
1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

A Quantum Adaptation for the Morra Game

and some of its Variants

Antonio Costantino Marceddu, Graduate Student Member, IEEE, Bartolomeo Montrucchio, Senior Member, IEEE

Abstract—The Morra game is quite old. Back in time, traces of

it can be found in ancient Egypt, ancient Rome, and even China.

It involves two players who, for a limited number of turns, must

try to suppose the sum of the number personally chosen with the

number chosen by the opponent. The rules are simple, but it is

rather difficult to play at a high level as there are multiple

cognitive, motor, and perceptual processes involved.

The goal of this paper is to illustrate the process of implementing

a quantum random player for the Morra game and some of its

variants. This can be done by using a quantum number generator

circuit to generate two numbers and a quantum adder to obtain

the supposed sum. The advantage of this proposal is that, unlike

the implementations of the Morra game on classical computers,

which only allow the generation of pseudo-random numbers, true

randomness can be obtained through quantum computing.

In addition to the description of the entire algorithms, the source

code of the implementations is provided to give everyone the

freedom to easily test both the quantum implementation of the

Morra game and the variants discussed in the paper.

Index Terms—Active perception, Cognitive processes, Games,

Neuropsychology, Programming, Quantum computing

I. INTRODUCTION

ORRA is a game with pretty simple rules. It should

not be confused with the rock-paper-scissors, which

is also known as Chinese Morra due to the

similarities in the game mode. Morra requires that two players,

at the same time, use one of their hands to mimic a number

between 1 and 5 and shout another number between 2 and 10.

Keeping the fist closed is equivalent to mimicking the one with

a finger, while the ten is also called “Morra” or “all”. The

number shouted by each player corresponds to the presumed

sum of two numbers mimicked by the individual players. If one

of the players supposes it, he will score a point, while if both

players suppose it, no points will be awarded. The number of

points to guarantee victory varies: for example, in the Sardinian

version, also called “sa Murra”, they are usually 16.

The oldest traces of the existence of the game were found in

the iconographies present in the tombs of Beni Hasan, Egypt [1]

[2]. They were dated around 2000 BC. Later traces of the game

were found in the paintings of Greek vases, most notably one

depicting Helen of Troy and Paris [3], and in documents written

during the Roman Empire, which was referred to using the

terms “micatio” or “micare digitis” [4]. Notably, even Cicero,

in the third book of his “De officiis”, refers to it in two distinct

Antonio Costantino Marceddu is with the Department of Control and

Computer Engineering, Politecnico di Torino, Torino, TO 10129 Italy (e-mail:

antonio.marceddu@polito.it).

sections: 77 and 89 [5]. Due to its large extension, the Roman

Empire could have favored the spread of the game itself. In

China, it was known as “huaquan”, “caiquan” or “muzhan” [6].

Even today, the game continues to be called in these ways [7]

[8] [9]. Nowadays, Morra is played in many countries around

the world, including Italy, Spain, France, Greece, China, and

Mongolia.

Despite its simple functionality, Morra is rather difficult to

play [10] [11]. It requires the cooperation of multiple cognitive,

motor, and perceptual processes. A good Morra player tries to:

• Learn the opponent's playstyle such that playing

patterns are recognized and can be exploited. This

requires careful memorization of the numbers

previously said by the player himself and his

adversary.

• Be unpredictable so that, in turn, the opponent avoids

the recognition of game patterns to be exploited to his

advantage.

Taking into account that, on a professional level, more than one

round per second is played, becoming a good Morra player

requires a lot of training.

Over time, several adaptations of the game have been made

for Personal Computers (PC) and smartphones. They allow you

to play both against Artificial Intelligence (AI) and with other

players online [12]. Several robots that can play against humans

have also been developed. One of them, called Gavina2121,

recently challenged human opponents in Bitti, Sardinia, taking

a resounding defeat [13]. However, its creators have obtained

important data from the challenge, which will serve to improve

the robot itself.

Quantum computers are currently of strong multidisciplinary

interest as they can be faster than real computers for handling

highly complex problems [14]. Another interesting feature is

that, unlike classical computers, which can only generate

pseudo-random numbers, they allow the generation of true

random numbers [15]. In the case of Morra, this could allow for

a truly unpredictable player and makes it impossible, even for

an experienced player, to make any prediction of possible

number generation patterns. Implementing a quantum random

player for the Morra game requires knowledge of what it should

do in the first place. It can therefore be assumed that it must

return:

• One random number between 1 and 5, corresponding

Bartolomeo Montrucchio is with the Department of Control and Computer
Engineering, Politecnico di Torino, Torino, TO, 10129 Italy (e-mail:

bartolomeo.montrucchio@polito.it).

M

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3251663

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

to the number mimicked with the hand.

• One number equal to the sum of the previous number

with another random number between 1 and 5,

corresponding to the shouted number.

To achieve this purpose, it is necessary to create two circuits:

• One for generating two random numbers between 1

and 5.

• One for adding up the two previously generated

numbers.

Based on what was previously said, this paper intends to

propose a novel quantum adaptation of the Morra game and

some of its variants. It is subdivided as follows:

• Section II will describe the state of the art related to

quantum games and adders. The latter will be used for

the implementation of Quantum Morra. In the same

section, a brief introduction to quantum computing

will be provided to improve the understanding of the

entire work.

• Section III will discuss the implementation of the

Quantum Morra.

• Sections IV and V will discuss the implementation of

some variants of the Morra game.

• Finally, Section VI will draw some conclusions and

future improvements.

II. RELATED WORK

A. Quantum Games

The terminology "quantum games" is often linked with

quantum game theory, which extends classical game theory

toward the quantum realm. According to [16], quantum games

are “computer games where the rules of the game are based on

quantum principles, such as superposition, entanglement, and

the collapse of the wave function”. This concept of quantum

games has been used multiple times, although it is quite limited

as it concentrates solely on the educational aspect of the same.

More recently, in [17] a three-dimensional characterization for

the distinction of a quantum game compared to other types of

games was also discussed. These dimensions concern:

• Quantum physics, which concerns the use of

notions of quantum physics in mechanics, graphics, or

other parts of games.

• Quantum technologies, which concern the

impact of using quantum computers or software on

both gameplay and game development.

• Scientific purposes, which aims to test the

capability and limitation of quantum computers.

So, based on this characterization, quantum games can be

defined as “games that reference the theory of quantum physics,

quantum technologies or quantum computing through

perceivable means, connect to quantum physics through a

scientific purpose or use quantum technologies” [17]. This

definition is more comprehensive and appropriate to the

continual changes brought forth by this new field.

Many quantum games have been released so far. Some of

them will be presented in the next lines. Cat/Box/Scissors was

the first quantum game built to run on a quantum computer [18].

It is a Rock/Paper/Scissors variant in which there is a referee

who decides the winner and four potential opponents to play

with, although it is possible to play against one at a time.

Quantum Battleship was instead the first turn-based multiplayer

game made to run on a quantum computer [19]. It is a simplified

version of Battleship where the first player places a ship and the

second player has to try to sink it. The former wins if the ship

is not sunk, while the latter wins if he manages to sink it.

Quantum Chess is the adaptation of the classical game for

quantum computers. Two different versions were proposed in

[20] and [21]. The former focuses on teaching quantum

mechanics properties, while the latter is more recent and

focuses on being an environment to give players the ability to

interact with quantum properties while playing. Diner's

Dilemma is a classical problem related to game theory and

economics. In the quantum world, it has been faced and solved

in the 4-player variant [22] by implementing and testing a

circuit built using IBM® Quantum Simulator. It has also been

shown that players can reach both the Nash equilibrium point

and the Pareto optimum point. A curious game about a unicorn

attempting to fly over a castle, called Flying Unicorn, is

presented in [23] with the aim of exploring the properties of

superposition, qubit measurement, and uncertainty. Both the

classical and quantum implementations of the game are

provided in the paper. In [24] and [25] two implementations of

Quantum Go have been presented. The first aimed to make

quantum mechanics accessible to all, while the second aimed to

become a test platform for new algorithms for AI. Quantum

Minesweeper, differently from what can be thought of, is a

classical computer game [16]. Its creators came up with it as a

way of teaching basic quantum mechanics simply by playing a

variation of the Minesweeper game. The Monty Hall problem

is a probability puzzle proposed in 1975. Several quantum

versions of it have been proposed over time since, in addition

to being of scientific interest, its application could have a

potential interest in the quantum information area [26] [27]

[28]. A game similar to Texas Hold 'em, a variant of the game

of Poker, was presented in [29] with the aim of teaching the

phenomena underlying quantum computing. Also in this case,

a proof-of-concept is provided with the paper. In [30], some

quantum circuits were presented to solve the simplest Sudoku

grid, 4x4 in size, through the use of the concept of duality

computing and a probabilistic approach. An example code for

detecting the location of new clues is also provided in the paper.

Two slightly different versions of Quantum Tetris have recently

been released for educational purposes [31] [32]. The former

focuses mainly on teaching general notions of quantum theory,

while the latter focuses on visualizing the possible effects of

quantum noise on a normal run of the game. The last game that

will be mentioned is Quantum Tic Tac Toe. In [33] it was

developed as a didactic metaphor of nonlocality and quantum

physics, while in [34] the goal was to create a minimal

quantization of the classical game.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3251663

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

B. Brief Introduction to Quantum Computing

In quantum computing, the qubit (an acronym for quantum

binary digit) is the smallest unit of information that can be dealt

with. Each obtainable state can be written as the superposition

of two orthonormal basis states, coinciding with the possible

states of classical binary digits (bits) [35]. Such states, or

vectors, are normally represented in Dirac notation, also known

as bra-ket notation, as |0⟩ and |1⟩ [36]. They can be represented

geometrically by using the so-called Bloch sphere [37] [38].

Unlike traditional ones, all gates used in quantum computing

must be reversible: this means that the original information can

always be reconstructed. To clarify this concept, if we perform

a subtraction, for example 9 − 4 = 5, it is not possible to return

to the operands starting from the result; a loss of information

then occurs. Examples of some gates normally used in quantum

computing are the following [39]:

• The NOT gate flips the state of a qubit from |0⟩ to |1⟩
and vice versa. It is graphically represented as a

rounded block with a + on it or as a square block with

an X on it.

• The CNOT gate, which is also called the controlled-

not gate, flips the state of a target qubit from |0⟩ to |1⟩
and vice versa if the value of a second qubit, called

control qubit, is set to |1⟩. It is graphically represented

as a rounded block with a + near the target qubit and a

line ending in a circle to represent the conjunction with

the control qubit.

• The Toffoli gate, which is also called the controlled-

controlled-NOT gate, flips the state of a target qubit

from |0⟩ and |1⟩ and vice versa if the value of two

control qubits is set to |1⟩. It can be used to implement

NOT, AND, and XOR operations. It is graphically

represented as a rounded block with a + near the target

qubit and a line with two circles to represent the

conjunction with the two control qubits.

• The Hadamard gate puts the state of a qubit in an equal

superposition; this means that the state of the qubit has

the same probability of being |0⟩ and |1⟩. It offers the

simplest way to achieve true randomness as discussed

in the previous section. It is graphically represented as

a square block with an H on it.

• The SWAP gate, as the name implies, swaps the state

of two qubits. It is graphically represented as a line

with two X at the ends.

• The RX gate performs a rotation of the qubit state

around the x-axis by a certain angle. It is graphically

represented as a square block on which RX and

possibly the rotation value are written.

• The RY gate, like the RX gate, performs a rotation of

the qubit state around the y-axis by a certain angle. It

is graphically represented as a square block on which

RY and possibly the rotation value are written.

• The RZ gate, like the RZ and RY gate, performs a

rotation of the qubit state around the z-axis by a certain

angle. It is graphically represented as a square block

on which RZ and possibly the rotation value are

written.

While a classical bit value can be read at any time, the

operation of reading a qubit, called measurement, destroys the

coherence of the qubit itself and makes it collapse to a basis

state. For this reason, the measurement operation is usually

performed at the end of several classical and quantum

operations on one or more qubits to extrapolate the result. All

the quantum gates and operations previously described can be

seen in Fig. 1.

Today's quantum processors are similar in size to their classic

counterparts. To preserve their properties, they operate in an

isolated environment and at very low temperatures, close to

absolute zero. This temperature is theoretically the lowest that

can be reached according to the law of physics [14] [41].

C. Quantum Multi-Bit Adders

The simplest way to add two bits is to use a half-adder. Given

two inputs A and B, it returns their sum and the carryover. The

problem with this adder is that it doesn't handle the previous

carry, so it can't be stacked.

For this reason, for multi-bit adders the basic reference

element is the full-adder, which unlike the half-adder also

manages the previous carry. Stacking multiple full-adders

allows for multi-bit adders. Depending on how the carry is

handled during the bitwise addition, multi-bit adders can be

divided into different types. It is possible to implement such

adders also in quantum computing. The most commonly used

types of multi-bit quantum adders are the following:

• The Quantum Ripple-Carry Adder (QRCA) [42] [43]

[44] is the simplest of all adders. It calculates the carry

of each bit addition and inputs it into the next bit

addition.

Fig. 2. One of the possible quantum circuits that can be used to

generate an equiprobable number between 1 and 5.

 Fig. 1. Icons showing the quantum gates and the operations

described as shown in the IBM Quantum Composer [39] [40].

From left to right, top to bottom: NOT gate, CNOT gate, Toffoli

gate, Hadamard gate, SWAP gate, RX gate, RY gate, RZ gate,

barrier operation and measurement operation.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3251663

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

• The Quantum Carry-Save Adder (QCSA) [45]

calculates subtotals and carry-over of multiple inputs.

They will subsequently be used for the calculation of

the final sum.

• The Quantum Carry-Lookahead Adder (QCLA) [46]

[47] [48] improves QRCA by solving the carry

propagation problem at the cost of major complexity.

It is currently the fastest-known technique for

performing additions, especially with many bits.

III. QUANTUM IMPLEMENTATION OF THE MORRA GAME

According to the definition of quantum game given in [17],

the implementation of the Quantum Morra game and the

variants discussed in this paper has firmly recoursed to the

dimension of quantum technologies for its development and

actively uses it also for its functioning. This section will then

provide a complete description of the making of the game.

A. Tools Used

IBM® Qiskit®, a leading open-source Software Development

Kit (SDK) for the realization of quantum computing solutions,

was used for the study and the realization of the circuits [49].

In Qiskit®, every single run of a circuit is called a shot. This

terminology, now in common use in quantum computing, will

also be used in this paper.

B. Generation of Equiprobable Quantum Numbers with Five

Values

The first step to creating a quantum random player for the

Morra game consists in realizing a quantum circuit to extract

the first number, which represents the number mimicked by the

human hand, and a second number necessary to calculate the

supposed sum.

Previously it was said that, just like the bits of classical

computers, once a qubit is measured it can have two possible

states: 0 or 1. For this reason, also for quantum computers base

2 is the reference one. This means that, given 𝑛 qubits, it is

possible to represent up to 2𝑛 different values (states). For this

reason, implementing a true randomizer circuit for powers of

two numbers is very simple, since for each bit a Hadamard gate

and a measurement operation are sufficient. However, things

got a little complicated when it is needed to generate a number

in a different interval. In these cases, it is necessary to reduce

the probability that certain states can be reached to zero. This is

generally achieved with rotations, which can induce phase

changes.

In the case of the Morra game, a number between 1 and 5

must be extracted, desirably with the same probability. This

means that it is possible to extract a total of 5 different numbers.

Since 5 is not a power of two, to obtain such a number is

necessary to take the power of two immediately higher, which

is 8, and let the probability of reaching 8 − 5 = 3 possible

states vanish. In this way, only numbers between 1 and 5 can

be extracted. One of the possible circuits capable of obtaining

this result is depicted in Fig. 2. It is composed of:

• An RY gate, which rotates the qubit 𝑞2 by

𝜋 1.4187762⁄ radians.

• A Toffoli gate, which sets 𝑞1 to 1 only if 𝑞0 and 𝑞2 are

equal to 1.

• Two Hadamard gates, of which the first put 𝑞0 in

equal superposition while the second resets its value to

0 with a probability of 100%. The superposition of 𝑞0

Fig. 4. The adder circuit implemented for the Morra game,

in where is necessary to calculate the sum of two numbers

representable with three qubits.

Fig. 3. Comparison of the results obtained by running the five-

values number generator circuit for 16384 shots first on the flat

IBM® QASM simulator (Noiseless) and then applying to it the

noise model of IBM® Quito (Noisy), a real quantum computer.

These last measurements were then further refined through

calibration techniques (Mitigated) to remove, as far as possible,

the unwanted states.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3251663

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

allows triggering the Toffoli gate.

• A NOT gate, which flips the value of 𝑞2.

• Three measurement operations, which are necessary to

obtain the final value of each qubit.

This circuit was obtained by using a Monte Carlo technique.

Several tests were carried out to find a circuit capable of

canceling 3 of the 8 output states. Once found, it has been

optimized to reduce the number of gates and to have near output

states. Subsequently, a brute force approach was applied to find

the exact RY rotation that could lead to the same probability

(20%) for each state. The final circuit can generate numbers

between 0 and 4 and will be referred to below as the five-values

number generator circuit.

C. Analysis of the Results

The five-values number generator circuit was run for 16384

shots two times on the IBM® QASM simulator. In the first run

there was no noise (Noiseless), while in the second was added

the noise model of IBM® Quito, a real 5-qubit quantum

computer (Noisy). The outcome of the execution can be seen in

Fig. 4. It is immediately visible that, unlike the optimal results

obtained by the IBM® QASM simulator in the absence of noise,

8 values are returned instead of the expected 5. This is due to

the fact that quantum computers are not perfect machines. To

function optimally, they should be completely isolated from the

surrounding environment. On classical computers, supplying

one or more inputs to a program result in correspondingly one

or more outputs. The problem with quantum computers is that

their isolation property will be implicitly lost if it is wanted that

their behavior varies based on the inputs provided. Due to this

reason, despite continued efforts to improve this property, they

will continue to suffer from noise and decoherence problems.

Then, quantum error correction and mitigation algorithms are

critical for improving the result of the calculations [50] [51].

One of the possible ways to improve this result is to perform a

measurement calibration. This is possible by preparing the 2𝑛

basis input states and evaluating the probability of counting

obtainable by measuring in another basis state. Since the

number generator circuits analyzed in this paper uses three

qubits, there will be 23 = 8 total possible quantum states. Using

the IBM® QASM simulator, it is possible to calculate the

calibration matrix in the absence of noise: in this particular case,

it will be a simple identity matrix. By applying the noise model

of a real quantum computer on the IBM® QASM simulator,

such as that of IBM® Quito, it is possible to calculate the

calibration matrix for this quantum computer to mitigate its

measurement error. The Mitigated results obtained by applying

this technique are always shown in Fig. 3. The improvement in

the results is clearly visible.

B. Adder for the Morra Game

Now that the circuit for generating equiprobable random

numbers in the desired range was found, it is necessary to build

an adder for:

• Generating the supposed sum of the quantum

random player.

• Calculating the effective sum for comparing it with

the sums supposed by the players.

The numbers to be added in the Morra game can be contained

in three bits. For this reason will be used a simple multi-bit

adder, depicted in Fig. 4. Since current quantum computers

Fig. 6. A screenshot of the Quantum Morra game

implementation. At the start of the game, it allows the user to

choose whether to allow zero or not.

Fig. 5. A screenshot of the comparator circuit, used to compare

the supposed sum of the players with the correct one.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3251663

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

have a limited number of qubits available, a quantum circuit

that mixes a half-adder for the first qubit and two full-adders

for the remaining qubits has been used. In this way, to add two

3-bit numbers only 9 qubits are needed. Given two 3-bit

numbers A and B, starting from the Most Significant Bit (MSB)

the bits should be input into the circuit as follows:

• 𝐴[2] → 𝑞6, 𝐴[1] → 𝑞3, 𝐴[0] → 𝑞0.

• 𝐵[2] → 𝑞7, 𝐵[1] → 𝑞4, 𝐵[0] → 𝑞1.

Following the calculation, the output bits with a higher index

will contain the MSBs of the resulting sum. So it will read as

follows: 𝑂[3] → 𝑞8, 𝑂[2] → 𝑞7, 𝑂[1] → 𝑞4, 𝑂[0] → 𝑞1.

E. Comparison of the supposed sums with the correct one

To obtain the complete quantum version of the Morra game,

a final circuit is needed to compare the two supposed sums by

the players with the effective sum. Depending on their value:

• They can both be different from the effective one.

• One of them can be equal to the effective one.

• Both can be equal to the effective one.

The simplest circuit for comparing two qubits can be

obtained simply using a CNOT gate and measuring the target

qubit: if the qubits have the same value the output is 0, vice

versa the output will be 1. By extending the same principle, it

is therefore possible to use 12 qubits to compare the 4 control

qubits of the effective sum (𝐶) with the respective 8 target

qubits of the supposed sums (𝑆1, 𝑆2). Starting from their MSBs,

the sums are input into the circuit in this way:

• 𝐶[3] → 𝑞0, 𝐶[2] → 𝑞1, 𝐶[1] → 𝑞2, 𝐶[0] → 𝑞3

• 𝑆1[3] → 𝑞4, 𝑆1[2] → 𝑞5, 𝑆1[1] → 𝑞6, 𝑆1[0] → 𝑞7

• 𝑆2[3] → 𝑞14, 𝑆2[2] → 𝑞13, 𝑆2[1] → 𝑞12, 𝑆2[0] →
𝑞11

After this step, a downsampling mechanism can be applied

to measure the output of two single qubits, which are sufficient

to represent the previously mentioned states. First, 8 NOT gates,

4 for every single comparison, are used to flip the values of the

8 target qubits. This operation is useful for restoring the 0𝑠 to

1𝑠 after the previous operation. Second, 6 Toffoli gates, 3 for

every single comparison, are used to downsample the 8 qubits

to 2 qubits, 1 for every single comparison. The output of this

downsampling operation will be 1 if all previous qubits were

equal to 1, i.e. the two numbers being compared are equal,

otherwise it will be 0.

The final comparator circuit capable of carrying out the

above operation is shown in Fig. 5.

F. Final Circuit

The final circuit was obtained by stacking two number

generator circuits and the adder discussed above. A text-based

interface has also been added to allow the user to play against

the aforementioned quantum random player until one of them

wins. An image of the final game is shown in Fig. 6. In this

version, during each round the user must type in two numbers:

the value mimicked with the hand and the supposed sum he will

reach with the number thrown by the quantum random player.

At this point, the quantum random player will do the same and,

after making its choices, the final calculation will be made to

verify the winner. The number of points needed to win is by

default set at 16 as in the Sardinian Morra rules, but this value

can be changed freely.

 Along with this document, the complete Python code for the

Quantum Morra is provided. An IBMid is required to obtain a

new API token as it uses the IBM® Quantum services [52],

which are necessary to play the game.

IV. VARIANTS OF THE MORRA GAME WITH ZERO ALLOWED

Some variants of the Morra game allow players to use the

number zero, which can be mimicked by simply leaving the

hand closed. These variants change both the total number of

extractable numbers, which goes from 5 to 6, and the sum that

players can suppose, which goes from a range between 2 and

10 to one between 0 and 10. While the second point does not

affect the adder circuit, the first requires creating a new number

generator circuit, which will be discussed next.

Fig. 7. One of the possible quantum circuits that can be used to

generate an equiprobable number between 0 and 5.

Fig. 8. Comparison of the results obtained by running the six-

values number generator circuit for 16384 shots first on the flat

IBM® QASM simulator (Noiseless) and then applying to it the

noise model of IBM® Quito (Noisy), a real quantum computer.

These last measurements were then further refined through

calibration techniques (Mitigated) to remove, as far as possible,

the unwanted states.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3251663

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

A. Six-Values Equiprobable Number Generator Circuit

There are different ways to create a circuit capable of

extracting a number between 0 and 5 with the same probability.

Fig. 7 shows one that bears a strong resemblance to the one

shown in Fig. 3. In fact, it was obtained starting from it and

making the following substitutions:

• One of the Hadamard gates has been replaced with an

RX gate, which rotates the qubit 𝑞0 by 𝜋 2⁄ .

• The RY gate has been replaced with an RX gate, which

rotates the qubit 𝑞2 by 𝜋 1.4187762⁄ radians.

In the previous number generator circuit, the first Hadamard

gate acts on the qubit 𝑞0 to put it in equal superposition and

activate the Toffoli gate if the qubit 𝑞2 is also equal to 1. The

second Hadamard gate then returns the value of the qubit 𝑞0 to

0 with a probability of 100%. In the novel circuit, however, the

use of a single Hadamard gate followed by an RX gate does not

remove the superposition state of the qubit 𝑞0 and this creates

an additional state, which is exactly what was wanted to

achieve. As with the previous circuit, the exact RX gate rotation

was found with a brute force approach to obtain a probability of

16.66667% for each output state.

B. Results

Like the previous number generator circuit, also this one was

run for 16384 shots on the IBM® QASM simulator with and

without the noise model of IBM® Quito. The calibration matrix

was calculated to mitigate the unwanted effects due to noise and

improve the results. They can be seen and compared in Fig. 8.

C. Final Circuit

The final circuit was obtained similarly as previously

discussed for the Morra game. Also for this variant, the full

Python code is provided alongside this paper.

V. ODDS AND EVENS

Odds and Evens is a known variant of the Morra game. It was

known both by the Greeks with the term “artiazein” and by the

Romans with the term “ludere par impar” [53] [54]. A late

medieval reference, dated around 1300 AD, has been found in

Hugh von Trimberg's “Der Renner” [55]. Nowadays, it

continues to be played mostly by children in different parts of

the world. It is known by several names, including “bucking

up”, “choosies”, and “pick”.

A. Rules

Odds and Evens rules are simpler than those of the Morra

game. At the beginning of the game, the two players decide by

mutual agreement who will be awarded points for the odd

numbers and, consequently, for the even ones. Using a

synchronization mechanism based on shouted words such as

"One, two, three, shoot!" or similar, both players quickly and

simultaneously mimic two numbers between 0 and 5 or 1 and

5 depending on whether zero is allowed or not. If the sum of the

two mimicked numbers is odd, one point will be awarded to the

odd player and vice versa. Players can choose to end the game

after only one round, the best of three rounds, or after several

rounds.

B. Implementation

The implementation of this variant of the Morra game does

not require any additional circuits compared to those seen

previously. The quantum random player can be implemented

using either the five-values or the six-value number generator

circuits. Then, the values chosen by the actual player and the

quantum random player can be added using the quantum adder

described above. Finally, parity can be verified by simply

checking the Least Significant Bit (LSB) of the sum: if it is

equal to 0 the number is even, while if it is equal to 1 the

number is odd. An image of the final game, which performs

these exact steps, is shown in Fig. 9. Also for Odds and Evens,

the full Python code is provided alongside this paper.

VI. CONCLUSIONS

This paper discussed the implementation of a quantum

random player to solve the Morra game and some of its variants

in quantum computing. For the implementation of the classic

Morra game and the variant with the zero allowed, such a player

relies respectively on the use of a five-values or a six-values

number generator circuit, needed to generate the base number

and an additional number used for the calculation of the

presumed sum, as well as an adder that performs this operation.

On the other hand, for the odds and evens game, a single five-

values or six-values number generator circuit and a quantum

adder are sufficient. The code of the classic version of the

Morra and the variants presented therein is provided alongside

this paper. In this way, everyone can try the game with a

minimum setting of the Python environment. In the future, the

authors want to further their research into the possibility of

adapting other games into the world of quantum computing.

REFERENCES

[1] G. Ebers, “Egypt: Descriptive, historical, and picturesque”, London,

England: Cassell & Co., 1878, p.166.

Fig. 9. A screenshot of the Quantum Odds and Evens game

implementation. At the start of the game, it allows the user to

choose whether to allow zero or not.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3251663

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[2] E. Falkener, “Games Ancient and Oriental, and How to Play Them: Being

the Games of the Greek, the Ludus Latrunculorum of the Romans and the

Oriental Games of Chess, Draughts, Backgammon and Magic Squares”,

London, England: Longmans, Green & Co., 1892.

[3] P. F. Perdrizet, The game of Morra, J. Hellen. Stud., vol. 18, pp. 129–132,
1898, doi: 10.2307/623718.

[4] C. T. Lewis and C. Short, “mico” definition in “A Latin Dictionary”.

Oxford, England: Clarendon Press, 1879.
[5] M. T. Cicero, “De Officiis. With An English Translation by Walter Miller”,

London, England: W. Heinemann, 1913.

[6] H. U. Vogel and G. N. Dux, “Concepts of Nature: A Chinese-European
Cross-Cultural Perspective”, Leiden, The Netherlands: Brill, 2010,

doi:10.1163/ej.9789004185265.i-566.138.

[7] “huá quán” English translation, Yabla, Chinese English Pinyin Dictionary.
[Online]. Available: https://chinese.yabla.com/chinese-english-pinyin-

dictionary.php?define=+%E5%88%92%E6%8B%B3+.

[8] “cāi quán” English translation, Yabla, Chinese English Pinyin Dictionary.
[Online]. Available: https://chinese.yabla.com/chinese-english-pinyin-

dictionary.php?define=+%E7%8C%9C%E6%8B%B3+.

[9] “mǔ zhàn” English translation, Yabla, Chinese English Pinyin Dictionary.
[Online]. Available: https://chinese.yabla.com/chinese-english-pinyin-

dictionary.php?define=+%E6%8B%87%E6%88%98+.

[10] Xie Zhaozhe, “Fivefold Miscellany (Wuzazu)”, pp. 500-501, 1608.
[11] F. Delogu, M. Barnewold, C. Meloni, E. Toffalini, A. Zizi, and R. Fanari,

“The Morra Game as a Naturalistic Test Bed for Investigating Automatic

and Voluntary Processes in Random Sequence Generation”, Frontiers in
Psychology, vol. 11, 2020, doi: 10.3389/fpsyg.2020.551126.

[12] Sa Murra game, Davide Onida. [Online]. Available: http://samurra.it/.

[13] AGI editorial staff, “Nessuno batte i sardi a morra, nemmeno un robot”,
AGI - Agenzia Giornalistica Italia, July 2021. [Online]. Available:

https://www.agi.it/cronaca/news/2021-07-25/sardegna-robot-perde-

contro-umani-gioco-morra-13377028/.
[14] IBM, “What is quantum computing?,” IBM. [Online]. Available:

https://www.ibm.com/quantum-computing/what-is-quantum-computing/.

[15] D. Frauchiger, R. Renner and M. Troyer, “True randomness from realistic
quantum devices,” ArXiv, 2013, arXiv:1311.4547v1.

[16] M. Gordon and G. Gordon, “Quantum computer games: Quantum

minesweeper”, Physics Education, vol. 45, no. 4, 2010, doi: 10.1088/0031-
9120/45/4/008.

[17] L. Piispanen, M. Pfaffhauser, A. Kultima, J. R. Wootton, “Defining

Quantum Games”, arXiv: Quantum Physics, 2019, arXiv: 2206.00089.
[18] J. Wootton, “Introducing the world’s first game for a quantum computer”,

Medium, 2017. [Online]. Available:

https://decodoku.medium.com/introducing-the-worlds-first-game-for-a-
quantum-computer-50640e3c22e4.

[19] J. Wootton, “Quantum Battleships: The first game for a quantum

computer”, Medium, 2017. [Online]. Available:
https://decodoku.medium.com/quantum-battleships-the-first-multiplayer-

game-for-a-quantum-computer-e4d600ccb3f3.
[20] S. G. Akl, "On the importance of being quantum," Parallel Processing

Letters, vol. 20, no.3, 2010, pp. 275-286, doi:

10.1142/S0129626410000223.
[21] C. Cantwell, “Quantum Chess: Developing a Mathematical Framework

and Design Methodology for Creating Quantum Games”, arXiv: Quantum

Physics, 2019, arXiv: 1906.05836.
[22] A. Anand, B. K. Behera, and P. K. Panigrahi, “Solving diner’s dilemma

game, circuit implementation and verification on the IBM quantum

simulator”, Quantum Information Processing, vol. 19, no. 186, 2020, doi:
10.1007/s11128-020-02687-5.

[23] K. Becker, “Flying Unicorn: Developing a Game for a Quantum

Computer”, arXiv: Quantum Physics, 2019, arXiv:1910.08238
[24] A. Ranchin, “Quantum Go”, arXiv: Quantum Physics, 2016, arXiv:

1603.04751
[25] L. Qiao et al., “Quantum Go Machine”, arXiv: Quantum Physics, 2020,

arXiv:2007.12186

[26] C.-F. Li, Y.-S. Zhang, Y.-F. Huang, G.-C. Guo, "Quantum strategies of

quantum measurements," Physics Letters A, vol. 280, no. 5–6, 2001, pp.
257-260, doi: 10.1016/S0375-9601(01)00072-X.

[27] A. P. Flitney and D. Abbott, “Quantum version of the Monty Hall

problem”, Physical Review A, vol. 65, no. 6, 2002, doi:
10.1103/PhysRevA.65.062318

[28] L. F. Quezada and S.-H. Dong, “Quantum Version of a Generalized Monty

Hall Game and Its Possible Applications to Quantum Secure

Communications”, Annalen der Physik 2020, vol. 533, no. 1, 2020, doi:

10.1002/andp.202000427.

[29] F. G. Fuchs, V. Falch and C. Johnsen, “Quantum Poker—a game for

quantum computers suitable for benchmarking error mitigation techniques

on NISQ devices,”. The European Physical Journal Plus, vol. 135, no. 353,
2020, doi: https://doi.org/10.1140/epjp/s13360-020-00360-5

[30] A. Pal, S. Chandra, V. Mongia, B. K. Behera, and P. K. Panigrahi, “Solving

Sudoku game using a hybrid classical-quantum algorithm”, EPL, vol. 128,
no. 4, 2019, doi: 10.1209/0295-5075/128/40007.

[31] T. Glasgow, H. Hilton, R. Brantley, and O. Levy, “Quantum Tetris”, 2020.

[Online]. Available: https://github.com/dartmouth-cs98/Quantum-Tetris.
[32] W. Xiao, E. Lari, B. Ho, S. Parekh, and O. Brückner, “Quantum Tetris”,

2021. [Online]. Available: https://olivierbrcknr.github.io/quantum-tetris/.

[33] A. Goff, D. Lehmann and J. Siegel. "Quantum Tic-Tac-Toe, Spooky-Coins
& Magic-Envelopes, as Metaphors for Relativistic Quantum Physics,"

AIAA 2002-3763. 38th AIAA/ASME/SAE/ASEE Joint Propulsion

Conference & Exhibit. July 2002.
[34] J. N. Leaw and S. A. Cheong, “Strategic Insights From Playing the

Quantum Tic-Tac-Toe”, Journal of Physics A: Mathematical and

Theoretical, vol. 43, no. 45, 2010, doi: 10.1088/1751-8113/43/45/455304.
[35] Azure Quantum Documentation, “The qubit in quantum computing,”

Microsoft. [Online]. Available: https://docs.microsoft.com/en-

us/azure/quantum/concepts-the-qubit.
[36] Azure Quantum Documentation, “Dirac notation,” Microsoft. [Online].

Available: https://docs.microsoft.com/en-us/azure/quantum/concepts-

dirac-notation.
[37] F. Bloch, "Nuclear induction," Phys. Rev., vol. 70, no. 7-8, pp. 460–474,

Oct. 1946, doi: 10.1103/physrev.70.460.

[38] F. T. Arecchi, E. Courtens, R. Gilmore and H. Thomas, “Atomic Coherent
States in Quantum Optics,” Phys. Rev. A, vol. 6, no. 6, pp. 2211-2237, Dec.

1972, doi: 10.1103/PhysRevA.6.2211.

[39] IBM, “Operations glossary,” IBM. [Online]. Available: https://quantum-
computing.ibm.com/composer/docs/iqx/operations_glossary.

[40] IBM, “IBM Quantum Composer,” IBM. [Online]. Available:

https://quantum-computing.ibm.com/composer/.
[41] D-Wave, “Welcome to D-Wave: D-Wave’s Quantum Computer Systems,”

D-Wave. [Online]. Available:

https://docs.dwavesys.com/docs/latest/c_gs_1.html#d-wave-s-quantum-
computer-systems.

[42] V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary

arithmetic operations,” Physical Review A, vol.54, no.1, July 1996, doi:
10.1103/PhysRevA.54.147.

[43] S. A. Cuccaro, T. G. Draper, S. A. Kutin and D. P. Moulton, "A new

quantum ripple-carry addition circuit," arXiv: Quantum Physics, 2004,
arXiv:quant-ph/0410184

[44] F. Wang, M. Luo, H. Li, Z. Qu and X.Wang, “Improved quantum ripple-

carry addition circuit,” Science China Information Sciences, vol. 59, no.
042406, 2016, doi:10.1007/s11432-015-5411-x

[45] P. Gossett, "Quantum carry-save arithmetic," arXiv: Quantum Physics,
1998, arXiv:quant-ph/9808061.

[46] T. G. Draper, S. A. Kutin, E. M. Rains and K. M. Svore, "A logarithmic-

depth quantum carry-lookahead adder", Quantum Information &
Computation, vol. 6, no. 4, pp. 351-369, 2006.

[47] A. Trisetyarso and R. Van Meter, “Circuit Design for A Measurement-

Based Quantum Carry-Lookahead Adder,” International Journal of
Quantum Information, vol. 8, no. 5, pp. 843-867, 2010, doi:

10.1142/S0219749910006496.

[48] H. Thapliyal, E. Muñoz-Coreas, and V. Khalus, "Quantum circuit designs
of carry lookahead adder optimized for T-count T-depth and qubits,"

Sustainable Computing: Informatics and Systems, vol. 29 part B, no.

100457, 2021, doi: 10.1016/j.suscom.2020.100457.
[49] M. S. Anis et al., “Qiskit: An Open-source Framework for Quantum

Computing,”, IBM, 2021. [Online]. Available: https://qiskit.org/.
[50] P.W. Shor, "Quantum computing," Documenta Mathematica Extra

Volume ICM, vol.1, 1998, pp. 467-486.

[51] M. Chiani and L. Valentini, "Short Codes for Quantum Channels With One

Prevalent Pauli Error Type," IEEE Journal on Selected Areas in
Information Theory, vol. 1, no. 2, pp. 480-486, Aug. 2020, doi:

10.1109/JSAIT.2020.3012827.

[52] IBM, “IBM Quantum,” IBM. [Online]. Available: https://quantum-
computing.ibm.com/.

[53] Lorenzo Lippi, “Malmantile racquistato”, Florence, Italy: S.A.S alla

Condotta, 1688.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3251663

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[54] W. Smith, W. Wayte and G. E. Marindin. “A Dictionary of Greek and

Roman Antiquities”, London, England: John Murray, 1890.

[55] H. Von Trimberg, “Der Renner”, G. Ehrismann, Ed., Stuttgart, Germany:

Litterarischer Verein, 1908.

Antonio Costantino Marceddu received

the B.Sc. and the M.Sc. in computer

engineering from Politecnico di Torino,

respectively in 2015 and 2019.

From 2020, after a short time as a

Research Assistant, he is a Ph.D. student of

the Politecnico di Torino under the

supervision of Professor Bartolomeo

Montrucchio. His research interests

include machine learning, computer vision, computer graphics,

and quantum computing.

Bartolomeo Montrucchio received the

M.Sc. degree in electronic engineering and

the Ph.D. degree in computer engineering

from Politecnico di Torino, Turin, Italy, in

1998, and 2002, respectively.

He is currently a Full Professor of

Computer Engineering with the

Dipartimento di Automatica e Informatica,

Politecnico di Torino. His current research

interests include image analysis and synthesis techniques,

scientific visualization, sensor networks, RFIDs, and quantum

computing.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3251663

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

