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Abstract—Pac-Man and its equally popular successor Ms.
Pac-Man are often attributed to being the frontrunners of the
golden age of arcade video games. Their impact goes well beyond
the commercial world of video games and both games have been
featured in numerous academic research projects over the last two
decades. In fact, scientific interest is on the rise and many avenues
of research have been pursued, including studies in robotics, biol-
ogy, sociology, and psychology. The most active field of research is
computational intelligence, not least because of popular academic
gaming competitions that feature Ms. Pac-Man. This paper sum-
marizes the peer-reviewed research that focuses on either game
(or close variants thereof) with particular emphasis on the field
of computational intelligence. The potential usefulness of games
like Pac-Man for higher education is also discussed and the paper
concludes with a discussion of prospects for future work.

Index Terms—Artificial intelligence, competition, computa-
tional intelligence, evolutionary algorithms, games, Pac-Man,
neural networks, reinforcement learning, survey, tree search.

I. INTRODUCTION

PAC-MAN is the most successful arcade game of all time
and has been a social phenomenon that elevated the game

to cult status: Despite having been released more than three
decades ago, interest in the game remains high and numerous
research papers have been published in recent years that focus
on the game in one way or another. Games in general have
always been a popular testbed in scientific research, particularly
in the field of computational intelligence, and also in other fields
such as psychology, where games may be used as a tool to study
specific effects using human test subjects. In the past, most
games of interest were classical two-player board games such
as Chess (and more recently Go), but today video games attract
equal attention. Numerous competitions now take place every
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year where participants are asked to write software controllers
for games such as Super Mario, StarCraft, Unreal Tournament,
Ms. Pac-Man, and general video game playing (GVGP). There
are also many reasons why research on games is on the rise,
both from an academic and a commercial point of view.

Academically, games provide an ideal test bed for the devel-
opment and testing of new techniques and technologies: Games
are defined by an explicit set of rules and the gamer’s perfor-
mance in playing a game is usually defined unambiguously by
the game’s score or outcome. Games are also immensely flexi-
ble and vary greatly in complexity, from single player puzzles,
to two-player board games, to extensively multiplayer video
games. Techniques developed specifically for game playing may
often be transferred easily to other domains, greatly enhancing
the scope with which such techniques may be used.

There is significant commercial interest in developing sophis-
ticated game AI. The video/computer games industry generates
annual revenues in excess of $23 billion in the United States
alone, with a world-wide market exceeding $94 billion [1]. Tra-
ditionally, most efforts (and finances) have been devoted to the
graphics of a game. More recently, however, more emphasis has
been placed on improving the behavior of nonplayer characters
(NPCs) as a way to enrich game play.

This paper presents research that makes use of Pac-Man, Ms.
Pac-Man, or close variants thereof. Despite the age of the game,
the number of such studies, particularly those in the field of
computational intelligence, has been increasing steadily over
recent years. One of the reasons for this trend is the existence of
academic competitions that feature these games (see Section III)
and indeed, many papers that have been published are descrip-
tions of competition entries. However, research is not restricted
to the area of computational intelligence and this overview high-
lights how Pac-Man has also been used in the fields of robotics,
brain–computer interfaces (BCIs), biology, psychology, and so-
ciology. The goal of this study is to highlight all those research
efforts and thereby paint a (hopefully) complete picture of all
academic Pac-Man related research.

This paper is structured as follows. Section II introduces
Pac-Man and Ms. Pac-Man and discusses why they constitute a
useful tool for academic research. This is followed in Section III
with an overview of ongoing academic gaming competitions
that focus on Ms. Pac-Man and have led to a renewed interest
in these games within the academic community. The overview
of the peer-reviewed research is split into three parts: first, all
research related to developing software controllers is reviewed
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Fig. 1. Screenshot of the starting position in Pac-Man: Pac-Man (yellow disc)
needs to eat the pills (small dots) while being chased by the four ghosts (red,
cyan, pink, and orange). The large dots are power pills (energizers) that allow
Pac-Man to eat the ghosts for a short period of time.

(see Sections IV and V). Then, all research related to game
psychology (e.g., player profiles and entertainment values of
games) is discussed in Section VI. Finally, Section VII outlines
all studies in other areas of research. The paper is concluded
in Section VIII where future prospects for Pac-Man-related re-
search are discussed.

II. GAMES

A. Pac-Man

Pac-Man was developed by Toru Iwatani and released by
Namco in 1980. The game was originally called Puckman but
was renamed for the American market. It was released as a
coin-operated arcade game and was later adopted by many other
gaming platforms. It quickly became the most popular arcade
game of all time, leading to a coin shortage in Japan [2]! The
social phenomenon that followed the game’s release is best
illustrated by the song “Pac-Man Fever” by Buckner and Garcia,
which reached position 9 in the single charts in the USA in 1981.
The popularity of Pac-Man led to the emergence of numerous
guides that taught gamers specific patterns of game-play that
maximize the game’s score (e.g., [3]). The full rules of the
game as detailed below are paraphrased from the strategy guide
“Break a Million! at Pac Man” [4].

The game is played on a 2-D maze, as shown in Fig. 1. The
gamer has control over Pac-Man via a four-way joystick (which
can be left centered in neutral position) to navigate through the
maze. The maze is filled with 240 (nonflashing) pills, each worth
ten points, and four (flashing) power pills (energizers) worth 50
points. The four ghosts start in the center of the maze (the lair),
from which they are released one-by-one. Each ghost chases
Pac-Man, eating him on contact. Pac-Man has two spare lives
to begin with and the game terminates when all lives are lost. An
additional life is awarded at 10 000 points. When Pac-Man eats
a power pill, the ghosts turn blue for a limited amount of time,
allowing Pac-Man to eat them. The score awarded to Pac-Man
doubles with each ghost eaten in succession: 200–400–800–
1600 (for a maximum total of 3050 points per power pill). The
last source of points comes in the form of bonus fruits that

TABLE I
CHARACTERISTICS OF THE GHOSTS IN Pac-Man [4]

Color Orange Blue Pink Red
Name Clyde Inky Pinky Blinky
Aggressiveness 20% 50% 70% 90%
Territory Southwest Southeast Northwest Northeast

appear at certain intervals just below the lair. There are eight
different fruits with values of 100–5000 (higher-valued fruits
appear in later levels only).

When all pills have been cleared, the game moves on to the
next level. Technically the game is unlimited but a software bug
in the original ROM code prevents the game going past level
255, which cannot be completed. The Twin Galaxies Interna-
tional Scoreboard1 states that the highest possible score of the
game (3 333 360 points by playing 255 perfect levels) was set by
Billy Mitchell in 1999. A perfect score is possible as the behav-
ior of the four ghosts is deterministic. Table I summarizes the
main characteristics of the ghosts, which have variable degrees
of aggressiveness: Clyde, for instance, is the least dangerous
ghost that pursues Pac-Man only 20% of the time. Furthermore,
each ghost has its primary territory where it spends most of
its time. The eyes of the ghost indicate the direction they are
traveling and ghosts cannot generally reverse direction unless
Pac-Man consumes a power pill or an all-ghost-reversal event
is triggered: Ghosts operate in one of the three modes (scatter,
chase, or frightened) and a reversal event occurs after a number
of transitions between these modes, for example, when going
from scatter mode to chase mode, or vice versa. A detailed
account of the game with all its wonderful intricacies may be
found on Gamasutra.2

The speed of the ghosts is normally constant, except when
travelling through the tunnel (where they slow down signifi-
cantly) and except when edible (when they travel at half speed).
Also, as the player is near the end of a level, ghosts may speed
up (and the speed may depend on the type of ghost). The speed
of Pac-Man is variable throughout the maze: Speed increases
relatively to the ghosts in tunnels, around corners (cutting cor-
ners) and after eating a power pill, and decreases while eating
pills. These variations in the relative speed of Pac-Man and the
ghosts add significantly to the richness of game play, and can
often make the difference between life and death. For example,
an experienced player with the ghosts in hot pursuit may seek
pill-free corridors and aim to execute multiple turns to exploit
the cornering advantage.

B. Ms. Pac-Man

The strategy guides published for Pac-Man contain specific
patterns that the player can exploit to maximize the score of
the game. As pointed out by Mott [5], these patterns are not
only important in mastering Pac-Man, but their mere existence
is one of the game’s weaknesses: “Lacking any particularly in-
spiring AI, Pac-Man’s pursuers race around the maze, following

1http://www.twingalaxies.com
2http://www.gamasutra.com/view/feature/3938/the_pacman_dossier.php?

print=1
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Fig. 2. Four mazes encountered during gameplay in Ms. Pac-Man: mazes are
encountered left to right, top to bottom.

predictable paths, meaning players can effectively beat the game
through memory and timing rather than inventive reactions.” In
other words, the determinism of the ghosts implies that there is
a pure strategy that is optimal for playing the game. Ms. Pac-
Man, released in 1982 and now sporting a female main char-
acter, changed this by introducing ghosts with nondeterministic
behavior, that require gamers to improvize at times rather than
follow strict and predictable patterns: “It is important to note
that the monsters are much more intelligent in Ms. Pac-Man
than in the original Pac-Man game. [...] This means that you
cannot always predict what the monsters will do.” [3, p. 4].

The overall gameplay of Ms. Pac-Man is very similar to
that of Pac-Man and the objective of the game remains the
same. However, apart from the new behavior of the ghosts, Ms.
Pac-Man also introduced four new mazes, which are played
in rotation. These new mazes are shown in Fig. 2. Additional
changes include the following.

1) Clyde has been renamed to Sue.
2) Bonus fruits now move along the maze randomly.
3) Edible time of ghosts reduces as the game progresses but

periodically increases again.
Unlike Pac-Man (thanks to the bug in the original ROM), Ms.

Pac-Man never ends and new high scores are still being posted.
As recently as 2006, a new high score was verified by Twin
Galaxies: 921 360 points by Abdner Ashman.

C. Why These Games?

The remainder of this paper will show that a large num-
ber of research projects have made use of Pac-Man, probably
more than any other video game. This begs the question: Why
is Pac-Man such a useful tool in research? Undoubtedly, one
of the strongest arguments for Pac-Man was its immense pop-
ularity upon release and the fact that the game remains popular

even 30 years later: The game’s characters feature on the cov-
ers of recently released books about arcade games, including
Arcade Fever [6] and The Art of Video Games [7], and even
feature in movies such as “Pixels” (Chris Columbus, 2015). Fi-
nally, websites such as the World’s Biggest Pac-Man highlight
how active the Pac-Man playing community is to this day: The
website allows registered users to design mazes by hand using
a graphical editor and whenever Pac-Man enters a tunnel, the
game moves on to another maze. As of 2017, almost 250 000
mazes have been designed and 114 million games have been
played using them. This popularity not only implies an imme-
diate familiarity with this game across all age groups (making it
easier for readers to relate to the research), but also validates the
idea that the game is fun, entertaining and at the right level of
difficulty.

Furthermore, numerous implementations of the game are
available, many of which are open source. One of these that
has been used in numerous academic studies is NJam.3 NJam is
a fully-featured interpretation of Pac-Man written in C++ (open
source). The game features single and multiplayer modes, dual
mode (players compete against each other to get more points),
and a cooperative mode (where players attempt to finish as many
levels as possible). There are three ghosts (although each type of
ghost may feature in the game more than once): Shaddy, Hunter
and Assassin, each of which has its own behavior. The game
itself is implemented as a 2-D grid, where walls, empty spaces
and the game’s characters all have the same size.

Pac-Man has several additional attributes that make it inter-
esting from an academic point of view (also see Section VII-E).
In particular, the game poses a variety of challenges. The mazes
may be represented using an undirected connected graph and
hence one may make use of the many tools of graph theory, in-
cluding path-finding. Furthermore, the game is real time, making
it more challenging for computational methods to perform well
(allowing the measurement of things like reaction times in hu-
man test subjects). Finally, the rules of the game are relatively
simple and Pac-Man may be controlled using a simple four-way
joystick. This makes the game suitable for studies that include
primates, for instance. The game is visually appealing (impor-
tant if human testing is involved) and the 2-D layout allows
one to easily visualize the computational logic that drives the
game’s characters; this is particularly useful in higher education
settings (see Section VII-E). Unlike almost all board games, the
game’s characters are heterogeneous and amenable to predator-
prey scenarios: Techniques that work well for Pac-Man may
not work well for the ghosts and hence the game provides a
wider scope for research. Finally, the game is very expandable:
It is easy to envision extensions to the game such as the design
of new mazes, additional game characters or a modified set of
rules.

III. GAME COMPETITIONS

The University of Essex, Colchester, U.K., has been orga-
nizing game competitions centered around Ms. Pac-Man for

3http://njam.sourceforge.net/
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the past ten years. The Ms. Pac-Man Screen-Capture Competi-
tion asks participants to develop software controllers to control
the actions of Ms. Pac-Man for the original game using screen
capture. The Ms. Pac-Man versus Ghosts Competition provides
its own implementation of the game and competitors may de-
velop software controllers for Ms. Pac-Man, or the four ghosts,
that interface directly with the game engine. Based on the Ms.
Pac-Man versus Ghosts Competition, the more recent Ms. Pac-
Man versus Ghost Team Competition includes partial observ-
ability and allows for the ghosts to communicate with one an-
other. Such competitions are essential to provide a common
platform that academics may use to test, evaluate and compare
their techniques against their peers. As Section III-D shows,
prior to the competition, most studies made use of their own
implementation of the game, making direct comparisons im-
possible. The reasons for this are manifold: Although the game
has simple rules, not all the details are well documented and
are sometimes difficult and time-consuming to implement. Fur-
thermore, some studies require certain functionality that may
not be available and/or difficult to implement on top of an al-
ready existing architecture. The code made available by the Ms.
Pac-Man versus Ghosts Competition attempts to address these
issues, as it provides a wide range of built-in functionality. The
code is also easy to modify.

A. Ms. Pac-Man Screen-Capture Competition

The Ms. Pac-Man Screen-Capture Competition [8] ran from
2007 to 2011, with the last proper run in 2011 at the IEEE
Conference on Computational Intelligence and Games (CIG).

The final of each competition event coincided with a major in-
ternational conference in the field of computational intelligence.
The competition makes use of the original game, either avail-
able as a Microsoft Windows application (Microsoft Revenge of
Arcade version) or as a Java applet,4 and requires screen capture
to allow the algorithm to compute the next move in real time (a
rudimentary screen-capture kit is provided). The screen-capture
aspect is a significant component of the controller’s architecture
and past winners of the competition almost always dedicated
significant effort to efficient feature detection that allowed the
controller to make good decisions.

The winner of the competition is the controller that achieves
the highest score across multiple runs: Usually ten runs are
executed prior to the conference and an additional three runs
are demonstrated live at the conference. An overview of past
competitions is shown in Table II. It is important to bear in mind
when comparing the scores that although the game is identical in
all cases, the underlying hardware used to execute the controllers
differs. Furthermore, the performance of a controller should not
be judged without considering the screen-capture mechanisms
used.

Although the competition did not run formally for CIG 2012,
Foderaro et al. [9] did demonstrate their entry and it performed
in line with the results described in their paper. Their system
used an internal model of the ghost decision-making processes

4www.webpacman.com

in order to achieve high performance, with a high score of 44 630
(improving on the CIG 2011 winning score of 36 280). A refined
version was developed and described in [10], which achieved
a maximum score of 65 200, with an average score of 38 172
(more details about this controller in Section IV-A). Although
this provided a clear improvement compared to previous ap-
proaches, its average score still falls a long way short of the
human high score, indicating that there may still be interesting
research to be done on making a super-human player of Ms.
Pac-Man in screen-capture mode.

B. Ms. Pac-Man Versus Ghosts Competition

The Ms. Pac-Man versus Ghosts Competition [11] ran for
four iterations, having built on the success of the Ms. Pac-Man
Screen-Capture Competition. It took place twice a year and
results were presented at major conferences in the field. The
competition differs from the screen-capture competition in two
important aspects: First, competitors interface directly with the
game (i.e., no screen capture) and secondly, competitors may
create controllers for either (or both) Ms. Pac-Man and the
ghosts.

The game provided to the competitions is written entirely in
Java, specifically for the competition. The original software was
written by Lucas [12] and was used in numerous papers. This
version came with three default ghosts teams showing different
behaviors (Random, Legacy, and Pincer). It was later extended
by Samothrakis et al. [13] and modified further by Rohlfsha-
gen [11] for use in the competition. The current version of the
software bears little resemblance to the original code and is
continually improved in response to comments by the competi-
tion’s participants. Care has been taken to implement the game
faithfully in most respects, but it differs from the original game
in several ways (and hence is not directly comparable to the
version used in the screen-capture competition). For instance,
there are no bonus fruits, the speed of all characters is constant
unless the ghosts are edible and the tunnels are shorter than in
the original game. The single most significant difference is the
ghost control algorithms, since these are now provided by the
ghost-team developers rather than being an intrinsic feature of
the game.

All entries submitted compete with one another in a round-
robin tournament to establish the best controllers: Ms. Pac-Man
controllers attempt to maximize the score of the game, whereas
the ghosts strive to minimize the score. There are no restrictions
regarding the techniques or algorithms used to create the logic
for either side, but controllers have only 40 ms per game step to
compute a move. Each game lasts a maximum of 16 levels and
each level is limited to 3000 time steps to avoid infinite games
that do not progress. Whenever the time limit of a level has been
reached, the game moves on to the next level, awarding half the
points associated with the remaining pills to Ms. Pac-Man; this
is to encourage more aggressive behavior of the ghosts and avoid
the ghosts spoiling a game by grouping together and circling a
few remaining pills. Ghosts are not normally allowed to reverse,
but there is a small chance that a random reversal event takes
place that reverses all the ghosts’ movements.
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TABLE II
SUMMARY OF RESULTS FROM THE Ms. Pac-Man SCREEN-CAPTURE COMPETITION

CEC’07 WCCI’08 CEC’09 CIG’09 CIG’10 CIG’11

Entries 5 12 5 4 8 5
Functional 3 11 4 3 7 5
Winner Default Fitzgerald et al. Thawonmas et al. Thawonmas et al. Martin et al. Ikehata and Ito
Highest score 3810 15 970 13 059 30 010 21 250 36 280

TABLE III
SUMMARY OF RESULTS FROM THE Ms. Pac-Man

VERSUS GHOSTS COMPETITION

CEC’11 CIG’11 CIG’12 WCCI’12

Competitors 13 22 44 84
Countries 9 10 13 25
Controllers 19 33 56 118
Default controllers 3 4 2 4
Pac-Man controller (only) 7 7 24 24
Ghost controller (only) 3 8 8 16
Pac-Man and ghost controller 3 7 12 37

A summary of results from the past four iterations of the
competition is shown in Table III. It is evident that the interest
in the competition has increased each time, with a significant
increase in the third iteration. Furthermore, an increasing num-
ber of participants have started to develop controllers for both
Ms. Pac-Man and the ghosts. This is an encouraging trend, as
the number of studies related to controllers for the ghosts is far
outnumbered by those related to Ms. Pac-Man.

C. Ms. Pac-Man Versus Ghost Team Competition

Ms. Pac-Man versus Ghost Team Competition [14] was run
for the first time at the 2016 IEEE CIG. Despite the reuse of the
Ms. Pac-Man versus Ghosts Competition software, the frame-
work is very different because of the partial observability im-
plemented by Williams [14]. Both Ms. Pac-Man and the ghosts
can only observe a first person view up to a limited distance or
a wall. A messenger system is added to the game, which allows
the ghosts to send default or personalized messages to either
individual ghosts or all ghosts at once.

Participants are invited to submit one controller for Ms.
Pac-Man or four controllers for the ghosts (a controller for each
ghost). At each game step, a 40-ms time budget is allocated for
deciding either one move for Ms. Pac-Man or four moves for
the ghosts (the four ghost controllers thus share the time budget
in a flexible way). All entries submitted for Ms. Pac-Man com-
pete with all sample agents and entries submitted for ghosts in a
round-robin tournament. The final ranking in CIG’16 is shown
in Table IV. While only two entries were submitted, this may be
due to the more difficult nature of the challenge (dealing with
partial observability and messaging), and also the fact the final
version of the software toolkit was only available two months
before the deadline. The competition series is ongoing at the
time of writing and aims to attract more entrants as the ways
for dealing with partial observability and cooperation become
better understood, and the software becomes more stable.

TABLE IV
SUMMARY OF RESULTS FROM THE Ms. Pac-Man VERSUS GHOST TEAM

COMPETITION IN CIG’16

Entry Average score Minimum score Maximum score

GiangCao 6348.85 1000 15 940
Dalhousie 5878.50 1140 13 620
Starter rule 2447.75 580 6730
Random 1629.85 250 5830

TABLE V
IMPLEMENTATION OF GAMES USED IN RESEARCH

Implementation References

Original (Screen capture) [9], [10], [15]–[35]
Public variant [36]–[43]
Ms. Pac-Man versus Ghosts engine [12], [13], [20], [44]–[67]
Ms. Pac-Man versus Ghost team engine [14]
Own implementation [68]–[92]

D. Research in Computational Intelligence

Computational intelligence is unsurprisingly the most active
area of research centered around Pac-Man and has resulted in
the most publications. Prior to the competitions described above,
papers were largely fragmented, with each using their own, of-
ten much simplified version of the game. Following the first
Ms. Pac-Man Screen-Capture Competition, numerous papers
emerged that made use of the original ROM via screen capture;
authors often proposed their own screen-capture mechanisms to
improve the reliability of the process. More recently, controllers
have been suggested that interface directly with the game us-
ing the current Ms. Pac-Man versus Ghosts game engine (or its
predecessor). This also allowed researchers to start developing
controllers for the ghosts in addition to Ms. Pac-Man. A sum-
mary of the variants of the game used in the development of the
controllers is shown in Table V.

The next two sections discuss peer-reviewed work in
computational intelligence related to (Ms) Pac-Man with
Sections IV and V covering Pac-Man controllers and Ghost con-
trollers, respectively. We purposely do not mention any scores
reported in these papers as we believe this to be misleading:
scores often depend significantly on the screen-capture method
(if the original version of the game is used), the implementation
of the game and the underlying hardware used for the experi-
ments. The competitions provide a reliable platform to compare
the performance of different controllers and these results may
be accessed online. Table VI gives an overview of techniques
that have been used to develop controllers for Pac-Man, Ms.
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TABLE VI
SUMMARY OF PEER-REVIEWED RESEARCH RELATING TO Pac-Man, CATEGORIZED BY DISCIPLINE

Competitions [8], [11], [14] 3
AI/CI Rule-based & FSMs [9], [10], [15], [16], [18], [23], [24], [52], [65], [71], [72] 67

Tree Search & MC [13], [20], [25], [26], [29], [30], [49], [51], [56], [59], [61], [74]
Evolutionary algorithms [45]–[48], [50], [53], [57]–[60], [63], [68], [69]
Neural networks [38], [70], [75]
Neuro-evolutionary [12], [28], [31]–[33], [36], [37], [43], [44], [62], [64], [67], [77]
RL [19], [21], [22], [34], [35], [41], [42], [73], [78], [82], [92]
Other [17], [27], [54], [79], [90], [91]

Game psychology [93]–[99] 7
Psychology [81], [100], [101] 3
Robotics [102], [103] 2
Sociology [104], [105] 2
BCIs [83]–[85] 3
Biology and animals [106] 1
Education [80], [102], [103], [107] 4
Other [39], [40], [108], [109] 4

Right-most column indicates the number of publications in each category.

Pac-Man or the ghosts. Many studies propose hybrid techniques
or use multiple techniques for different aspects of the controller,
and references are listed next to the technique that best describes
it. The literature review follows the same classification.

IV. Pac-Man CONTROLLERS

Not surprisingly, most of the work performed in computa-
tional intelligence has been devoted to finding better controllers
for (Ms) Pac-Man. This includes multiple approaches, from
rule-based methods to tree search or learning, as well as sev-
eral nature-inspired algorithms. This section summarizes these
works and categorizes them according to the nature of the con-
trollers implemented.

A. Rule Based

This section describes works in Pac-Man controllers, which
have as a main component a set of if-then clauses, either in a
hard-coded way or in a more structured manner, like finite state
machines (FSMs) or behaviour trees, including fuzzy systems.
In some cases, either the parameters of these rules or the struc-
tures themselves can be evolved. In general, these controllers,
albeit effective, require an important amount of domain knowl-
edge to code the rules, transitions, conditions, and actions.

In their paper, Fitzgerald and Congdon [15] detail their con-
troller, RAMP (a Rule-based Agent for Ms. Pac-Man), which
won the 2008 WCCI Ms. Pac-Man Screen-Capture Competition.
It is a rule-based approach and, like many other competitors of
the screen-capture competition, the authors optimized and re-
fined the default screen-capture mechanism provided. The maze
is discretized into a grid of 8 × 8 pixel squares and the locations
of all pills/power pills are precomputed and stored as a con-
nected graph. The nodes of the connected graph correspond to
all turning points in the original maze (i.e., junctions and cor-
ners). Additional (fake) intersections are added on either side of
the power pills to allow quick reversals at these points. Decisions
are made only at junctions and a rule-independent mechanism
is used to reverse if a ghost is present. The decision as to which
path to follow is based on higher-level conditions and actions.
The set of conditions include, among many others, the number

of ghosts that are “close” or “very close” to Ms. Pac-Man, the
number of remaining power pills, and whether ghosts are edi-
ble. The conditions also distinguish between the mazes and level
and the progression throughout the level to apply the most suit-
able set of rules. The set of actions is composed of Graze, Eat,
Evade, and Run and numerous parameters are used to construct
the full set of rules. Finally, conflict resolution is applied in case
multiple rules apply simultaneously. The authors compare two
sets of rules and also discuss the use of evolutionary computa-
tion to choose subsets of rules and to fine-tune the numerous
parameters of the rule-based controller, similar to [71].

Handa and Isozaki [16] employ an evolutionary fuzzy system
to play Ms. Pac-Man (via screen capture): A set of fuzzy rules
is designed by hand and the parameters of the rules are sub-
sequently evolved using a (1 + 1)-ES. The screen is captured
and the following information is extracted: distance to all ghosts
(edible and nonedible), position of the nearest pill, and distance
to the nearest junction from Ms. Pac-Man and the ghosts. Dijk-
stra’s algorithm is used to precompute these distances using a
coarse graph of the maze. The fuzzy rules are defined as avoid-
ance, chase, and go-through. If none of the rules are activated,
the default Eat is used instead (Eat is not a fuzzy rule but simply
goes for the nearest pill). The rule for avoidance, for instance,
is “IF a ghost IS close THEN Ms. Pac-Man goes in opposite di-
rection.” Each rule is applied to all four ghosts to determine an
action for Ms. Pac-Man. Each rule has a set of parameters (such
as minimum and maximum distance to determine membership)
that are evolved using a (1 + 1)-ES, using as a fitness measure
the length of time Ms. Pac-Man survives. The authors found
that it is possible to improve performance of the fuzzy set using
artificial evolution, but results are very noisy as the number of
games played per controller had to be kept low (ten games) due
to reasons of efficiency, causing a high variance of the results.

Thompson et al. [72] analyze the impact of looking ahead in
Pac-Man and compare their approach to simpler controllers
based on greedy and random decisions. The game used by
the authors is based on Pac-Man but has some important dif-
ferences, most notably nondeterministic ghosts (other differ-
ences relate to the lack of bonus fruits and speed of the ghosts,
among others). The controller proposed is constructed from a
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knowledge base and a graph model of the maze. The knowledge
base is a series of rules and the overall decision-making is facil-
itated by the use of an FSM. The FSM has three states: Normal,
Ghost is Close, and Energized. Three different strategies are
considered: Random, Greedy-Random, and Greedy-Lookahead.
The former two simply make a move based on the current state
of the maze. The latter performs a search in certain situations and
subsequently employs A� to find the paths to the targets identi-
fied during the search. Ghost avoidance is dealt with explicitly
in the FSM. The experiments compared all three controllers as
well as a range of human players and found that the lookahead
player, although not quite as good as the best human player,
significantly outperforms the other two controllers.

Thawonmas and Matsumoto [18] describe their Ms. Pac-Man
controller, ICE Pambush 2, which won the 2009 iteration of the
screen-capture competition (the authors also wrote reports on
subsequent versions of the algorithm for the years 2009–2011).
The authors attribute the success of their controller to two as-
pects: advanced image processing and an effective decision-
making system (rule based). The former improves on the stan-
dard toolkit supplied with the screen-capture competition in
terms of efficiency (nonmoving objects are extracted only once
at the beginning) and accuracy (a novel representation of the
maze is proposed). The controller’s decision-making is deter-
mined by a set of seven hand-crafted rules that make use of two
variants of A� to calculate distances. The rules are applied in
order of decreasing priority. The two variants of A� used dif-
fer in the way they calculate the costs of the paths and several
cost functions are defined to maximize the likelihood of Ms.
Pac-Man’s survival.

Thawonmas and Ashida [24] continue their work with an-
other entry to the Ms. Pac-Man Screen-Capture Competition,
ICE Pambush 3, which is based on their earlier effort, ICE
Pambush 2 [18]. The controller architecture appears identical to
[18] but the authors compare different strategies to evolve the
controller’s many parameters, including parameters used for dis-
tance calculations and for calculating costs. The authors found
the most efficient approach is to evolve the distance parameters
first and then the cost parameter, to achieve an improvement in
score by 17%. The authors also address some interesting issues,
including whether the same set of parameters is to be used for all
mazes/levels (speed of ghosts changes as the game progresses)
and whether all parameters should be evolved simultaneously.
The EA used is a simple evolutionary strategy with mutation
only. The authors found that not only did the optimized param-
eters improve playing strength but they also had an impact on
the style of play.

The work by Bell et al. [23] describes their entry to the 2010
CIG Ms. Pac-Man Screen-Capture Competition. The controller
is a rule-based system using Dijkstra’s algorithm for shortest
path calculations, a benefit-influenced tree search to find safe
paths and a novel ghost direction detection mechanism. The al-
gorithm first records a screenshot of the game and updates its
internal model of the game state. The maze is represented as a
graph with nodes at junctions and corners of the original maze.
Once the internal state is updated, the controller determines the
best rule to apply and then determines the best path (and hence

direction) to choose. The authors employ “ghost iris detection”
to determine the direction of each ghost. This approach is found
to be more efficient than the more intuitive approach of compar-
ing successive frames, and may provide slightly more up-to-date
information when a ghost is turning at a junction (the idea being
that the eyes point in the new direction before any movement
has occurred). Furthermore, the authors address the issue of
when a ghost enters a tunnel as it is momentarily not visible
on the screen. This can pose problems for screen-capture kits.
The authors overcome this by memorizing the positions of all
ghosts for short periods of time. The core of the controller itself
is based on six hand-crafted rules. One of the rules makes use of
the benefit-influenced tree search algorithm that computes a safe
path for Ms. Pac-Man to take: Starting from the current position
of Ms. Pac-Man, the tree searches all possible paths, assigning
a cost to each path depending on the distance and direction of
the ghosts.

Foderaro et al. [9] propose a decomposition of the navigable
parts of the level in cells, to be then represented in a tree based
on the cells’ connectivities (and referred to by the authors as a
connectivity tree). Additionally, the screen capture is analyzed
by extracting the colors of each pixel, in order to identify certain
elements of the game (fruits, pills, ghosts, etc.). As with Bell
et al. [23], the eyes of the ghosts are analyzed to determine their
direction of travel. Once all these features have been assigned
to nodes in the tree, a function determines the tradeoff between
the benefit predicted and the risk of being captured, and the
tree is searched to decide the next action to play. For specific
scenarios where the tracking of the ghosts’ eyes is not reliable
(i.e., when a power pill has just been eaten), a probability model
is built in order to determine the most probable next location of
the ghost. The authors continue their work [10] and construct a
more complete mathematical model to better predict future game
states and the ghosts’ decisions. This also takes into account their
different personalities. For instance, while Inky, Pinky, and Sue
have the same speed, Blinky’s speed depends on the number
of pills in the maze. The authors show that their predictive
model obtains an accuracy of 94.6% when predicting future
ghost paths. We note that the tree search aspect of this paper
shares some similarity with the prior tree search approach of
Robles and Lucas (see Section IV-B), but the Foderaro approach
used a better screen-capture module and accurate models of the
ghosts’ decision-making behavior.

B. Tree Search and Monte Carlo (MC)

This section summarizes the works performed on Pac-Man
based on tree search techniques [from one-step look-ahead to
Monte Carlo tree search (MCTS)] and/or have MC simulations
used in the controller. These methods, especially MCTS, have
shown exceptional performance, although they require the sim-
ulator to have a forward model to be applicable. Additionally,
when MCTS is applied to Pac-Man, a limit needs to be applied
to the length of rollout (unlike games such as Go where the
rollouts proceed to the end of the game, at which point the true
value is known). Since the rollouts usually stop before the end
of the game, a heuristic is needed to score the rollout, and also
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to scale it into a range compatible with other search parame-
ters, such as the exploration factor used in MCTS. The default
heuristic is to use the current game score, but there are ways to
improve on this.

Robles and Lucas [20] employ traditional tree search, limited
in depth to 40 moves, with hand-coded heuristics, to develop
a controller for Ms. Pac-Man. The controller is evaluated both
on the original game, via screen capture, and the authors’ own
implementation of the game (the game implemented is based on
[12] but has been extended significantly along the lines of [13]).
The authors find their controller to perform approximately three
times better on their own implementation of the game (where the
controller can interface directly with the game but the game also
differs in other aspects) than the original game played via screen
capture. The controller creates a new tree of all possible paths at
every time step of the game. The depth of the tree is limited to 40
moves and ignores both the direction and the state (i.e., edible or
inedible) of the ghosts. Paths are subsequently evaluated by their
utility: A safe path contains no ghosts, whereas unsafe paths
contain a ghost (direction of a ghost is ignored). The authors
consider two situations: the existence of multiple safe paths and
the lack of safe paths. Safe paths are selected according to hand-
coded rules that take into account the number of pills and power
pills on the path. If no safe path exists, the controller chooses
the path where the ghost is furthest from Ms. Pac-Man. Robles
and Lucas found that the most elaborate path selection worked
best, taking into account pills, power pills, and position within
the maze at the end of the path.

Samothrakis et al. [13] were among the first to develop an
MCTS controller for Ms. Pac-Man; they used a Max-n approach
to model the game tree. The authors make use of their own imple-
mentation of the game, extended from [12]. The authors discuss
several issues that become apparent when applying tree search
to Ms. Pac-Man. They treat the game as turn taking and depth
limit the tree. Furthermore, the movement of Ms. Pac-Man is
restricted (no reversals) to reduce the size of the tree and to
explore the search space more efficiently (i.e., the movement
of Ms. Pac-Man is similar to the ghosts; it is still possible for
Ms. Pac-Man to reverse as all directions are available from the
root, just not the remainder of the tree). Leaf nodes in the tree
may either correspond to cases where Ms. Pac-Man lost a life or
those where the depth limit had been reached. To identify favor-
able leaf nodes (from the perspective of Ms. Pac-Man), a binary
predicate is used to label the game preferred node (the value of
one node is set to 1, all others set to 0). The target node is identi-
fied by the distance of Ms. Pac-Man to the nearest edible ghost,
pill, or power pill. Ms. Pac-Man subsequently receives a reward
depending on the outcome (e.g., completing the level or dying).
The ghosts receive a reward inversely proportional to their dis-
tance to Ms. Pac-Man or 0 if Ms. Pac-Man clears the maze. The
authors test the performance of their algorithm in several ways,
comparing tree-variants UCB1 and UCB-tuned [110], different
tree depths as well as different time limits. Finally, the authors
also test their controller assuming the opponent model is known,
which subsequently led to the highest overall scores.

Around the same time as Samothrakis et al. [13], Ikehata
and Ito [25], [29] also used an MCTS approach for their

Ms. Pac-Man controller, with heuristics added to detect and
avoid pincer moves. Pincer moves are moves that trap Ms. Pac-
Man by approaching her from multiple junctions. To do this, the
authors define the concept of a C-path, which is a path between
two junctions (i.e., a path without any branching points). Similar
to other studies, Ikehata and Ito model the maze as a graph with
nodes at points that require a change in direction. Ms. Pac-Man
subsequently moves from node to node, whereas the movement
of the ghosts is chosen in a nondeterministic manner. The depth
of the tree is limited given the real-time nature of the game. A
set of rules is used to define a simplified model of the game used
for the MC simulations. The rules are chosen to approximate
the real game dynamics in a computationally efficient manner
while preserving the essence of the game. Ms. Pac-Man and the
ghosts move in a nondeterministic fashion according to a set of
rules (behavioral policies). Simulations are terminated when the
level is cleared and Ms. Pac-Man dies when a certain depth has
been reached. Each nonterminal state is assessed by a reward
function that takes the score of the game, as well as the loss
of life, into account; the back propagation of values is deter-
mined by the survival probability of the child node only. The
authors compare their approach against the then state of the art,
ICE-Pambush 3 [24]. The proposed system outperforms ICE-
Pambush 3 (both in terms of high score and maximum number
of levels), but the authors highlight that their controller is some-
what less reliable. One shortcoming is the controller’s inability
to clear mazes, focusing instead solely on survival. The authors
subsequently improve their controller to almost double the high
score achieved: pills in dangerous places, as identified by a dan-
ger level map (similar to influence maps [17]), are consumed
first, leaving pills in less dangerous areas for the end.

In a similar fashion to [29], Tong and Sung [26] propose
a ghost avoidance module based on MC simulations (but not
MCTS) to allow their controller to evade ghosts more efficiently.
The authors’ algorithm is based on [16]. The internal game state
is represented as a graph, with nodes at junctions. Arbitrary
points in the maze are mapped onto their nearest correspond-
ing junction node, from which a path may be obtained, using
the predefined distances. The screen capture is mapped onto a
28 × 30 square grid (each cell being 8 × 8 pixels); cells can be
passable or impassable. A bit-board representation is used for
reasons of efficiency. Movable objects are found using a pixel
color counting method (based on [18]). The controller’s logic
itself is based on a multimodular framework where each mod-
ule corresponds to a behavior. These behaviors include capture
mode (chasing edible ghosts), ambush mode (wait near power
pill, then eat pill, and enter capture mode), and the default behav-
ior pill mode (tries to clear a level as quickly as possible). These
behaviors are executed if Ms. Pac-Man is in a safe situation (this
is determined using the precomputed distances). If the situation
is dangerous, MC simulations are used. The look-ahead is used
to estimate the survival probabilities of Ms. Pac-Man. To make
the MC simulations more efficient, the authors impose several
simplifications and restrictions on the gameplay that are pos-
sible. Most notably, the ghosts do not perform randomly but a
basic probabilistic model is used to approximate the ghosts’ real
behavior. Given the real-time element of the game, the authors
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do not simulate until the end of the game (or level) but only
until Ms. Pac-Man dies or has survived after visiting a prede-
fined number of vertices. The state of Ms. Pac-Man (dead or
alive) is subsequently back propagated. The authors found that
the controller with the MC module almost doubled the score
of the controller with a ghost avoidance module that is entirely
greedy.

This concept is extended to employ MC for an evaluation of
the entire endgame: Tong et al. [30] consider a hybrid approach
where an existing controller is enhanced with an endgame mod-
ule, based on MC simulations; this paper extends the authors’
previous efforts (see [26]). The authors specifically consider the
scenario of an endgame that entails eating as many of the re-
maining pills as possible (and thus ignoring many of the other
aspects of the game such as eating ghosts). An endgame state has
been reached when the number of remaining pills falls below
a predefined threshold. The endgame module consists of two
major components: path generation and path testing. The first
module finds all the paths that connect two locations in the maze
(typically the location of Ms. Pac-Man and the location of a re-
maining pill), whereas the second module evaluates the safety
of each path. The latter is done using MC simulations. Using a
similar approach to [26], a path is deemed safe if Ms. Pac-Man
reaches the destination without being eaten. These data are ac-
cumulated into a survival rate for each path and if none of the
paths is deemed safe, Ms. Pac-Man attempts to maximize the
distance to the nearest ghost.

Pepels et al. [51], [61] present another MCTS controller,
which managed second place at the 2012 IEEE World Congress
on Computational Intelligence (WCCI) Pac-Man versus Ghost
Team Competition, and won the 2012 IEEE CIG edition. The
controller uses variable depth in the search tree: The controller
builds a tree search from the current location where nodes corre-
spond to junctions where Ms. Pac-Man is able to change direc-
tion. As these paths are of different lengths, not all leaves of the
tree will have the same depth. In particular, the leaves will only
be expanded when the total distance from the initial position is
less than a certain amount. Another attribute of the controller is
the use of three different strategies for the MC simulations: pills,
ghosts, and survival. Switching from one strategy to the other
is determined by certain thresholds that are checked during the
MCTS simulations. The authors also implemented a tree reuse
technique with value decay: The search tree is kept from one
step to the next, but the values in the nodes are multiplied by
a decay factor to prevent them from becoming outdated. Addi-
tionally, if the game state changes too much (Pac-Man dies, a
new maze starts, a power pill is eaten, or a global reverse event
occurs), the tree is discarded entirely. Finally, the authors also
include long-term rewards in the score function, providing a
rapid increase in the reward when eating entire blocks of pills
or an edible ghost is possible.

Finally, Silver [74] uses a partially observable version of Pac-
Man, called Poc-Man, to evaluate MC planning in large, partially
observable Markov decision processes (POMDPs). In particular,
Silver extends MCTS to POMDPs to yield partially observable
Monte Carlo planning (POMCP) and the game itself functions as
a testbed. The game was developed specifically for this purpose,

and features pills, power pills, and four ghosts as usual (albeit
with different layouts). Poc-Man can, however, only observe
parts of the maze at any moment in time, depending on its
senses of sight, hearing, touch, and smell (10 b of information):
4 b are provided for whether a particular ghost is visible or
not, 1 b for whether a ghost can be heard, 1 b for whether
food can be smelled, and 4 b for feeling walls in any of the
four possible directions. Silver uses this game, in addition to
some others, to test the applicability of MC simulations for
online planning in the form of a new algorithm: MC simulations
are used to break the curse of dimensionality (as experienced
with approaches such as value iteration) and only a black-box
simulator is required to obtain information about the states.
Silver compares his POMCP algorithms on Poc-Man, both with
and without preferred actions. Preferred actions are those better
suited to the current situation, as determined by domain-specific
knowledge. The algorithm performs very well for this domain
given the severe limits on what the agent can observe, achieving
good scores after only a few seconds of online computation. We
will return to the concept of partially observable Pac-Man in
Section III.

C. Evolutionary Algorithms

This section explores the work on evolutionary algorithms
for creating Pac-Man agents. This includes mainly genetic pro-
gramming (GP) (which evolves tree structures), grammatical
evolution (GE) (where individuals in the population are en-
coded as an array of integers and interpreted as production rules
in a context-free generative grammar), and also some hybridiza-
tions of these (note that neuro-evolution (NE) approaches are
described in Section IV-E). The results of these methods are
promising. Although to a lesser extent than rule-based systems,
they still require an important amount of domain knowledge,
but without the dependence of a forward model. This is an im-
portant factor that differentiates them from tree-based search
methods: learning is typically done offline, by repetitions, with
a more limited online learning while in play.

The work by Koza [68] is the earliest research on applying
evolutionary methods to Pac-Man: Koza uses his own imple-
mentation of the game, which replicates the first level (maze) of
the original game but uses different scores for the game objects
and all ghosts act the same (strictly pursuing Pac-Man 80% of
the time, otherwise behaving randomly). The author uses a set
of predefined rules and models task prioritization using GP. In
particular, Koza makes use of 15 functions, including 13 primi-
tives and two conditionals. This leads to outputs such as “move
toward nearest pill.” This work was later extended by Rosca [69]
to evaluate further artifacts of GP.

Alhejali and Lucas [47], using the simulator from [12] with all
four mazes, evolve a variety of reactive Ms. Pac-Man controllers
using GP. In their study, the authors consider three versions of
the game: single level, four levels, and unlimited levels. In all
cases, Ms. Pac-Man has a single life only. The function set used
is based on [68] but is significantly modified and extended. It
was divided into three groups: functions, data terminals, and
action terminals. Functions include IsEdible, IsInDanger, and
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IsToEnegerizerSafe. Most of the data terminals return the current
distance of an artifact from Ms. Pac-Man (using shortest path).
Action terminals, on the other hand, choose a move that will
place Ms. Pac-Man closer to the desired target. Examples in-
clude ToEnergizer, ToEdibleGhost, and ToSafety, a hand-coded
terminal to allow Ms. Pac-Man to escape dangerous situations.
The controllers were evolved using a Java framework for GP
called Simple GP (written by Lucas) and were compared against
a hand-coded controller. The fitness was the average score over
five games. Individuals in the final population are evaluated over
100 games to ensure the best controller is chosen. The authors
found that it is possible to evolve a robust controller if the levels
are unlimited; in the other cases, GP failed to find controllers
that were able to clear the mazes.

In contrast to these GP methods that use high-level action
terminals, Brandstetter and Ahmadi [50] use GP to assign a
utility to each legal action from a given state. They use 13
information retrieval terminals, including the distance to the
next pill, the amount of nonedible ghosts, etc. Then, the best-
rated action is performed. After varying both the population size
and the number of generations, the authors find that a moderate
number of individuals is enough to lead to the convergence to
a fairly good fitness value, which is the average score over the
ten game tournaments during the selection.

Alhejali and Lucas later extend their work in [48] where
they analyze the impact of a method called Training Camps to
improve the performance of their evolved GP controllers. The
authors weigh the change in performance against the additional
computational cost of using Training Camps and conclude that
they improve the controller’s performance, albeit at the cost of
manually creating these camps in the first place. A Training
Camp is essentially a (hand-crafted or automatically generated)
scenario that corresponds to a specific situation in the game
(i.e., the game is divided into several subtasks). Using these
to evaluate a controller’s fitness addresses the issue of having
to average over multiple complete games to account for the
stochasticity of the game itself. The function set used is a revised
set used by the same authors in a previous study [47]. The
Training Camps are designed based on the observation that
an effective Ms. Pac-Man controller needs to be able to clear
pills effectively, evade nonedible ghosts, and eat edible ghosts.
Numerous Training Camps were subsequently designed for each
of these scenarios. Agents were trained on the scenarios and
upon achieving a satisfactory performance, they were used as
action terminals to create an overall agent for the game. The
authors found that the new approach produced higher scores on
average and also higher maximal scores.

More recently, Alhejali and Lucas [59] enhance an MCTS
driven controller by replacing the random rollout policy used in
the simulations by the policy evolved by GP. The evolved GP
policy controls the rollouts by taking in to account the current
game state and achieves an 18% improvement on the average
score over 100 games simulated using the Ms. Pac-Man Screen-
Capture Competition engine.

Galván-López et al. [45] use GE to evolve a controller for
Ms. Pac-Man (using the implementation by Lucas [12]) that
consists of multiple rules in the form “if Condition then per-

form Action”; conditions, variables, and actions are defined a
priori. The authors compared the evolved controller to three
other controllers against a total of four ghost teams. In GE, each
genome is an integer array that is mapped onto a phenotype via
a user-defined grammar in Backus–Naur form. This allows the
authors to hand-code domain-specific high-level functions and
combine them in arbitrary ways using GE. The actions consid-
ered include NearestPill() and AvoidNearestGhost(). These ac-
tions also make use of numerous variables that are evolved. The
authors found that the evolved controller differed significantly
from the hand-coded one. Also, the controller performed better
than the other three controllers considered that came with the
software kit (random, random nonreverse, and simple pill eater).
The ghosts used for the experiment are those distributed with
the code. The authors conclude that the improved performance
of the evolved controller over the hand-coded one (although
differences are small) is because the evolved controller takes
more risks by heading for the power pill and subsequently eat-
ing the ghosts. This work was later extended by Galván-López
et al. [46] to use position-independent grammar mapping, which
was demonstrated to produce a higher proportion of valid indi-
viduals than the standard (previous) method.

Inspired by natural processes, Cardona et al. [57] use compet-
itive coevolution to coevolve Pac-Man and Ghosts controllers.
The coevolved Pac-Man controller implements a MiniMax pol-
icy based on a weighted sum of distance or game values as its
utility function when the ghost is not edible and nearby, oth-
erwise, the movement of the ghost is assumed to be constant
(toward or away from the Pac-Man).

The design of the ghost team controller is similar. The weights
in the utility function were evolved using an evolutionary strat-
egy. A set of static controllers is used for Pac-Man and the ghost
teams both in single-evolved and coevolved controllers during
testing and validation. Four different coevolution variants are
compared to the single-evolved controllers, distinguished by the
evaluation and selection at each generation, and fitness function.
The best performance was obtained when evaluating against the
top 3 controllers from each competing population rather than
just the single best.

D. Artificial Neural Networks (ANNs)

Several Pac-Man controllers have been implemented with
ANNs. ANNs are computational abstractions of brains and work
as universal function approximators. These can be configured
as policy networks that choose actions directly given the current
game state, or as value networks that rate the value of each state
after taking each possible action. Most of this paper has used
hand-coded features, but the ground-breaking work of Mnih
et al. [34] showed it was possible to learn directly from the
screen capture (pixel map), and recently this approach has also
been applied to Pac-Man,5 more of which is discussed later.

Bonet and Stauffer [70] use player-centered perceptrons to
learn optimal playing strategies for both Pac-Man and the

5Ms. Pac-Man was included by Mnih et al. in the set of Atari 2600 games,
but their method did not perform well compared with the best methods covered
in this survey.
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ghosts. The perceptrons are trained over time using reinforce-
ments based on the outcomes of the games played. To simplify
the task of learning, the authors use their own (flexible) imple-
mentation of the game and consider mazes of variable difficulty
and complexity, starting with very simple cases, increasing the
complexity once basic behaviors have been learned. The world is
represented by a 2-D array of features. To enable more efficient
learning, each type of feature has its own matrix, leading to a
3-D representation where each layer corresponds to the presence
or absence of a particular feature. The characters have access to
a 10 × 10 area that is centered on them to detect the features of
the game. A separate perceptron is used for each of the four pos-
sible directions to determine the move to make. Each perceptron
is updated based on a reinforcement learning (RL) scheme: the
reward associated with each move is the immediate score of the
game that results from the move (plus a percentage of the value
of the previous move). The authors consider ten mazes of in-
creasing complexity to learn essential behaviors first, followed
by more sophisticated ones.

Yuan et al. [75] are interested in recreating the ability of
novice human players to quickly learn basic skills in play-
ing Pac-Man. They analyze the performance of ten human
test-subjects unfamiliar with the game over 20 games, show-
ing how performance increases monotonically. Computational
techniques on the other hand usually require many more games
before performance improves, making it a time laborious pro-
cess. The authors argue that one of the reasons for this is that
usually (at that time, when applying neural networks to Pac-
Man) only the score at the end of the game is used as feedback,
which provides little guidance to the in-game decision-making
process.

In order to counter this, the authors show how the concept of
“rationality” can be used to boost learning speed, and they show
how the neural networks can learn over a small number of games
when in-game training signals are provided based on eating fruit
and not attempting to move into walls. However, their version
of the game was simplified to the extent of making it nonchal-
lenging, since it involved only one ghost and no power pills.

E. Neuro-Evolutionary Approaches

This particular approach, which hybridizes evolutionary al-
gorithms and neural networks, has become a popular way to
develop controllers for game agents. Evolution can be used
to evolve the weights, topologies, and reward functions of the
ANNs, and the literature shows that it can be further hybridized
with other techniques.

Lucas [12] was the first to consider evolving ANNs to play Ms.
Pac-Man. Lucas used a multilayer perceptron (MLP) with one
hidden layer applied to his own implementation of the game.
This implementation underwent further development to form
the basis of many future experiments and competitions such
as [11], [20], and [48]. Internally, the game is represented as
a graph and the shortest path distances are precomputed. The
ghosts were modeled to be aggressive and were not allowed
to reverse apart from global reversal events that would trig-
ger with small probability (and were beyond the influence of

either controller). Several features were identified and used as
input to the MLP. These include, among others, distance to ed-
ible/nonedible ghosts, current position, and nearest pill/power
pill. The evolutionary algorithm used is an (N + N) evolu-
tionary strategy where N ∈ {1, 10}; this was used to evolve
the weights of the MLP. The initial weights were drawn from
a Gaussian distribution and different approaches to mutating
these weights were considered. The move to be played was the
one with the corresponding maximum value. The experiments
compared the evolved MLP with a single-layer perceptron and
a hand-crafted controller, showing best results with the evolved
MLP.

The effect of noise was also studied, and it was shown that
making the game deterministic by fixing the random seed (i.e.,
like the original Pac-Man as opposed to the original Ms. Pac-
Man) made it much easier to evolve high performance con-
trollers, though they would only perform well on the determin-
istic game. This also suggests there may be interesting research
in testing the robustness of approaches such as deep Q networks
that have shown such impressive results on learning to play Atari
2600 games [34], since these games are largely deterministic.

In [44], Burrow and Lucas compare the differences in perfor-
mance between temporal difference learning (TDL) and evolved
neural networks to play Ms. Pac-Man, using the same simulator
as Lucas [12]. The authors find that TDL works best with a
tabular function approximator and that evolved MLPs signifi-
cantly outperform the TDL. The authors’ aim is not to create
a competitive controller but to analyze different learning tech-
niques. Using their own implementation of the game, the con-
troller makes use of a state value function (by looking ahead)
to choose a move (look-aheads are simplified as the positions
of the ghosts and the states of the pills are not updated). Two
features are extracted from the game state: the relative distance
to the nearest “escape node” (a node where ghosts are not ap-
proaching from all possible directions) and the distance to the
nearest pill. A function approximator is used to represent the
state value function: a multilayer interpolated table [111] and
an MLP are considered. The MLP has (2, 6, 1) nodes. The learn-
ing is done via one of two methods: TD(0) (one of the simplest
forms of TDL) and evolution strategies. For the latter, a simple
mutation-only (15 + 15)-ES is used.

Gallagher and Ledwich [36] make use of NE to determine
whether a controller may be found that can play Pac-Man to a
reasonable standard using as input the “raw” data of the screen.
In other words, the input to the neural network is not a set of
(hand crafted) features but instead the screen shot of the game
itself. This work may be seen as a forerunner of this paper on
using deep convolutional neural networks [34] to play directly
from screen input. The neural network used is a MLP and it is
evolved in response to the performance achieved in the game.
The size of the hidden layer was determined a priori and a
(μ + λ)-EA was used to evolve the weights. To simplify the
game, the authors often only considered a single ghost, also
removing power pills and bonus fruits. The neural network has
four outputs (one for each direction) with a (logistic) sigmoidal
activation function. The game is divided into a grid of 31 ×
28 squares. The network takes as input a window centered on
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the current position of Pac-Man with sizes considered 5 × 5,
7 × 7, and 9 × 9. The information (i.e., presence of walls, pills,
and ghosts) is translated into a numerical representation. To
overcome the limitations of the small input considered, global
information pertaining to the number of remaining pills is also
considered, leading to a total of 3w2 + 4 inputs, where w is
the window width/height. The experiments addressed different
ghost behaviors as well as different topologies, and the authors
found that it is possible to use raw data as input, although none
of the controllers managed to clear the maze.

Oh and Cho [28] propose a hybrid controller that combines
hand-crafted rules based on Dijkstra’s algorithm with evolved
ANNs (based on NEAT; see [112]): The agent attempts to follow
the rules if possible and if a safe route cannot be found, an
evolved neural network is used instead. The authors use two
sets of rules. First, if a ghost is near, Ms. Pac-Man immediately
tries to move in the opposite direction. The second set of rules
is based on paths obtained using Dijkstra’s algorithm which, in
turn, makes use of an abstract state representation: the maze is
modeled as a grid of 28 × 31 nodes. The cost of each path equals
its perceived danger, as measured by the proximity of nonedible
ghosts as well as the presence of items such as pills and edible
ghosts. The neural network is based on the NEAT method and
has 20 input and four output nodes. The inputs are based on the
locations of Ms. Pac-Man, the ghosts, the pills, and the power
pills, and also the direction of Ms. Pac-Man. The fitness of an
evolved network is equivalent to the game’s score. The authors
compare all components in isolation (rules only, neural network
only, and hybrid) and conclude that the hybrid approach offers
the best performance as it combines expert domain knowledge
with a more costly yet also more flexible autonomous technique.
An evolved neural network by itself is considered insufficient to
cover the wide variety of scenarios Ms. Pac-Man may encounter
throughout the game.

Tan et al. [31], [32] also investigate the hybridization of
nature-inspired computational techniques by combining evo-
lutionary algorithms with ANNs: The authors make use of evo-
lution strategies to evolve the weights and biases of a feedfor-
ward neural network to automatically generate controllers to
play Ms. Pac-Man. The authors evolve a two-layer feedforward
neural network using a 1 + 1-EA and compare its performance
against a neural network found by random search as well as a
random controller (in [32] only). The fitness of each ANN is
determined by the average score over a number of games. The
authors find that the former outperforms the latter.

More recently, Schrum and Miikkulainen [62] approach the
problem from a multimodal perspective: the ghosts can be ed-
ible, a threat, or a mix in-between (when some are edible but
others have been respawned already). In their technique, modu-
lar multiobjective NEAT, the authors use nondominated sorting
genetic algorithm II (NSGA-II) as a multiobjective optimization
technique to evolve artificial modular neural networks. They also
employ operators that could add new modules. Two objectives
are taken into account for NSGA-II: a pill score (number of
pills eaten) and a ghost score (ghosts eaten). Experiments are
run with one, two, and three modules, and results outperform
previous work with nature-inspired algorithms in this domain.

In follow up work [64], the authors deepen their analysis by
employing a variable number of modules and comparing dif-
ferent mutation operators. Additionally, the authors distinguish
between split sensors (those that assess both the distance and
the status–edible or threat–of the ghosts) and conflicting sen-
sors (where the edible versus threat status is ignored) in order to
get a more general and evolvable approach. Results show that
networks with conflicting sensors are actually able to perform
well in both situations, and evolution was able to find luring
behaviors to maximize score when capturing ghosts after eating
a power pill. Their work suggests that modular approaches are
able to achieve a high performance of play in this game.

Inspired by [113], Miranda et al. [43] imitate a humanlike
Pac-Man agent using NE. To reduce the search space, the game
state is shrunk by considering only a window of 7 × 7 tiles.
The authors focus mostly on the design of the fitness function.
They compare an ANN (using back propagation) trained on
a particular human player’s movements to NE with a fitness
based on the same human player’s movements, and a similar
system augmented with high-level game features such as the
final score. The two NE approaches use a genetic algorithm (GA)
to evolve the ANNs. The authors suggest that there is still room
for improvement, for instance considering more information
from the game by using a larger window, and emphasize the
priority of improving the ANN.

F. Reinforement Learning

This section describes another set of offline learning methods
that require episodic learning. In fact, the stochastic nature and
unpredictable behaviors found in Ms. Pac-Man made this game
a popular testbed for RL [41], [42], [78]. The approaches de-
scribed here mainly used a form of Q-learning or TDL. Most
of the work performed with RL methods have used different
frameworks to the competitions, making general comparisons
with other methods less clear.

One of the main challenges of these methods is the large
state space and number of features. Bom et al. [78] extract the
seven most important features of a game state and train their Ms.
Pac-Man agent using single action single hidden layer neural
networks with Q-learning; thus only seven input neurons (in-
puts) are required. At each time step, the action is chosen as the
argmax of the four outputs of the neural networks. Using few
high-order inputs leads to more effective and faster training. In
addition, the good performance of neural networks trained with
Q-learning is verified by transferring, i.e., testing the learned
policy on a maze that has not been trained on. Tziortziotis
et al. [41], [42] describe a game state using ten abstract fea-
tures for speeding up the learning. Their Ms. Pac-Man agent is
initialized by a policy trained without the presence of ghosts,
then trained with the ghosts. The agent trained by two-stage
learning is able to complete 40% of the games, simulated using
the multiagent MASON toolkit [114].

Szita and Lorincz [73] use Ms. Pac-Man as an example in
their demonstration of how one may deal with a range of com-
binatorial RL tasks. The authors make use of their own imple-
mentation of Ms. Pac-Man where ghosts chase Ms. Pac-Man
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80% of the time and take random deceptions 20% of the time;
ghosts may never reverse (as with [68]). The authors develop a
set of high-level actions and observations and use RL to com-
bine these into a suitable policy. The RL algorithm used is the
cross-entropy method (CEM) that shares much in common with
evolutionary approaches and performs policy optimization. The
authors find that this hybrid approach performs better than ei-
ther learning (from scratch) or a rule-based system in isolation.
Szita and Lorincz use domain knowledge to preprocess the state
information and to define action modules, and RL will subse-
quently combine these into a rule-based policy that may be used
to play the game. The action modules are designed to be basic
to minimize the amount of human knowledge required. Actions
are temporally extended and may be executed in parallel. Con-
flict resolution between rules is achieved using priorities (which
are also learned) and the agent can switch ON and OFF certain
action modules so that the action to take is obtained only from
modules active at the time. The learning takes place as follows:
A generation of random policies is drawn according to the cur-
rent parameter set. Policies are evaluated by playing the game.
The parameter set is then updated using the CEM. The authors
compared two approaches: one with randomly generated rules
and one with hand-crafted rules, and CEM was compared to
a simple stochastic hill climber. The best result was obtained
using CEM and hand-coded rules.

Handa [21], [22] extends his previous work ([16]) to improve
his controller by learning to identify critical situations in the
game that allows the controller to survive considerably longer.
This is done by adding a critical situation learning module where
the learning is achieved by means of Q-learning using a cere-
bellar model articulation controller (CMAC) function approxi-
mator. Note that CMAC provides a crude form of interpolation
when performing table lookup—A direct alternative with more
precise retrieval can be found in Lucas [111] and also Abdullahi
and Lucas [115]. The need for this module arises as the evolved
fuzzy set that sits at the heart of the controller makes potentially
poor decisions if rules are tied. The critical situation module
thus acts as a tie breaker to ensure the right move is chosen. The
input to CMAC is prepared for each intersection in the maze in
the form of overpaying tilings. The controller thus only makes
use of the critical situation module at junctions. The tiles are of
size 6 × 6 and the tile set of size 5 × 5 or 6 × 6. The initial Q
values are 0 and only a negative reward (−10) is given in the
case of death. The controller used in the experiments is identical
to [16] with only the addition of the new module. The author
finds that the module can capture critical situations well but the
method is too costly to be used in real time.

DeLooze and Viner [19] make use of fuzzy Q-learning to
develop a controller for the screen-capture version of Ms.
Pac-Man. Fuzzy Q-learning is a technique that combines fuzzy
state aggregation with Q-learning, which may be applied natu-
rally to the state aggregation obtained by the fuzzy sets: Fuzzy
state aggregation builds states given multiple fuzzy sets, reduc-
ing the number of total states that need to be considered and
making Q-learning an applicable technique. The authors con-
sider the action of going to the nearest pill, the nearest power pill,
or running away from the closest ghost. The controller decides

on an action based on the current state of the game and on what
has been learned about this situation in the past. The controller
was trained by playing many games, taking one of the three
actions available at random. Following a death, the actions that
contributed to the death had their coefficients decremented (neg-
ative reward; using a window of 15 state-action pairs). When
playing, the controller chooses the action corresponding to the
highest coefficient. The authors tested numerous different se-
tups in their experiments (e.g., the size of the fuzzy sets) and
found that learning was ineffective given a lack of persistency
(a new action would be chosen for each new screen capture) and
hence the authors forced the controller to stick with the chosen
action for a limited amount of time.

Recently, Vezhnevets et al. [82] proposed a model named
STRategic Attentive Writer (STRAW) for learning macroac-
tions and its variant STRAW-exploiter (STRAWe). Periodically,
STRAW takes the high-level features extracted by a feature ex-
tractor from a game state (represented by a frame) and outputs a
stochastic action plan during a certain horizon. This is referred
to as an action-plan module. A module called commitment plan
is used to determine at each time step whether the action plan
needs to be replanned or not. Additionally, STRAWe contains
a noisy communication channel between the feature extractor
and the two modules of STRAW. STRAWe using a convolutional
network as feature extractor and asynchronous advantage actor-
critic as policy optimizer achieves significant improvement in
scores on some Atari games, including Ms. Pac-Man. The score
achieved by the STRAWe on Ms. Pac-Man is more than 50%
higher than the one obtained by a recurrent long short term
memory (LSTM) network. As we mention in the conclusions, it
would be very interesting to see how well convolutional neural
networks can learn to play the original Ms. Pac-Man game.

In a different work, Subramanian et al. [92] compare the way
humans extract options (i.e., abstractions of the action space,
as defined in the RL literature [116]) with that of automated
methods, by collecting data from humans playing the Taxi and
Pac-Man domains. The authors showed that human-created op-
tions provide a better performance for a Q-learning agent than
the ones from automatic methods, showing (particularly in the
Pac-Man domain) that human-crafted options bring not only
a faster computation time, but also a higher average reward.
This work also highlights that, however, optimal performance
was not achievable with human options in Pac-Man, because
of the way humans evaluated Pac-Man states (more interested
on higher scores than survival time) and the fact that most hu-
man options were never executed until termination, which poses
a problem due to the lack of an optimal method for option
interruption.

Van Seijen et al. [35] proposed a new deep learning method,
called hybrid reward architecture, to build an agent to play
PacMan in a screen-capture setting, using the version of the
game in the Atari 2600 collection. The authors decompose the
reward function of the environment into n different (weighted)
reward functions related to key aspects of the game, each one
tackled by a different subagent. The authors show that the trained
controller is able to achieve a performance above that of hu-
man players and other state-of-the-art RL approaches. The task
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decomposition approach is similar to the Training Camp method
used by Alhejali and Lucas [48].

Finally, the work by Burrow and Lucas [44] fits within the
category of Learning as it looks at the differences in performance
between TDL and evolved neural networks to play Ms. Pac-Man.
This work was reviewed in Section IV-E.

G. Other Approaches

This section describes controllers implemented using other
techniques that do not fall under the main categories described
in this section. Examples are ant colony optimization (ACO),
influence maps, graphs, and constraint satisfaction problems.

Martin et al. [27] propose a controller based on ACO to play
Ms. Pac-Man. The authors identify some of the game’s objec-
tives and specify different types of ants that correspond to these
objectives: collector ants and explorer ants. The former tries to
maximize the score of the game by collecting pills, power pills,
and eating ghosts, whereas the latter attempts to find safe paths
that evade the ghosts. The distance an ant may explore is lim-
ited due to the real-time nature of the game. Ants are launched
from positions adjacent to Ms. Pac-Man’s current position and
the controller chooses the path found by the best explorer ant
if a ghost is near, and the path found by the best collector ant
otherwise. The nodes visited by the ant are chosen according to
the pheromone distribution across the graph (proportional rule).
The concept of a dead ant is used to either label a collector
ant that has reached the maximum distance without scoring any
points, or an explorer ant has been eaten by a ghost. The pa-
rameters of the ACO, including the number of ants, distances
travelled, and learning rates, are fine-tuned using a GA.

Wirth and Gallagher [17] propose a simple controller for Ms.
Pac-Man based on influence maps: An influence indicates the
desirability (or lack thereof) of certain regions on the maze. In
particular, all game objects exert positive or negative (from the
perspective of Ms. Pac-Man) influences onto to the surroundings
and the influence map is simply the sum of all these local influ-
ences. The authors constructed the influence map based on pills,
power pills, and ghosts (edible and nonedible). The influences
were designed to encode the basic intuition as to what consti-
tutes a good Ms. Pac-Man player: eat pills and edible ghosts,
avoid nonedible ghosts. For the controller to make a decision
during the game, all surrounding nodes are evaluated using the
influence map and the maximum value is subsequently selected:
influences are local and their impact decays geometrically (Eu-
clidean distances have been used) inversely to distance. In their
experiments, the authors also considered the ability of a simple
hill climber to optimize the parameters of the influence map
and found that good parameters may be found quickly. The au-
thors conclude that their controller behaves sensibly but would
at times oscillate if the influence values of neighboring nodes
were very similar (this would be resolved dynamically during
gameplay).

Anthony et al. [79] explore the idea of maximizing empow-
erment as an action decision mechanism for intelligent agents,
and employ a simplified version of Pac-Man (without pills, turn-
ing it into a survival predator–prey game). Empowerment is a

measure that determines how much an agent can influence its
environment by performing actions on it. The authors introduce
several versions of empowerment techniques to propose its use
for general game playing, as it can be used without the need of
game or domain knowledge. Furthermore, this study proposes
a mechanism to group actions into strategies, showing that the
combination of both ideas provides the agent with more control
over the environment and policies that are preferred by humans.

Svensson and Johansson [54] design influence-map-based
controllers for both Ms. Pac-Man and the ghosts. The Ms.
Pac-Man controller takes into account seven influence maps
(the influence of lookahead positions of the Pac-Man, the dis-
tance to the nearest pill, power pill, ghost, and edible ghost, and
the influence of freedom of choice), which are measured by five
parameters. At the first stage, the authors picked up the two
most influential parameters by running lots of experiments and
studying the landscape of the game’s score over the parameter
search space. Then, these two parameters are fixed at their opti-
mal values to optimize the other parameters. A ghost controller
is designed in the same way but only three influence maps (mea-
sured by three parameters) are considered: the distance between
the Pac-Man and the nearest power pill, the lookahead positions
of the ghosts, and the distances between ghosts.

More recently, Costa et al. [90] model a simplified version of
the Pac-Mac game using typed graph grammar with negative ap-
plication conditions. The game objects (Pac-Man, ghosts, berry,
and block) are represented by nodes in the graphs. An arrow
between two nodes represents that the game object at the arrow-
head can be taken by the game object at the tail, for instance, a
Pac-Man can move to a block or a berry. Rules are represented
by such graphs.

Finally, Koriche et al. [91] transfer the Pac-Man game to a
stochastic constraint satisfaction problem with 93 variables and
22 constraints, and design three Pac-Man agents using upper
confidence bounds for trees (UCT), maintaining arc consistency
together with upper confidence bound (MAC-UCB) method and
classical forward checking (FC) together with UCB (FC-UCB),
respectively. The authors show that MAC-UCB statistically out-
performs both UCT and FC-UCB.

H. General Video Game Playing

GVGP [117] is a discipline that lies at the intersection of game
AI and artificial general intelligence. The challenge of GVGP is
to design controllers that can play any video game from a diverse
set of possible games without knowing the details of the games
in advance. This makes for a much greater challenge, since
game-specific heuristics and control modules are of limited (or
zero) value.

One of the most notable works on GVGP was done by Mnih
et al. [34], who applied deep Q-learning in order to achieve
human level of play in 49 of the games from the classic Atari
2600 collection. Although each network was trained separately
for each specific game, the generality of their approach resides
in the fact that they all share the same architecture, hyperparam-
eters, and training procedures. The network employed received
only the screen capture and the current score of the game, and



ROHLFSHAGEN et al.: Pac-Man CONQUERS ACADEMIA: TWO DECADES OF RESEARCH USING A CLASSIC ARCADE GAME 247

gave the action to take as output. This method has been used
successfully to outperform human players in many other games
but performed inferior to humans in the case of Pac-Man.

The game of Pac-Man has also been featured in other pop-
ular GVGP frameworks such as VGDL [118], developed in
to pyVGDL by Schaul [86], [87] and the general video game
AI (GVGAI) framework (www.gvgai.net; by Perez et al. [88],
[89]). In these works, Pac-Man (along with other games) is im-
plemented in the video game description language, which allows
2-D arcade games to be specified in simple, plain text. These
frameworks also enable the possibility of writing controllers,
which can interact with the engine by receiving game state and
supplying an action every 40 ms.

The GVGAI framework was a reimplementation of the
PyVGDL engine in Java for the GVGAI competition. During
the first edition of this contest, when Pac-Man featured as an
unknown game: the winning approach of the competition (Open-
Loop Expectimax Tree Search [88]) achieved a 100% victory
rate in this game (meaning it cleared all levels). This implemen-
tation of Pac-Man differs greatly from the original Pac-Man and
Ms. Pac-Man, with ghosts that chase the player in a simpler way.
However, it is still worth pointing out that the agent was able to
clear all mazes without prior knowledge of the game that was
being played.

V. GHOST CONTROLLERS

Traditionally Pac-Man is viewed from the perspective of the
gamer, with the ghosts as opponents that are part of the game.
Far fewer papers have been published so far that aim to de-
velop better strategies for the ghosts (see Table V). The data in
Table III show that a slight preference for Ms. Pac-Man con-
trollers remains but this difference is diminishing and it is rea-
sonable to expect more papers to be published in the near future
centered around the ghost team. This section reviews all studies
concerned with the ghosts, as well as a small selection of re-
search on predator–prey models (of which Pac-Man is a special
case). The methods involved in designing controllers for ghosts
are summarized in Table VI.

A. Rule-Based Approaches

Gagne and Congdon [52] design a rule-based controller,
namely FRIGHT, for the ghosts. In total, 15 high-level con-
ditions (parameters), including hard and soft conditions, are
extracted from current game state for rule selection. The deter-
mination of a rule is similar to a SATisfiability problem. Only
the rule that has all the conditions satisfied is selected. Each
rule refers to one single action in {Retreat, Evade, Surround,
Attack, Protect}. If more than one rule is satisfied, the one that
meets most soft conditions is selected. If no rule is satisfied, the
Attack action is applied. Besides hand-coded rules, some rules
are generated using evolution strategies.

B. Nature-Inspired Heuristics

Recio et al. [53] develop an ant-colony-based controller for
the ghost team. The objective of the ghost team is to cut across

Ms. Pac-Man’s path, using two different types of ants. For the
Ms. Pac-Man agent, explorer ants are launched from all the ad-
jacent nodes to her location, indicating a measure of optimality
for each one of the possible paths she can take. Additionally,
hunter ants are launched from the nodes contiguous to each one
of the ghosts’ locations, keeping their current directions. In this
study, the proposed approaches are compared against the bench-
mark NPCs and the other entries of the 2011 IEEE Congress on
Evolutionary Computation (CEC) Ms. Pac-Man Versus Ghost
Team Competition.

Tamura and Torii [58] generate a controller for the ghosts
using GE and Backus–Naur form grammars. A population of
100 individuals is evolved during 50 generations. The controller
aims to minimize the average score for Pac-Man over ten simu-
lations of each individual. The designed controller is compared
to three hand-coded ghost controllers using the Ms. Pac-Man
versus Ghost Competition engine, except that, only one out of
the four levels is played and the Pac-Man is not awarded one
more life at 10 000 points. The authors defined grammars that
design more aggressive ghosts and avoid two ghosts taking the
same routes.

Liberatore et al. [60] design flocking strategies (FS), a swarm
intelligence technique, for the ghost team. The authors classify
the ghosts as three types of actors according to their states: nor-
mal, hunted, and blinking. Each FS is a mapping of a ghost
state and the type of interacted actor, among the five actor types
(including Pac-Man and power pill), to a flocking rule that calcu-
lates the next move for the ghost. In total, 50 FSs are randomly
initialized and evolved offline as individuals in a GA aiming
to minimize Ms. Pac-Man’s score. Neither online learning nor
centralized control is required. Then, more FS for the team of
ghosts are compared by Liberatore et al. [63]. Concretely, the
authors present a GA with lexicographic ranking to optimize FS-
based ghost controllers. A comparison is made between flocks
of homogeneous and heterogeneous individuals, and the re-
sults are matched with those from the agents present in the Ms.
Pac-Man versus Ghosts Competition framework, and some
other approaches in the literature. The authors found that their
approach obtained better results than those agents present in the
framework, and then some of the other controllers employed,
with a better performance in the case of homogeneous teams.

C. Reinforcement Learning

Beume et al. [37] are interested in creating effective con-
trollers for the NPCs of the game (i.e., the ghosts), motivated by
the need for entertaining NPCs (citing the work by Yannakakis
and Hallam [94]). The focus is on how NPCs may develop
different behaviors if different learning strategies are used. An
extended version of the NJam Pac-Man clone is used, reproduc-
ing the original first level and creating numerous test scenarios
(maps and states of power pills); simple rules are used to con-
trol Ms. Pac-Man. Learning is done offline and two approaches
are compared: model based and direct learning. The model-
based approach uses patterns/scenarios, whereas the direct ap-
proach utilizes the success/failure of completed games. As in
POMDPs, the NPCs only receive local knowledge (i.e., unlike
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in many modern video games where NPC-intelligence derives
from global, normally inaccessible, knowledge). Feedforward
networks using back propagation are used for the model-based
case and evolutionary algorithms for the direct case. The inputs
to the networks and the EA are identical and related to the state
and position of all game objects (i.e., pills, Pac-Man, etc.) that
are within the range of sight of the ghost. The behaviors of
the ghosts are broken down into three states: roam, evade, and
chase; a separate network is used for each and gets activated
whenever the corresponding scenario occurs in the game. The
networks are then trained offline with patterns that correspond
to these scenarios. The EA is used to learn improvements to a set
of rules that are subsequently used for game play. Two EAs are
used to evolve both pure and mixed strategies. One (1 + 1)-EA
is used for each of the four ghosts in the game, with the fitness
of a ghost being determined by the number of correct decisions
made while playing the game. The authors conclude that both
forms of learning were effective in shortening the time it took
to eat Pac-Man.

D. Neuro-Evolutionary Approaches

Similar to Beume et al. [37], Wittkamp et al. [38] explore
the use of computational intelligence (CI) techniques for real-
time learning to evolve strategies for the ghost team. Using a
neural network to control the ghosts, the focus is on team-work
development that makes use of continuous short-term learning
to regularly update the (overall) strategy of the ghosts. The au-
thors make use of NEAT (see [112]) to continuously evolve
the ANN’s topology and weights. The goal is for the ghosts to
learn as a team to exploit the weaknesses of Pac-Man, which
is controlled by a hand-coded controller (pacbot). Each ghost
has its own neural network, which acts as a move evaluator,
and is evolved by playing a series of games (offline). Real-time
learning is subsequently used to learn team-specific behaviors
in the short term. The fitness of each neural network is deter-
mined by the performance of the team, not the individual. Four
separate instances of NEAT (four populations) are executed in
parallel and the best one is chosen for the actual game play (in
the paper, the authors actually disregard real time and do the
learning sequentially). Each differs according to the distance
of the ghost to Pac-Man. Each neural network has 19 inputs
regarding the current state of the game, including distances to
Pac-Man and the objects in the game. The authors comment that
their approach of short-term learning allows the ghosts to avoid
having to learn complex general game-playing strategies. In the
experiments, numerous different behaviors are learned and per-
formance is compared against the game’s original ghost team.
One of the most important results is the emergence of structured
team play where the ghosts successfully limit the number of
possible escape routes for Pac-Man.

Hasan and Khondker [77] evolve neural networks for ghosts
using a (10 + 10)-ES, with each network having 20 hidden
neurons (this a similar setup to the one used by Lucas [12]).
The noteworthy aspect of their implementation of the game is
its integration in to social media using Heroku.

Finally, in contrast to the work focused on controlling the
entire team of ghosts, Dai et al. [33] build an agent using evo-
lutionary neural networks particularly for the red ghost, Blinky,
which is the most aggressive one. In this work, only the weights
of the networks are evolved. The authors show that the evolved
controller alone is able to capture PacMan more often than the
default implementation included in the software, and the pres-
ence of the evolved ghost in the team makes a positive difference
with regards to how quickly PacMan is captured.

E. Tree Search and MC

Nguyen and Thawonmas [49], [56] introduce the use of
MCTS to control the ghost team, presenting the bot that won
the first Ms. Pac-Man versus Ghost Team Competition at 2011
IEEE CEC. In this approach, one of the ghosts (Blinky) moves
with a set of predefined rules, whereas the other three employ
MCTS. This was implemented like this in order to balance the
complexity of many hand-coded rule-based ghosts and the relia-
bility of MCTS controllers. In [49], Ms. Pac-Man’s movements
are predicted by the k-nearest-neighbor algorithm.

In [56], Ms. Pac-Man’s movements and position are predicted
using MC simulations from her current location, where it is as-
sumed that the Pac-Man agent is trying to minimize the distance
to certain objectives, according to her moves in previous time
steps. Instead of simulating moves on a tick per tick basis, the
authors simulate actions as moving from one crosspoint to an-
other, providing a deeper lookahead for the simulations. Nodes
are evaluated according to different criteria, such as inverted
Pac-Man score, spread in the location of ghosts and relative
distance to Pac-Man. The authors show that the combination of
MCTS and rule-based ghosts outperforms that of solely MCTS
controllers, as this provides a natural way of introducing domain
knowledge into the problem while keeping the search capabili-
ties of MCTS.

F. Predator–Prey Scenarios

Finally, it is also worth considering some related work that
focuses on the more general case of predator–prey scenarios
(as reviewed in [11]). For instance, Haynes et al. [119], [120]
strive to generate programs for the coordination of cooperative
autonomous agents in pursuit of a common goal. The authors
consider a simple predator–prey pursuit game, noting that the
problem is easy to describe yet extremely difficult to solve. An
extension of GP was used to evolve teams of agents with differ-
ent strategies for their movements. Similarly, Luke and Spector
[121] consider different breeding strategies and coordination
mechanisms for multiagent systems evolved using GP. In par-
ticular, the authors are interested in the performance of homo-
geneous and heterogeneous teams: In a heterogeneous team of
agents, each agent is controlled by a different algorithm, whereas
homogeneous agents are all controlled by the same mechanism.
The problem considered is called the Serengeti world: a toroidal,
continuous, 2-D landscape, inhabited by gazelles and lions.

Examples of more recent work regarding predator–prey sce-
narios include Rawal et al. [122], Rajagopalan et al. [123], and
Cardona et al. [57]. In the first two cases, the authors consider the
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coevolution of simultaneous cooperative and competitive behav-
iors in a complex predator–prey domain. The authors propose
an extended neural-network architecture to allow for incremen-
tal coevolutionary improvements in the agents’ performance.
This mechanism demonstrates the hierarchical cooperation and
competition in teams of prey and predators. The authors further
note that due to sustained coevolution in this complex domain,
high-level pursuit-evasion behaviors emerge. The third case has
been discussed previously in Section IV-C, in which competi-
tive coevolution was applied to evolve both Pac-Man and ghost
controllers.

VI. PLAYER PROFILES AND MEASURES OF FUN

The research reviewed in Sections IV and V is primarily con-
cerned with the development of controllers that play the game
as well as possible. Pac-Man has also been used extensively as
a tool to gain a better understanding of the behavior of gamers
and what constitutes fun in a game. These studies are outlined
next.

Beume et al. [97] are interested in measuring the perceived
level of fun a player experiences when playing Pac-Man (based
on NJam). Instead of questioning gamers directly regarding
their enjoyment of the game, the authors propose to use theory
of flow,6 as defined in the field of psychology, and query whether
this provides a more reliable indicator of this subjective subject
matter. The authors conduct a sizeable study with human players
(85 samples were effectively used in the study), using various
techniques to control the ghosts, including neural networks and
evolutionary algorithms. The study combines measures of fun
with questionnaires to validate the feasibility of the measures.

The work is based on the assumption that flow is experienced
when the player’s skill is close to what is required to achieve
the task (based on [124]). In contrast to the work by Yannakakis
et al. (see below), Beume et al. take the player’s point of view
to measure what is perceived (rather than the analysis of game
statistics from automatically generated games). Beume et al.
measure the time fraction of the game in which the player is
confronted with interesting situations. These are defined as in-
teractions with the ghosts (based on proximity), which should
also be correlated to the perceived difficulty of the game, and
hence can be matched to skill to establish flow. The experiments
attempt to establish whether flow is measurable and whether it is
a good measure of fun. The authors also compare their interac-
tion measure against that of Yannakakis and Hallam [93]. They
found divergence in the results, concluding that neither measure
is able to accurately capture the degree of fun experienced by
the players.

Cowley et al. [98], [99] present a series of studies aimed at
analyzing player behavior in the game Pac-Man. The goal of
this work is to gain a better understanding of player profiles (in
particular, skill and preference for certain situations) and to use

6The concept of flow basically refers to the involvement of a person in a
task: heavier involvement minimizes the perception of external events. Flow is
subsequently defined as an optimal experience whereby a person is so engaged
in what they are doing, everything else (including their self-consciousness) is
perceptually eliminated.

this information for in-game adaptation to create games better
suited to individual gamers (dynamic player modeling). The au-
thors use their own, somewhat simplified, implementation of the
game where the ghosts move entirely randomly. Their approach
is based on low-level in-game data capture that measures de-
viations from optimal choices throughout the game, potentially
revealing the gamer’s skill and play preference. These data con-
stitute key information in the analysis of optimal player experi-
ence. The authors also use theory of flow and consider games
as information theory systems, using decision theory to model
the player’s choices. Acknowledging that players seldom play
perfectly, due to skill and preference, deviations from optimal
decisions may reveal useful information regarding the player’s
profile. In particular, the authors relate the difficulty of decision-
making on a move-by-move basis to the overall challenge of the
game.

In the first study, Cowley et al. define utility functions for five
different states that correspond to basic behaviors in the game
(such as hunt and flee). The authors find that although prediction
rates are not overly reliable (47%–60%), players are categorized
reasonably well, although not sufficiently so far in-game con-
tent adaptation. Then, the authors increase the reliability and
granularity of predictions, albeit at the cost of speed: The im-
proved approach takes into account all relevant features of the
state (weighted feature vector), looking ahead in time using tree
search. The authors find that the overall accuracy is lower than
before (44%) but that some features can lead to robust predic-
tion of player movements. Cowley et al. [99] finally improve
the previous two approaches to increase the prediction accuracy
significantly (by 26%–70.5%) as tested on a variety of gamers
in an extended experimental study.

The concept of “fun” is difficult to measure and quantify.
Yannakakis and Hallam [93], [94], [96] and Yannakakis and
Maragoudakis [95] present a series of studies aimed at bet-
ter understanding what constitutes fun and enjoyment in video
games. The original emphasis is on predator–prey multichar-
acter video games and Pac-Man was chosen as the case study
throughout all these works. The authors use their own implemen-
tation of the game, which does not feature power pills. In [93],
Yannakakis and Hallam view Pac-Man from the ghosts’ per-
spective and attempt to evolve neural-controlled ghost teams
that play effectively against a fixed strategy Pac-Man player.
The authors find that near-optimal play makes the game less in-
teresting, as the player is constantly eliminated (see [125] cited
in [93]). The authors subsequently propose a general metric
of interest for predator–prey video games and this measure is
then used to adapt opponent (i.e., ghosts) strategies online, to
maintain high levels of interest throughout the game: starting
with near-optimal offline trained behaviors, the ghost controller
is adapted online according to the level of interest (based on
the player’s behavior). The authors investigate different learn-
ing procedures to achieve this reliably in real time. A fully
connected multilayered feedforward neural network is used to
control the ghosts and three fixed (nonevolving) strategies are
used as a control (including a near-optimal strategy).

To define a measure of interesting behavior, Yannakakis and
Hallam first define criteria that make a game interesting and then
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quantify these attributes into a mathematical formula. These be-
haviors are subsequently measured based on game data and
combined into an overall measure of interest. Each neural con-
troller is evolved offline by playing a series of games. The
authors observe both the performance of the controller as well
as its impact on the interest of the game. The authors show
that the best controllers, in terms of performance, do not have
the highest rating for interest, illustrating the tradeoff one has
to make. The best performing ghosts are then used for online
adaptation using the interest of the game as the goal. The latter
experiment includes different strategies for Pac-Man that may
change midgame, and results show a successful adaptation to
the changing game dynamics.

In [95], Yannakakis and Maragoudakis continue this line of
work to take into account the player’s contribution to the emer-
gence of interest using a player modeling mechanism. In par-
ticular, the authors use Bayesian networks, trained on player
data, to infer appropriate parameter values for the online learn-
ing procedure. The model of the player is based on numerous
features of the game, including score and time played. The au-
thors find that the player model improves the online adaptation
process. In [94], Yannakakis and Hallam continue this work to
test the online learning mechanism over more complex stages
(mazes) of the game. The authors also consider the relationship
between the interest measure and the topology of each stage (a
complexity measure of each topology is also proposed). They
find that the interest measure is robust and independent of the
stage. All these studies are summarized and extended in [96],
including motivation and background.

Sombat et al. [55], [66] focus on understanding user prefer-
ence (as correlated to a perception of what constitutes fun) and
collect data from human players using the resources of the Ms.
Pac-Man versus Ghosts Competition. Every human player is
required to play two games against each of the ghost teams and
select their preferred team. Interestingly, the ghost controllers,
which ranked highest in the competition, are usually not voted as
the most enjoyable. Similarly, Baumgarten [76] collects game
data of more than 200 players online, then studies game fea-
ture and playing style using linear discriminant analysis on the
discretized survey data. The physical interaction with the de-
vice is determined to be a key feature during the game playing.
More analysis and discussion on feature influence may be found
in [76].

VII. RESEARCH IN OTHER FIELDS

Not all work in Pac-Man has aimed to create a better AI con-
troller for the game, or even to estimate and control aspects of
player experience: There has also been work on using it as a
testbed to study some other phenomena. An example of this is
a cross-disciplinary analysis written by Wade [126], in which
he analyzes the game from several different points of view. His
work touches on game design (using sprites and animations to
suggest a nonviolence intent), as well as including references
to classic culture (such as the Theseus’ Minotaur Labyrinth and
the breadcrumbs of Hansel and Gretel) and, mainly, a sociolog-
ical approach focused on the need to strike a balance between

survival and the consumerism of modern times. Wade makes
a direct connection between the success of the game and the
societal and political systems of the western world.

A. Sociology

Cheok et al. [104], [105] use the concept of Pac-Man to
propose human Pac-Man, an interactive implementation of the
game where teams of Pac-Men and ghosts move in the real world
using a variety of sensors and head-mounted displays. The goal
of this work is to pioneer a new form of gaming where virtual
worlds and reality merge seamlessly to allow gamers a socially
interactive experience. Players move freely in the real world,
equipped with a variety of sensors tracking their position and
a head-mounted display that superimposes virtual entities on
the real world. These entities resemble the pills of the original
game. Other entities include actual physical objects equipped
with bluetooth, allowing gamers to physically interact.

The game is played by a team of Pac-Men and a team of
ghosts and the rules of the game are quite similar to the orig-
inal. Catching an opponent is done by tapping a sensor on the
opponent’s shoulder. Each gamer has a helper who is not part
of the game but instead sits at a desktop showing an overview of
the game, and may help the gamers to achieve their objectives.
The sensors include GPS, dead-reckoning modules, and iner-
tial sensors to keep track of the players’ positions, both inside
buildings and outside. The players’ heads are also tracked to
display virtual entities via head-up displays. Bluetooth is used
to allow the gamers to interact with physical objects scattered
around the world. Communication to a central server that main-
tains the state of the game is done wirelessly and the game state
is translated into a virtual world where the positions of all play-
ers correspond to those in the real world. In [105], Cheok et al.
carry out a user study consisting of 23 test subjects to test the
viability of their approach. Given the feedback from the gamers,
collected via questionnaires, the authors find that most aspects
of the game are well perceived while some aspects, such as the
amount of hardware required, are somewhat cumbersome.

B. Psychology

Ohno and Ogasawara [100] use Pac-Man as an example do-
main to develop a cognitive model of information acquisition
processes in highly interactive tasks. The goal of this work is
to provide a cognitive model with the potential to estimate the
performance of a human in performing a bidirectional inter-
active task on a computer that dynamically responds to user
inputs. Such models may help interface designers to optimize
the user experience. The authors propose the information acqui-
sition model that focuses on the symbol encoding process on
the computer display. Data were obtained by tracking eye move-
ment of the user while playing Pac-Man. The authors use their
own implementation of the game, which differs in many ways
from the original but is able to record sequences of moves and
keystroke information. The experiment challenged each partic-
ipant to maximize the game’s score and included an exercise
where some objects would disappear from the screen midgame
with the user asked to note where these objects had been. The
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primary goal of the study was a comparison between the au-
thors’ proposed model and GOMS (goals, operators, methods,
and selection rules), a simpler model on which their model was
based. One of the results shows that a key factor in improving
the gamer’s skill is the ability to focus on the most relevant parts
of the screen, given the very limited time to execute a move, and
how quickly the relevant game objects are identified.

Mobbs et al. [101] investigate the reaction of humans (14
subjects were tested) in the face of threats, using a predator–
prey scenario where volunteers are pursued through a 2-D vir-
tual maze and experience pain if captured by the predator. This
work relates to studies that examine the ability of any organ-
ism to switch flexibly between defensive states in response to
a threat. The authors monitored the subjects’ brain activity us-
ing magnetic resonance imaging and found that certain shifts
occurred in brain activity as the predator moved closer. The
scenario only corresponds loosely to Pac-Man as only a single
predator (ghost) was used and the mazes were created specif-
ically for the task at hand (they were much simpler than the
original mazes consisting of 9 × 13 cells in a rectangular grid).

Based on the psychological belief-desire theory of emotion,
seven emotions are determined by a rule-based partition using
the belief and desire of the given state. Moerland et al. [81]
study the models of emotion generation for two emotions in
particular: fear and hope. The fear and hope of a state can be
estimated though forward planning using RL agents. Both ε-
greedy and softmax policies have been applied to estimate the
fear and hope of Pac-Man with the presence of a ghost nearby
or not.

C. Brain–Computer Interfaces

A BCI is a form of human–machine interaction that analyzes
signals from the brain cortex, in response to certain stimuli. The
variations of electrical activity can be measured with appropriate
technology and used for machine control. Due to the limitations
of these techniques as forms of user input and data collection,
researchers typically implemented their own versions of Pac-
Man to address these difficulties.

In their work, Krepki et al. [83] read and classify electroen-
cephalogram (EEG) and electromyogram signals to determine
when Pac-Man will turn, and in which direction. The authors
employed motor imagery (in which the algorithm learns to as-
sociate imaginary movements with certain outputs) with two
classes: turn right and left. Information about the intended com-
mand is fed back to the player (i.e., the direction PacMan’s nose
is pointing). Users were able to clear the level (eating pills and
finding an exit added to the maze) by means of this approach,
although the time spent to do so was much longer than when
using a conventional keyboard.

Girouard et al. [84] employ this technique as a way to pro-
vide an additional input, rather than using BCI to control and
play the game. This form of Passive BCI works in conjunction
with traditional input means (arrow keys on a keyboard). The
authors employed functional near-infrared spectroscopy, which
measures changes in hemoglobin concentrations, in order to
differentiate between the state of play in two dimensions: play

versus rest, and different difficulty levels (easy versus hard).
Results showed an accuracy of 94.4% in the first dimension,
and 61.6% in the second.

Finally, Reuderink et al. [85] used a modified version of
Pac-Man to analyze the effect of frustration in EEG signals.
Frustration is induced in two different ways: at the input level
(15% of the key presses are missed at random) and at the visual
output stage (freezing the screen with a probability of 5% for
two to five frames). Analysis of the collected data shows that
frustration can deteriorate BCI performance and that it should
be possible to detect player state changes (boredom, fatigue,
etc.) during game play.

D. Biology and Animals

In [106], Van Eck and Lamers investigate as to whether it
is possible to play video games against animals: Motivated by
the entertainment value of playing with pets, the authors pose
the question whether a similar experience could be obtained in a
video-game-like scenario. In particular, Van Eck and Lamers re-
place the computer AI with field crickets in a simplified version
of Pac-Man, recreated as a real maze. The authors concentrate
on the differences that emerge when gamers interact with tradi-
tional NPCs or real animals. Four crickets are used to replace
the ghosts and camera tracking is employed to update the game
state of the video game. The instinctive behavior of the animals
leads to some interesting observations: when agitated, the ani-
mals move erratically through the maze to later group together
and remain stationary. Also, the speed varies whenever a cricket
is moving through the maze. To create greater interaction be-
tween the animals and the gamer, the authors use vibrations,
which the crickets perceive as danger, to either lead the crickets
toward or away from Pac-Man.

E. Education

Pac-Man (or Ms. Pac-Man) has featured in research centered
around education as well as being used as a teaching aid. In
many cases, Pac-Man has been used merely as a metaphor,
whereas in other cases the game took on a central role. Squire
[127] presents a general survey of video games in education,
arguing that educators have ignored the educational potential
of gaming. The survey highlights how Pac-Man was among
the games that sparked the “Pac-Man Theory of Motivation”
[128], which posed the question as to whether the magic of
Pac-Man can be exploited for student involvement, enjoyment,
and commitment ([128] cited in [127]).7

DeNero and Klein [107] use their own implementation of the
game to teach fundamental concepts in their introductory course
on artificial intelligence. The authors comment that the breadth
of techniques in AI may appear incoherent to students new to the
subject matter and subsequently propose a series of program-
ming projects centered around the game of Pac-Man to tightly
integrate the different techniques covered in the course. These
topics include state-space search, Markov decision processes,

7Bowman [128] analyzes Pac-Man players using the concept of flow (see
[124]; this concept is also exploited by [97] to measure fun in games).
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RL, and probabilistic tracking [107]. DeNero and Klein moti-
vate their choice of Pac-Man as the game is interesting and fun
to play, and it supports a range of domains that may be tackled
using a variety of techniques. Furthermore, the framework lends
itself nicely to the visualization of techniques in 2-D space. The
framework is publicly available and has been adopted by several
other universities.

Their software is implemented to approximate the original
game sufficiently well while offering the flexibility to create
different scenarios. Furthermore, the software lends itself to
automatic assessment using scripts. Interestingly, DeNero and
Klein often include (mini) competitions for each exercise to de-
termine the best technique, hinting at the potential of game com-
petitions in education, particularly in conjunction with online
courses (which have recently grown in popularity). Similarly,
the game competitions outlined in Section III have contributed to
the wider use of Pac-Man in higher education. In particular, the
Ms. Pac-Man versus Ghosts Competition framework has been
used by several universities in their AI courses (e.g., University
of California Santa Cruz, Georgia Institute of Technology, New
York University) and numerous students have made use of the
software for their B.Sc. and M.Sc. projects.

Following [107], Silla [80] presents an assignment that al-
lows their students to learn GAs using another Java Pac-Man
framework, developed by Ted Grenager, which is less known
than the Ms. Pac-Man versus Ghosts Competitions.

Another example of how Pac-Man is used in higher education
is given by Dickinson et al. [102] from Brown University: The
authors recreate Pac-Man as a physical game played with robots.
The fifth floor of the computer science building functions as
the maze, complete with pills, power pills, and ghosts. The
implementations of the students subsequently compete against
one another to achieve the highest score. The hardware setup is
purposely kept inexpensive, using off-the-shelf Roomba robots
(Roomba robots are vacuum cleaners and hence can collect pills
by suction). The Roomba Pac-Man task is used throughout the
course as a common theme to guide students through a series of
labs and projects that include obstacle avoidance, object seeking,
AI behavior by means of subsumption, MC localization, and
path planning. The authors conclude that this approach has been
successful and that students were motivated by the challenge the
game represented.

Rao [103] is also interested in using games to provide a stim-
ulating environment grounded in real-world problems. Their
intent is to teach robotics. The setup here is similar to [102]
in terms of hardware used but the game is simplified to two
robots, one being Pac-Man and the other a ghost. The maze
used consists of a small square arena with four blocks near the
corners. The behavioral model of Pac-Man tries to escape the
ghost, which in turn is trying to catch the Pac-Man.

Finally, Pac-Man has a role to play in continuing education.
For example, Tose8 was not a computer science researcher but
taught himself Java especially to enter the Ms. Pac-Man versus
Ghosts Competition, and went on to win the Pac-Man category,
and finish third in the ghost-team category. We do not have

8http://www.diego-perez.net/DarylTose.pptx

details of the entries beyond these slides9 but they contain a
number of good ideas such as using a recursive flood fill to
work out how ghosts can propagate through a maze that takes
in to account their current directions of travel, and hence goes
beyond a simple shortest path analysis. This was used in order
to analyze danger points in the maze. We have not included this
in the previous sections on Pac-Man and ghost controllers as it
has not been written up in the peer-reviewed literature, but it is
a good example of the wide and deep appeal of the game.

F. Other

Yacoub et al. [129] review the PRotocol MEta LAnguage
(PROMELA) and its three extensions for modeling and ver-
ification of software, and present their own extension called
Discrete-Event PROMELA (DEv-PROMELA). As implied by
its name, DEv-PROMELA is based on the concept of discrete-
event simulation. To demonstrate how DEv-PROMELA can be
applied, the authors use Pac-Man: The game is modeled as an
asynchronous protocol between Pac-Man and the ghosts. The
game state, player events (i.e., an action), and event(s) from the
ghosts are checked every 0.1 unit of time. The DEv-PROMELA
can help the game designers check the specifications at an early
stage, before implementation.

The difficulty of Pac-Man has been commented on in a few
studies. DeNero and Klein [107] point out that Pac-Man is a
challenging game as just eating all the pills in as few time steps
as possible corresponds to a nonplanar travelling salesman prob-
lem. Viglietta [109] takes this notion further, showing that the
game is indeed NP-hard: Viglietta aims to single out recurrent
features/mechanics in video games that allow reduction of the
game to a known hard problem. The focus is on “script-less”
games from the period 1980–1998. Several metatheorems are
defined and applied to a variety of games to establish their hard-
ness. The metatheorems focus on various characteristics such
as doors, switches, and pressure plates. Among the many games
considered, the authors show that Pac-Man is NP-hard: The de-
cision problem considered is whether a level may be cleared
without losing a life. Viglietta assumes full configurability of
the game, including the number of ghosts and their behaviors,
the locations of pills, power pills, and walls: Given a very spe-
cific setup, the author shows the existence of single-use paths,
a metatheorem proven to lead to NP-hardness given a reduction
from a Hamiltonian cycle.

Øgland [108] makes use of Pac-Man in a rather abstract man-
ner (similar to the Pac-Man theory of motivation) and uses
the game to produce quality plans for organizational develop-
ment frameworks. Øgland is motivated by research that shows
playing video games may have an impact on people’s decision-
making processes, including conflict resolution. The purpose of
his study is to identify a Pac-Man model for developing optimal
strategies for Total Quality Management (TQM). In particu-
lar, Øgland shows how Pac-Man strategies may be used effec-
tively as TQM strategies. To achieve this, Pac-Man is viewed
(from a game-theoretic perspective) as a five-player game of

9See footnote 8.
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imperfect information. TQM policies are expressed in terms
of the Pac-Man model, assigning Pac-Man scores to TQM ac-
tivities. For instance, eating a dot could correspond to docu-
ment verification. A long-term TQM strategy is subsequently
described in terms of playing the game, and strategies effec-
tive in the game are translated to effective strategies for TQM
management.

Becroft et al. [39] implement a game-independent behavior
tree tool, called AIPaint, aimed at helping game designers build
behavior decision trees for AI agents by drawing simple schema
using different shapes provided: for instance, using an arrow to
show the direction to move toward. No additional programming
by a human designer is required. AIPaint has been used for
designing Blinky and Clyde’s behaviors, evaluated by some
undergraduate students with little programming experience, and
obtained positive feedback.

Finally, Maycock and Thompson [40] try to improve the
human playing experience on touchscreen devices and imple-
mented an android game as a testbed, based on the original Ms.
Pac-Man Screen-Capture Competition engine. An A∗ search is
used to visit the checkpoints periodically and help better under-
stand the screen taps and navigation. Although the improvement
in terms of game scores and number of successful taps is small,
this work is still particularly interesting as Maycock and Thomp-
son combine the AI methods to commercial products to improve
user experience.

VIII. CONCLUSION AND PROSPECTS FOR THE FUTURE

This paper presents a detailed overview of peer-reviewed
studies that focus, in one way or another, on the video game
Pac-Man (or any of its many variants) as part of scientific re-
search. The overview highlights the wide variety of research that
exists, including studies in computer science, neural engineer-
ing, psychology, sociology, robotics, and biology. The reasons
for the interest in this game are discussed, including the po-
tential of Pac-Man in higher education (as a tool for teaching
and assessment). The renewed interest in the game, most likely
spurred on by the recent academic game competitions that focus
on Ms. Pac-Man, is easily justified: Pac-Man remains a promis-
ing platform for research due to its many characteristics that
make it stand out from other games such as Chess or Go. It has a
suitable degree of complexity, with challenges that include real-
time components and heterogeneous player types. The noise of
the game caused by the stochasticity of opponents and rules
(e.g., random reversals) is a particular challenge that requires a
controller to be robust to perform well.

On the other hand, the complexity of the game is contained,
allowing for relatively efficient representations of game states
(e.g., graphs, heatmaps). Furthermore, the action set is quite
limited and performance can be judged precisely by the game’s
score. This balance of complexity, combined with the immense
popularity of the game (past and present) and the recent avail-
ability of the game in various formats (screen capture, various
game engines), makes it a promising choice for research in ar-
tificial intelligence and beyond. In the future, other computer
games may become more popular for research, but until then

there are still plenty of opportunities to advance research in
Pac-Man.

In particular, rule-based approaches are still a dominant force
in terms of performance when it comes to playing the game as
well as possible (although other approaches such as MCTS have
recently caught up with them). It is interesting to observe how
specific aspects of gameplay may make a significant impact on
the performance of the controller, such as the order of how the
pills are consumed (see [29]) or the absolute position in the maze
(see [20]). However, even if computational techniques should
converge into a near-optimal playing strategy in the near future,
the game as a concept remains interesting. For example, the
work of Silver [74] has shown how giving the agent a restricted
view of the game can transform the problem into a POMDP.
This area of research has also been captured by the most recent
Ms. Pac-Man competition, where characters can only observe
the game state partially [14].

The screen-capture competition has highlighted how the game
may pose auxiliary challenges (i.e., developing good screen
readers). An important experiment to carry out is to test the
performance of deep Q networks on the original Ms. Pac-Man
game, as we only know of reports of their performance on the
Atari 2600 version [34], [35], which is not only easier but also
lacks the wealth of human play data for comparison purposes.
Challenges may also be extended to include new aspects such
as automatic content generation (mazes, rules).

We also envisage versions of the game that move closer to-
ward the challenges of general game playing, where the maze
layout may be varied and the rules may be modified or extended
in a variety of ways (e.g., with additional power-ups such as
missiles, or the ability to block corridors or unlock doors), the
exact details of which would not be known to the agent prior to
the commencement of a competition. Given the range of pos-
sibilities and the continued human interest in the game, we see
a bright future for Pac-Man variants in AI research, and also
the possibility of AI contributing to the development of new
versions of the game that are even more fun for people to play.
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