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Abstract—This study presents case studies using two wave
function collapse (WFC) methods, graph-based WFC and simple
tiled WFC, to create playable levels for two logic puzzle games:
Strimko (Latin Squares) and Flow (connecting dots with pipes).
We then evaluate the quality of the generated levels through
extensive experiments. Our results indicate that WFC-generated
levels are high quality, follow the graph structures’ constraints,
and are generated faster than levels generated by depth-first
search and genetic algorithms. WFC methods can also adapt to
new system specifications, common in puzzle games, by changing
only the data instead of the code. This increases the stability of
content production based on procedural content generation since
it relies on data rather than procedures. Furthermore, WFC
methods increase the efficiency of the manual process of creating
in-game puzzle levels, allowing game designers to complete more
tasks in the same amount of time and create a wider variety of
assets.

Index Terms—Procedural content generation, Puzzle game
design, Wave function collapse algorithm

I. INTRODUCTION

PUZZLE games are a popular genre that appeals to people
of different ages and genders. Unlike action games that

rely on quick reflexes and split-second decisions, puzzle games
involve short or long periods of thinking and reasoning. Many
puzzle games have been released and popularly enjoyed, from
classic ones like Minesweeper and Solitaire to modern ones
like the Candy Crush Saga series.

Puzzle game services need to provide players with levels
that match their skill level. Game designers usually use tools
related to paper planning and game engines to create a level.
They also play many possible puzzle games at that level to
see if they fit their plan. This can be very expensive in terms
of development.

Researchers have proposed various procedural content gen-
eration (PCG) techniques to reduce development costs and
create more diverse puzzle game levels [1]. These algorithms
typically find optimal combinations that meet certain criteria,
such as puzzles solvable by players of a specific skill level,
with a specific length, or with a specific number of moves. Ex-
amples of PCG algorithms include Monte Carlo tree searches
[2], Markov chains [3], answer-set programming solvers [4],
and genetic algorithms [5].

Many of these techniques have been proposed by re-
searchers, but they have seldom been used in real game de-
velopment. This is because actual game developers must have
a lot of prior knowledge to use these algorithms. Moreover,

the algorithms often need to be changed if the game system
changes because they depend heavily on the game system.

We propose using two wave function collapse (WFC) algo-
rithms, graph-based WFC and simple tiled WFC, to address
the problem of creating diverse and challenging puzzle lev-
els. Using them, our intuitive interface in the game engine
allows game developers to easily create puzzle levels that
meet specific conditions, such as tile adjacency conditions
and whitelisted/blacklisted tiles at specific positions, without
requiring professional knowledge of PCG algorithms. This
approach is also more adaptable to game system changes,
requiring only small data changes and relatively fewer settings
than traditional PCG algorithms. In this respect, our proposed
method differs from PCG via Machine Learning (PCGML),
a recently popular method of generating game content using
machine learning [6], typically requiring tens to hundreds of
existing data points for content creation.

II. RELATED WORK

A. PCG-based puzzle-level generation algorithm
There are largely three approaches to generating puzzle

levels, as illustrated in Figure 1 [7]. The first approach,
reverse search, creates a puzzle level that meets the puzzle
requirements. It then works backwards to find a start state that
can be reached by applying playing actions in reverse order
[8]. This method has the advantage of guaranteeing solvability
of the generated level and being easy to implement. However,
it has some limitations: it can only apply to puzzle games
that have reversible actions and do not require complex design
elements.

The second approach, generate-and-test, involves creating
level components from scratch and then discarding those that
do not meet the puzzle requirements [2]. To do this, a solver
is used to check if the puzzle level can be solved, and if not,
it is rejected. This method is suitable for puzzle games with
complex requirements but does not guarantee the solvability
of the generated levels. This method includes many PCG
algorithms. PCGML can also be classified as generate-and-
test since it requires checking solvability after generating.

Conversely, the third and final method, constructive, utilizes
Markov chains [3] or answer-set programming solvers [4]
to generate a puzzle level at once under given constraints.
This method does not employ reverse engineering or iterative
generation and testing of levels. Instead, it produces a com-
plete, unbroken level in a single step. However, akin to the
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Fig. 1: Comparison of three puzzle-level generation methods.
(a) reverse search: finding the start state after generating a
solution in advance. (b) generate-and-test: placing level com-
ponents starting from empty space; then, a solver examines
whether the generated level can be solvable. (c) constructive:
generating a level at once under given constraints, ensuring
solvability; however, its usability requires further evaluation.

generate-and-test method, it necessitates an evaluation of the
generated level’s usability. While carefully defined constraints
can yield playable levels, ensuring their quality and suitability
often proves more challenging than with generate-and-test
approaches.

Various generate-and-test techniques have been proposed in
the game puzzle generation PCG field. Murase et al. applied
a breadth-first search (BFS) test to a combination of random
templates to generate levels for Sokoban [9]. Ashlock showed
how an evolutionary algorithm can generate puzzle levels
for maze games with simple and reversible movement rules
[10]. Mantere et al. demonstrated how a genetic algorithm
can generate challenging Sudoku puzzles [11]. Shaker et al.
applied an evolutionary computation technique to a physics-
based puzzle game [12]. Fatemi et al. designed Sudoku levels
with varying difficulty by solving a constraint-satisfaction
problem that guarantees a unique solution [13]. Rychnovsky
made a PCG algorithm that made different levels for Fruit
Dating, a commercial puzzle game. The algorithm puts fruits,
obstacles, and walls on a 2D grid. He tested the quality
of the levels by applying a BFS test to random batches
[14]. As previously noted, generate-and-test methods rely on
a combination of random generation and BFS test or an
evolutionary computation algorithm to create puzzle levels.
However, these methods have primarily focused on Sudoku
and maze games.

These PCG-based puzzle level generation methods apply
to classic puzzle games. However, recent puzzle games often
require complex or novel user interfaces (e.g., drawing). These
games need a different methodology that can handle higher-
dimensional spatial data and newer interfaces. In this study, we
show that WFC, a PCG algorithm that uses graphs to represent
constraints, can be applied in the generate-and-test field; it
outperforms the existing random arrangement and evolution
algorithm.

PCG algorithms that generate levels by modelling or learn-
ing adjacencies from existing data, such as GANs [15] and
autoencoders [16], are also a type of generate-and-test. How-
ever, these methods require level data with tens to hundreds
of guaranteed gameplays. Conversely, the method presented in
this article requires very little existing level data.

Our proposed technique works with both traditional logic
games like Strimko and modern nonlinear games like Flow
that require a drawing interface. Unlike existing tile-based
methods, our technique can handle higher-dimensional spaces
and generate levels faster than the existing depth-first search
(DFS) and genetic algorithm (GA) verification methods. We
also examine the diversity of our generated levels using the
clustering analysis.

B. WFC-based commercial game-level generation

The WFC algorithm was disclosed by Maxim Gumin, an
independent game developer, who shared it on GitHub [17].
To generate bitmap images, it uses a similar method as Tex-
tureSynthesis [18] and ConvChain [19], two PCG algorithms
that Gumin introduced for generating textures. While the two
PCG algorithms use the entire bitmap as input, WFC relies
only on the connection relationship between chunks of pixels.
This makes WFC more suitable for creating sparse data when
only a few data points exist in a large state space. Therefore,
WFC can produce a combination of pixels with correlations
even with a few image inputs. Moreover, it can create a
combination of pixels that satisfy constrained rules, which can
be used for generating puzzle levels that meet preconstrained
conditions.

Maxim Gumin proposed two WFC methods: the simple
tiled and overlapping models. The simple tiled model defines
tiles and their connection rules using a data file, generating an
image based on this information. Conversely, the overlapping
model segments a given image into overlapping tiles, establish-
ing connections between these segmented tiles and producing
a similar image. WFC can generate 2D tiles for role-paying
game (RPG) dungeons [20] and 3D meshes for strategy game
maps [21]. Deepmind used 2D WFC as a height map to create
a 3D mesh stadium for reinforcement learning [22]. These
examples use WFC on a 2D or 3D grid structure. However,
both methods are restricted to a grid with a fixed number of
neighbors.

To address this limitation, the graph-based model [23] [24],
an extension of the simple tiled model, defines a set of
predefined tiles and their connections in a data file. This
model operated on a graph structure, constructed based on
the logical connections between the tiles, regardless of their

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2024.3368017

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 1, MARCH 2024 3

physical adjacency, and compared it with other graph coloring
algorithms [25]. These logical connections enable puzzles to
incorporate a variable number of logically neighboring cells,
which will be detailed later in this article. Since generating
puzzle levels with different constraints and requirements, such
as Strimko and Flow, is relatively uncommon, we will explore
the quality and generation speed of generating these puzzle
levels using the WFC algorithms. The simple-tiled and graph-
based models were used to create the puzzle levels in these two
games, both of which are characterized by producing content
based on rules.

Constraint satisfaction problems (CSPs) are a broad class of
problems that involve finding complete states that satisfy a set
of constraints. CSPs can be used to model various real-world
problems, such as scheduling, resource allocation, and config-
uration. Many Constraint solver algorithms commonly include
constraint propagation, backtracking, and local research. WFC
is a recent technique for CSPs that specializes in procedural
content generation, such as game-level generation.

It is closely related to model synthesis, proposed by Paul
C. Merrell [26]. Model synthesis uses arc consistency (AC)-3
[27] or -4 [28] algorithms for constraint propagation, a method
that inspired Maxim Gumin to develop WFC. WFC and
model synthesis are similar in that they extract patterns from
input and relationships from data or specifications. However,
WFC differs by (1) being more specialized for generating
content with complex or irregular structures, (2) focusing
on efficiency (i.e., generation speed), and (3) having some
unique features, such as the “lowest entropy heuristic,” which
removes directional bias in generated results and is well-suited
for pre-constrained problems. WFC’s adaptation of the AC-3
algorithm makes it a valuable tool for pattern generation that
differs from the standard AC-3 approach and highlights the
flexibility and adaptability of WFC for a broader range of
applications in the field of procedural content generation.

III. METHOD

The original WFC has two model implementations: simple
tiled and overlapping. The simple tiled model divides the input
image or voxel model into non-overlapping tiles or chunks and
stores their connection rules. It can also take text inputs for
connection rules and use the WFC algorithm to place tiles.
The simple tiled model is named so because it stores the
appearance probability of a tile rather than a rule. In contrast,
the overlapping model divides the input image or voxel model
into overlapping tiles or chunks and stores their connection
rules and appearance probabilities.

Most existing WFC implementations employ a grid structure
composed of cells, which are uniformly sized, empty shapes
that can be congruent and parallel to each other and possess the
same number of neighbors. Leveraging the WFC algorithm,
each cell is systematically populated with one of the target
tiles during content generation.

Unlike these WFCs, which are implemented on a grid
where each node has the same number of neighbors, the
graph-based WFC operates on a graph. The graph-based WFC
allows each cell to have a variable number of neighbors,

Fig. 2: WFC simple tiled model example. (a) Seven types
of tiles, (b) The connectivity of the tiles. Each row for
individual tile types shows which tiles can be connected to
the left/above/right/bottom of each tile, (c) Resulting image
that gradually becomes clearer when tiles are placed.

unlike the grid-based WFC, which assumes a fixed number
of neighbors for each node. The grid-based WFC stores the
relative position and direction (top, bottom, left, right) of each
tile and their connection rules. The graph-based WFC does not
need directions because it works on simple undirected graphs.
Figure 2 illustrates the types and connections of tiles used in
the simple tiled model and how they are placed. Graph-based
WFC is based on the simple tiled model.

This study explores how to generate puzzle levels using
WFC. WFC requires strict constraints to create puzzle levels
that match the intended design. The constraints include the
type of tiles that can be used and the rules that can be
applied to each cell. The WFC algorithm takes an input
with a predefined connection relationship and observes an
uncertain cell to determine its state. Then, it propagates the
tiles compatible with the observed tile to the neighboring cells
and repeats the observation process until every cell has a single
tile.

Conversely, the overlapping WFC model necessitates con-
tent generation based on existing images or data, which is
not well-suited for puzzle-level production because of the
unlikely coverage of all puzzle rules by a single image or
data point. While multiple images or data could be used with
the overlapping model, this approach is not pursued in this
study owing to the resulting complexity of rules and reduced
computational efficiency compared to the simple-tiled and
graph-based models.

For both the overlapping and simple tiled models, the
navigation of tiles follows a consistent process. Figure 2(c)
offers a visual glimpse into this process, where blurred tiles
within a cell signify multiple placement possibilities, while a
single clear tile denotes a fixed choice. Now let’s delve into a
more detailed explanation of how the WFC algorithm operates.

Initially, the algorithm commences by defining a set of
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permissible tiles and creating an empty grid, where each
position holds a wave function encompassing all potential
tiles. Subsequently, it identifies cells with the least uncertainty,
considering entropy, and evaluates tiles within the wave func-
tion compliance with constraints established by neighboring
tiles that have already undergone collapse. Incompatible tiles
are systematically removed from the wave function. If only
one tile remains in the wave function after this evaluation,
the algorithm collapses the position to that tile, finalizing the
output decision for that specific position.

Following each collapse, the algorithm updates the wave
functions of neighboring positions to incorporate the recently
collapsed tile, adjusting possibilities based on the imposed
constraints. This iterative process repeats the observation and
the propagation steps until all positions within the grid have
undergone collapse, making the completion of the generation
process.

Sometimes, placing tiles can cause contradictions with
connection rules and make it impossible to place more tiles.
The original WFC algorithm restarts the whole process when
this happens. However, this can be very costly if there are
many connection rules. Therefore, an additional feature called
backtracking has been implemented in the WFC algorithm
and the graph-based WFC. Although backtracking was not an
integral part of the original WFC algorithm, it was introduced
as “modifying in blocks” in model synthesis, thus contributing
to its faster and failure-free performance compared to WFC
in all runs during algorithm comparisons [29]. Thus, we
employ backtracking when placing tiles becomes impossible
due to discrepancies between tile connectivity and their current
placement. All previously selected final tiles are saved to
implement backtracking but only when each cell contains a
single tile. Subsequently, the state of all cells is reset, and the
saved final tile information is reintroduced into the cell where
it was initially selected. This effectively reverts the process to
a state preceding the contradiction, allowing for the selection
of alternative tiles.

The appearance probability of tiles is a crucial factor that
influences the output. This study shows how changing the
appearance probability affects the generation of Flow puzzle
levels.

Another factor that affects the output is the constraint on
the tile type that can be placed in each cell. The constraint
can either allow or forbid a specific list of tiles to be placed at
a specific location. This can be simplified as allowing only
a specific list of tiles to be placed at a specific location
because the types of tiles are finite. Constraints are set before
running the algorithm and are propagated to all cells. This
study demonstrates how to use constraints to generate Flow
puzzle levels.

IV. EXPERIMENT

A. Creating a Strimko puzzle

Strimko is a puzzle game by the Grabarchuk Family, created
in 2008. It is based on Latin Square, a concept by 18th-century
mathematician Euler. It is similar to Sudoku. The goal of
Strimko is to fill an N × N grid with numbers from 1 and

Fig. 3: Three streams of a 3 × 3 Strimko puzzle distinguished
by color.

N. Each number must appear only once in each column, row,
and stream. A stream is a group of N connected numbers
without repeats. There are N streams in an N × N grid. Figure
3 illustrates three streams in a 3x3 Strimko grid. In Strimko
gameplay, parts of the puzzle are hidden, and the player must
use the visible numbers to deduce the hidden ones.

The original web-based game, which is no longer available,
had puzzles with grids of 4 × 4, 5 × 5, 6 × 6, and 7 × 7 grids
[30]. The game could also have grids larger than 8 × 8. A
book called Chain Sudoku has the same rules as Strimko. It
has 200 puzzles with an 8 × 8 grid [31].

This study tests puzzle level generation for three grids: 4
× 4, 5 × 5, and 6 × 6. We used a NodeJS program (version
14.15.4) on a Windows 10 PC with an i7-9700 CPU, RTX
2080Ti, and 64GB RAM for all experiments.

We need two steps to generate a puzzle: 1) make a valid
Strimko grid and 2) make valid Strimko puzzles. A valid
Strimko grid has N streams on an N × N grid. Each stream
has N cells with no repeats. The streams can connect in eight
directions: up, down, left, right, and diagonal. A simple way to
make a valid Strimko grid is to use only horizontal or vertical
streams. But for more complex puzzle grids, we need to search.
We start from an empty random cell on the grid and move in
eight directions. We find empty cells and add them to the
stream. When the stream has N cells, we start a new stream
from another empty random cell. If we cannot find any empty
cells, we go back to the previous cell. If we finish the search
normally, we sort the streams by the number of nodes they
have. Figure 4 illustrates an example of backtracking during
the search for a Strimko grid. Figure 5 shows the grids of
various sizes generated by the search.

Fig. 4: Search example of the Strimko puzzle grid. (a) An
empty 4 × 4 grid, (b) First stream found. Search complete.
(c) A situation in which searching becomes impossible when
the red circle occurs during the second stream, requiring back-
tracking. (d) Search in a different direction by backtracking,
completing the second stream.
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Fig. 5: Valid Strimko puzzle grid. (a) 3 × 3 (b) 4 × 4 (c) 8 × 8.

Then, we create a valid Strimko level using our graph-based
WFC on a valid Strimko grid. The Strimko game rules require
that the neighbors of a given cell, which are the cells that
share the same column, row, or stream, have different numbers.
Figure 6 shows an example of neighboring cells (in pink) for a
cell (in blue) in different grids. Thus, the number of neighbors
can vary from 7 to 8 (illustrated in Figure 6) depending on
the grid. We use our graph-based WFC to specify the cell
relationships since the original grid-based WFC method cannot
capture this variation.

Fig. 6: Visualization of the neighbors (in pink) of each cell (in
blue) in a Strimko puzzle level. (a) The number of neighboring
cells of the upper left cell is 8. (b) The number of neighbor
cells of the cell in column 3 row 2 is 8. (c) The number of
neighbor cells of the cell in column 2 row 3 is 7.

The tiles in a Strimko puzzle are numbered from 1 to N.
The connection relationships of the tiles are defined such that
a number can meet all other numbers without meeting itself.
The connection relationships are defined for a 4 × 4 Strimko
puzzle level, as shown in Figure 7.

Fig. 7: Definition of connection relationships in a 4 × 4
Strimko puzzle level.

Graph-based WFC can only generate valid Strimko puzzle
levels from some Strimko puzzle grids. Searching all possible
cases is infeasible except for 3 × 3 grids because of com-
putational limitations. Table I shows that the success rate of

generating a valid Strimko puzzle level from a valid Strimko
puzzle grid for a week-long experiment is about 62-74% for
grids up to 7 × 7. However, this rate drops significantly to
47.4% and 23.8% for grids of size 8 × 8 or larger. Figure 8
illustrates examples of successful and failed generations for 3
× 3 and 8 × 8 grids. In the 3 × 3 grid example, not all numbers
can be placed according to Strimko’s rule. For example, if we
place a 1 on the diagonal, we cannot place a 2 anywhere
without creating a stream with two 2s, which is invalid.

Fig. 8: Strimko puzzle level search results example. (a) 3 × 3
grid. (b) 8 × 8 grid. Only the four valid puzzle grids marked
in pink are valid puzzle levels; searching failed for the others.

We evaluated the performance of our graph-based WFC
method against depth-first search (DFS) and the genetic al-
gorithm (GA) on identical puzzle grids, utilizing 4 × 4, 5 ×
5, and 6 × 6 grids as target levels. These three algorithms
exhibit distinct characteristics that make them suitable can-
didates for comparison in the context of solving the CSP
problem of generating puzzle levels. DFS is a straightforward
and memory-efficient approach but may encounter scalability
challenges. GA excels in handling large solution spaces and
complex constraints; it necessitates parameter tuning, does
not guarantee an optimal solution, and can also exhibit slow
performance as the search space expands. WFC may be slower
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3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10
Number of valid Strimko puzzle grids 132 67,214 1,541,516 648,888 408,340 79,279 6,497 3,534
Number of valid Strimko puzzle levels 92 42,118 978,950 439,476 305,150 37,600 1,547 88

Ratio of valid puzzle levels per valid puzzle grid 69.7% 62.7% 63.5% 67.7% 74.7% 47.4% 23.8% 2.5%

TABLE I: Success rates of valid Strimko puzzle levels for valid Strimko puzzle grids

than DFS and GA due to its requirement for pre-established
knowledge. However, WFC can effectively manage large so-
lution spaces once this knowledge is in place, significantly
reducing the number of nodes to explore compared to the other
two algorithms.

For DFS, we employed a straightforward approach of se-
quentially placing numbers on unoccupied nodes until the
correct solution was identified. This process was conducted
in a randomized manner to prevent similar numbers from
overlapping in similar locations, leading to a marginal im-
provement in search efficiency.

In the case of the GA, we initialized the starting population
with randomly placed numbers. A predefined percentage of the
elite population with high fitness scores was retained, while
the remaining individuals were regenerated by copying from
the elite population. This process was iterated by repeatedly
performing the mutation operation of swapping two numbers
within a random row. Subsequently, we evaluated whether
each row, column, and stream contained unique numbers,
and the fitness score was decremented by the number of
duplicate numbers (e.g., in a 5 × 5 board, 1,2,3,4,5 has
fitness=0,1,2,3,4,4 has fitness=-1, and 1,2,2,2,2 has fitness=-
3). We employed population sizes of 32, 64, and 128, respec-
tively, to adapt to the increased board size. In addition, the
exploration node counts were scaled up to 100,000, 200,000,
and 400,000, respectively. To further enhance the algorithm’s
performance, we preserved 50% of the elites in the next
generation, ensured that each row contained unique numbers,
and incorporated number position swaps within the mutate
function to minimize unnecessary exploration. Conversely,
the DFS algorithm relied on node exploration without such
parameter adjustments.

Table II lists the average times needed to generate 100
levels from a valid Strimko puzzle grid, repeating 10 times
under the same conditions. Our graph-based WFC was faster
than DFS and GA on a grid of size 5 × 5 and larger. It was
also more stable, with similar execution times and a narrow
confidence interval. For a 4 × 4 board, the problem space has
64 possible configurations (4 possible numbers for each of
the 4 × 4 nodes), limiting the number of nodes to explore.
Consequently, DFS, which randomly explores nodes without
considering constraints, appears to be the fastest algorithm.
However, for a 6 × 6 board, the number of nodes to be explored
increases by 237.5% (i.e., 63 = 216 configurations). While the
exploration time of DFS and GA increases exponentially with
the problem space size, WFC does not significantly increase
the number of nodes to explore because it already possesses
information about invalid node combinations in the form of
connection relationships. This results in a sublinear increase in
execution time for WFC compared to the exponential growth
observed in DFS and GA.

Algorithms 4 × 4 5 × 5 6 × 6
Graph-based WFC 16.96±1.46 41.74±3.63 51.80±3.63

DFS 7.81±0.45 75.09±4.48 1376.04±97.03
Genetic Algorithm 26.52±5.31 163.53±11.16 1053.87±194.64

TABLE II: Comparison of creation times (in seconds) of 100
Strimko puzzle levels for each algorithm

Algorithms 4 × 4 5 × 5 6 × 6
Graph-based WFC 1,560 1,592 1,457

DFS 1,779 7,639 114,728
Genetic Algorithm 1,706 2,392 4,009

TABLE III: Comparison of the number of Strimko puzzle
grids required by each algorithm to create 1000 Strimko puzzle
levels

Another metric to consider is the number of Strimko puzzle
grids used by each algorithm to generate 1,000 Strimko puzzle
levels. We used the same pre-made Strimko puzzle grids for
all algorithms, which affects the number of Strimko puzzle
grids needed. Graph-based WFC does not change the number
of grids needed even when the grid size increases, unlike DFS,
which increases the number of grids dramatically, as shown
in Table III.

B. Generating a Flow puzzle

Flow is a mobile puzzle game by Big Duck Games, released
in June 2012. It is based on an older puzzle called Numberlink,
which was first mentioned in a column in 1897 [32] and a
mathematical problem in 1917 [33]. We focus on the Flow
puzzle because it has almost the same rules as Numberlink.
The Flow puzzle aims to connect pairs of nodes with different
colors on an N × N grid. The connections must be unbroken
lines that do not cross each other. Each cell should have
only one line in it. The puzzle is solved when all nodes are
connected and the grid is full. Figure 9 illustrates examples of
a Flow puzzle and a Numberlink puzzle.

Fig. 9: Sample puzzles (a) Flow (b) Numberlink.
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We initially considered using graph–based WFC to generate
Flow puzzle levels. However, after careful scrutiny, we decided
that the simple tiled model would be more suitable owing
to the fact that each tile in Flow has only four neighbors:
top, bottom, left, and right. This makes the simple tiled WFC
possible for Flow puzzle level generation, unlike for Strimko
puzzles.

The Flow puzzles have tiles of different colors, but we can
only generate puzzle levels with one color tiles. This is because
we separate the lines after generating the puzzle level and then
paint them with different colors. Figure 10 illustrates how we
create a flow puzzle with one color and assign a different color
to each flow.

Fig. 10: Postprocessing after generating a Flow puzzle.

Figure 11 shows the 11 tile types in a Flow puzzle: four
dead ends, four corners bent at 90 degrees, horizontal, vertical,
and empty. A Flow puzzle space cannot have empty cells. So,
we do not need empty tiles for the puzzle level. However, we
define empty tiles as a tile-type constraint, which we explain
below.

Fig. 11: Tile types of a Flow puzzle: (a) dead end, (b) corner,
(c) straight (horizontal, vertical), and (d) empty.

We set the connection rules between these tiles so that
lines or empty spaces match each other. However, we do
not allow dead ends to connect directly because that would
make the puzzle too easy. We also do not allow corner tiles
to connect and bend at 180 degrees because that would break
the constraint that all cells must be used. If we allow such
a connection, there might be a shortest-distance solution that
skips the corresponding tile and violates the puzzle constraint.
Figure 12 illustrates an example of a valid connection and two
invalid connections for the Flow puzzle.

Fig. 12: Connection relationships between Flow puzzle tiles:
(a) red arrows indicate a connection between lines, and green
arrows indicate a connection between empty spaces without
lines, (b) direct connection between dead ends is prohibited,
(c) corner tiles that connect each other and bend at 180 degrees
are prohibited.

We need two more constraints on the types of tiles that
can go in each cell to get a normal Flow puzzle. The first
constraint is to put only empty tiles outside the puzzle level.
This way, only tiles that can connect to the empty tile can
go into the edge cell of the puzzle level. This makes the
line connection stay within the puzzle level and prevents any
broken line from going out. We do not actually put empty tiles
outside the puzzle level. We just add this connection constraint
when we run the WFC algorithm. The second constraint is to
avoid putting an empty tile in the puzzle-level space if it is
already assigned as a tile type. This means that we only use
10 types of tiles that are not empty in the puzzle-level space.
Figure 13 shows these two tile constraints.

Fig. 13: Constraints of tile types for a Flow puzzle: (a) forcing
empty tiles to be placed outside the puzzle level and (b)
prohibiting empty tiles inside the puzzle level.

Unlike the Strimko puzzle, the Flow puzzle can adjust the
appearance probability of each tile. In the Strimko puzzle, each
tile must have a different number to constitute a valid puzzle
level. Consequently, changing the appearance probability does
not affect the number of tiles. In Flow, however, we can gen-
erate different levels by changing the appearance probability
of tiles because Flow is more flexible. Figure 14 illustrates
how adjusting the tile probability can change the outcome
dramatically. Table IV lists the statistics of the features of a
10 × 10 Flow puzzle level generated with different appearance
probability settings. Maps with 50 times as many straight tiles
or 50 times as many corner tiles have a larger average length
of flow and a smaller number of flows than maps where all
tiles have the same probability of occurrence. In general, the
fewer flows and the longer the length of a single flow, the
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Features equal for all tiles 50 × more straight tiles 50 × more corner tiles
Length of Longest Flow 10.20 40.43 18.25
Length of Shortest Flow 3.00 3.80 3.00

Difference of Longest, Shortest 7.20 36.63 15.24
Average Length of Flow 4.54 15.23 7.47

Standard Deviation of Flow Length 1.91 14.00 4.50
Count of Flow 22.17 5.66 13.63

TABLE IV: Average values of the features of 1,000 10 × 10
Flow levels generated by the simple tiled WFC algorithm

more difficult the level is perceived to be, so adjusting the
probability of different tile types enables you to create more
or less difficult maps.

In addition, the ability to adjust tile probabilities can be used
to fine-tune the difficulty of puzzles in border game contexts
or to create challenges that demand unique skills, such as de-
signing levels with destructible walls that can only be breached
through the use of bombs. In game prototyping, where there is
often frequent experimentation and game designers may need
to create, remove, and test a lot of content in a short amount
of time, the WFC algorithm can be used to generate different
maps for these experiments, which can then be tested and
used to refine rule sets and constraints. This iterative process,
coupled with the WFC algorithm’s ability to quickly generate
a multitude of game maps with various elements, makes it
invaluable in game development, especially when striving for
rapid, data-driven improvements and adjustments in the quest
for a more engaging and finely-tuned game experience.

Fig. 14: Examples of tile appearance probability adjustments
in a Flow puzzle: (a) equal probability for all tiles, (b) 50
times more straight tiles, and (c) 50 times more corner tiles.

Fig. 15: Examples of Flow puzzles when adding a bridge tile:
(a) bridge tile type, (b) equal appearance probability for the
bridge tile and existing tiles, and (c) 1

10 appearance probability
for the bridge tile compared to existing tiles.

The WFC algorithm creates content based on data. So, it can
handle specification changes and additions that often happen
in puzzle games. For example, Big Duck Games, the maker
of Flow Free, has made the game Flow Free: Bridges with
a bridge that connects two different lines. WFC can do this
by just adding a bridge tile. Furthermore, as shown in Figure

Algorithms 4 × 4 5 × 5 6 × 6
Simple tiled WFC 0.14±0.00 0.16±0.00 0.23±0.03

DFS 1.70±0.17 4.38±0.90 13.68±2.82
Genetic Algorithm 60.85±5.41 274.35±20.74 4106.51±564.90

TABLE V: Comparison of creation times (in seconds) of 100
Flow puzzle levels for each algorithm

Features Simple tiled WFC DFS GA
Length of Longest Flow 9.95 7.67 10.48
Length of Shortest Flow 3.21 3.03 3.25

Difference of Longest, Shortest 6.74 4.64 7.23
Average Length of Flow 5.34 4.41 5.60

Standard Deviation of Flow Length 2.39 1.62 2.60
Count of Flow 6.96 8.3 6.67

TABLE VI: Average value of 6 × 6 Flow level features used
in t-SNE.

15, we can get different results by changing the appearance
probability of a bridge tile.

We generated the same Flow puzzle levels using WFC, DFS,
and GA to compare the performance. The target levels were 4
× 4, 5 × 5, and 6 × 6 grids. For DFS, we employed a simple
method of placing tiles one by one on unoccupied nodes and
exploring until the correct solution was identified. This process
terminates upon encountering an invalid placement in the Flow
puzzle depicted in Figure 12.

The overall methodology for the GA closely resembles that
used for the Strimko puzzle. A random tile is placed in the
initial population, followed by the preservation of elite tiles
and mutation to a random tile. The fitness score penalized
tiles whenever they fail to connect to adjacent tiles or when
an invalid placement occurs, as illustrated in Figure 12. The
edges of the map were employed to restrict the permissible
tiles, akin to the WFC algorithm, to expedite the search.

Table V lists the time needed to generate 100 non-
overlapping levels from scratch. On all grid sizes, the simple
tiled WFC algorithm was faster than the DFS algorithm and
GA. The problem space size is 4 × 4 × 11 = 176 for 4 × 4
(where 11 is the number of tiles) and 6× 6× 11 = 396 for 6
× 6. Similar to Strimko, DFS, and GA exhibit an exponential
increase in execution time as the problem space size grows,
while WFC demonstrates a sub-linear increase in execution
time. This is because the number of nodes to explore does not
increase significantly for WFC since it possesses information
in advance about invalid node combinations (forbidden tiles
and allowed connections).

We used t-SNE to visualize the diversity of some features
on the generated Flow puzzle levels. We calculated and used
six features for clustering: the longest flow length, the shortest
flow length, the difference between the longest and the shortest
flow lengths, the average flow length, the standard deviation
of flow length, and the number of flows. Table VI lists the
average value of each feature. In terms of features, the DFS
tends to generate shorter levels with more flows, while the GA
tends to generate longer levels with fewer flows. The simple
tiled WFC falls somewhere in between the two algorithms.
In terms of play experience, longer-than-average flows make
the game harder, so WFC and GA are more likely to create
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Fig. 16: A cluster of 6 × 6 Flow puzzle levels visualized with t-SNE.

difficult levels than DFS.
Figure 16 exhibits levels generated by three different algo-

rithms: WFC (red), DFS (yellow), and GA (cyan). Each al-
gorithm generated 10,000 levels, but we removed overlapping
data points to avoid redundancy, resulting in 351 levels for
WFC, 112 for DFS, and 425 for GA. In terms of clustering, we
notice that DFS-generated levels are distributed across fewer
clusters than WFC- anWd GA-generated levels. Examining the
levels within each cluster reveals variation in the presence of
unusually long flows and the total number of flows.

Figure 17 leverages Kernel Density Estimation (KDE) [34]
to compare map distributions produced by the three algo-
rithms, offering a detailed analysis beyond t-SNE’s dimen-
sional reduction. In the figure, DFS, highlighted in orange,
displays a notably narrower distribution than the other two
algorithms. When the length of shortest flow for DFS is
3, the longest flow length typically falls at a lower value,
while the flow tends to be higher. This indicates that DFS
produces maps with shorter lengths and more lines, aligning
with our observations in Table VI. Remarkably, WFC and GA
demonstrate similar distribution patterns. However, a crucial
distinction emerges in their processing speed; GA significantly
lags behind WFC when generating maps larger than 6 × 6. This
performance advantage positions WFC favorably for tackling
larger map generation tasks.

V. CONCLUSION

We used the graph-based and simple tiled WFC algorithms
to generate levels for Strimko and Flow puzzles and evaluated
the quality of the levels. These WFC algorithms outperformed

DFS and GA in terms of level generation speed and generated
more diverse Flow puzzle levels than DFS. Using WFC for
puzzle level generation also makes it easier for content creators
to use PCGs, as the core part is changed from procedure
units to data. In game prototyping, the WFC algorithm’s swift
generation of diverse game maps facilitates rapid and iterative
experimentation, which is invaluable for achieving data-driven
improvements.
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