spanning the range of calculated fairness are plotted every
10 ms to indicate the variation in simulation runs.

First considering the case of homogeneous RTTs, we ob-
serve that LGC’s fairness begins at close to 1, and remains
very close to 1 throughout the simulation. DCTCP sources
start using the same congestion window, which makes it fair
at first. However, during first RTTs, sources do not have
an accurate approximation of congestion (parameter ↵ in
[1]), and their start time is slightly different, which leads to
a drop in fairness. As sources receive more acks, fairness
improves, but it fluctuates in the range of 0.97 to 1. The
fairness drop does not happen in LGC during first RTTs
because sources pace packets with exponentially-distributed
delays, which compensates for the initial inaccurate estimate
and slight differences in start times.

In the heterogeneous RTT case both LGC and DCTCP
sources start using the same congestion window size, but with
the RTT difference this yields a fairness of around 0.96 at
first. The LGC sources converge to their fair share (⇡ 1.0) in
just a few milliseconds, however, the DCTCP sources–after a
drop in fairness due to not having an accurate approximation of
congestion–attain only a fairness of about 0.93. This illustrates
RTT independence of LGC’s mechanism.
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3) Round-Trip Time (RTT): One of the direct consequences
of reducing the queue length is reducing the RTT. In the next
scenario, we calculate the Cumulative Distribution Function
(CDF) of the RTT distribution for both LGC and DCTCP with
tests of 5, 20, and 40 competing flows using a base RTT of
200µs. In all cases both LGC and DCTCP were configured
optimally. Fig. 9 shows the results. LGC shows a significant
reduction in RTT over DCTP in all three tests.

B. Large-Scale Evaluation

Here we investigate the comparative performance of LGC
with respect to DCTCP under two large scale simulation
scenarios:

(i) a classic Clos topology (8-ary fat-tree, 64 nodes in total)
[6], [5], and

(ii) a similar leaf-spine topology to the one in [2], [3] (144
nodes, 9 leaf switches, 4 spine switches).

In the leaf-spine topology, all the links between hosts and
TOR switches are 10Gbps, and the other links have 40Gbps
capacity. In the Clos topology, all the links in the network
have the same capacity, i.e. 10Gbps.

We use a longest path uniform random traffic pattern [9] in
which a source sends data to a randomly-chosen destination
with the longest path in the network. However, the set of
destinations is smaller than the set of sources to ensure that
congestion happens. Fig. 10 illustrates the CDF of RTT in
both scenarios for LGC and DCTCP. It clearly illustrates that
LGC can reduce network queue sizes in both scenarios, result-
ing in significantly shorter delays and RTTs for comparable
average throughput (see Table II). The average number of
competing flows in these scenarios was around 8, yielding
a comparatively shorter RTT for both LGC and DCTCP than
was achieved with the incast results shown in Fig. 9.
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VII. RELATED WORK

Datacenters are a challenging environment for efficient
timely transmission of data with features including: multiple
paths, small propagation delays and mixtures of long and short
flows (see Zhang et al. [24] for a survey of transport control
in datacenters). A key objective is to minimize flow latency,
particularly flow completion times. This is a multifaceted
issue [25], [26], of which congestion control is a significant
component. Many proposed solutions require changes to mul-
tiple components within the datacenter, affecting the ease with
which the different schemes can be deployed [26], [3].

It has been shown that traditional transport protocols such
as TCP are not appropriate for datacenters (e.g. see [1]). For
example, the TCP retransmission timeout mechanism performs
poorly in incast scenarios, and the large queue occupancy
of TCP in switches affects delay-sensitive short flows. The
authors in [1] show that keeping queue occupancy at a low
level is of paramount concern in datacenters.

Some approaches to reducing latency in datacenters use
central arbiters. Fastpass [7] and TDMA Ethernet [27] are
examples of this approach; however, they require centralized
coordination which limits their scalability. Some other ap-
proaches such as DeTail [28] and pFabric [2] require changing
switches to schedule flows using priorities in switches, but they
cannot work on commodity hardware.

Our work focuses on easily deployable end-system based
mechanisms. The closest datacenter specific work in this
area to ours is Data Center TCP (DCTCP) [1], [29]. Apart
from the end point transport mechanism, it requires only a
low queue threshold based ECN packet marking from the
bottleneck queue. A number of enhancements to DCTCP
have been proposed in the literature that improve particular
aspects [24]. HULL [30] adds packet pacing and virtual
(phantom) queues at switches to reduce queuing and allow
for earlier congestion notification at the expense of slightly
lower throughput. D2TCP [31] enhances DCTCP to include
the deadline aware advantages of D3 [32]. In general, these
enhancements improve the mechanism but make it more
difficult to deploy [3]. Our mechanism is able to improve many
aspects of DCTCP while still remaining easily deployable.

Logistic growth as basis for congestion control was first
proposed in [12] and later in [13]. It has been shown to
be stable and reduce queue latency. We build on these ideas
adapting the theory to the datacenter environment.

VIII. CONCLUSIONS AND FURTHER WORK

In this paper, we have developed and evaluated a new
congestion control algorithm for datacenters called Logistic
Growth Control (LGC). The algorithm is inspired by logistic
population growth and uses the logistic growth function to
control packet transmissions over a congested path. We first
analyzed LGC analytically using a fluid model to investigate
its stability and accuracy. Based on this we were able to
improve the algorithm and have implemented it in the INET
framework of OMNeT++ [15]. Using this simulation frame-
work, we have run extensive evaluations of LGC against an-

other important datacenter transport protocol, DataCenter TCP
(DCTCP) [1]. We simulated both a small-scale network with
the important datacenter incast traffic pattern, and large-scale
Clos and leaf-spine topologies. Our evaluations consistently
show that communication latency in a datacenter is improved
greatly by LGC, and also that LGC achieves much better
fairness between flows than DCTCP.

LGC is relatively easy to model and understand, and has
good convergence, RTT-independent fairness and stability
properties. This makes it a promising candidate for more com-
plex control scenarios where multiple congestion controls may
be nested (e.g. to control flow aggregates between hypervisors
in a Grid rather than changing the OS in the VMs) or chained
together (as e.g. with middleboxes that act as TCP splitters).
Recursive architectures such as RINA [33] and RNA [34] (see
[35] for more details) generalize this approach and challenge
traditional concepts of congestion control. We plan to further
apply LGC in the datacenter environment and extend our work
to more general recursive architectures.
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