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Abstract—The Morra game is quite old. Back in time, traces of 

it can be found in ancient Egypt, ancient Rome, and even China. 

It involves two players who, for a limited number of turns, must 

try to suppose the sum of the number personally chosen with the 

number chosen by the opponent. The rules are simple, but it is 

rather difficult to play at a high level as there are multiple 

cognitive, motor, and perceptual processes involved. 

The goal of this paper is to illustrate the process of implementing 

a quantum random player for the Morra game and some of its 

variants. This can be done by using a quantum number generator 

circuit to generate two numbers and a quantum adder to obtain 

the supposed sum. The advantage of this proposal is that, unlike 

the implementations of the Morra game on classical computers, 

which only allow the generation of pseudo-random numbers, true 

randomness can be obtained through quantum computing. 

In addition to the description of the entire algorithms, the source 

code of the implementations is provided to give everyone the 

freedom to easily test both the quantum implementation of the 

Morra game and the variants discussed in the paper. 

 
Index Terms—Active perception, Cognitive processes, Games, 

Neuropsychology, Programming, Quantum computing 

I. INTRODUCTION 

ORRA is a game with pretty simple rules. It should 

not be confused with the rock-paper-scissors, which 

is also known as Chinese Morra due to the 

similarities in the game mode. Morra requires that two players, 

at the same time, use one of their hands to mimic a number 

between 1 and 5 and shout another number between 2 and 10. 

Keeping the fist closed is equivalent to mimicking the one with 

a finger, while the ten is also called “Morra” or “all”. The 

number shouted by each player corresponds to the presumed 

sum of two numbers mimicked by the individual players. If one 

of the players supposes it, he will score a point, while if both 

players suppose it, no points will be awarded. The number of 

points to guarantee victory varies: for example, in the Sardinian 

version, also called “sa Murra”, they are usually 16.  

The oldest traces of the existence of the game were found in 

the iconographies present in the tombs of Beni Hasan, Egypt [1] 

[2]. They were dated around 2000 BC. Later traces of the game 

were found in the paintings of Greek vases, most notably one 

depicting Helen of Troy and Paris [3], and in documents written 

during the Roman Empire, which was referred to using the 

terms “micatio” or “micare digitis” [4]. Notably, even Cicero, 

in the third book of his “De officiis”, refers to it in two distinct 
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sections: 77 and 89 [5].  Due to its large extension, the Roman 

Empire could have favored the spread of the game itself. In 

China, it was known as “huaquan”, “caiquan” or “muzhan” [6]. 

Even today, the game continues to be called in these ways [7] 

[8] [9]. Nowadays, Morra is played in many countries around 

the world, including Italy, Spain, France, Greece, China, and 

Mongolia.  

Despite its simple functionality, Morra is rather difficult to 

play [10] [11]. It requires the cooperation of multiple cognitive, 

motor, and perceptual processes. A good Morra player tries to: 

• Learn the opponent's playstyle such that playing 

patterns are recognized and can be exploited. This 

requires careful memorization of the numbers 

previously said by the player himself and his 

adversary. 

• Be unpredictable so that, in turn, the opponent avoids 

the recognition of game patterns to be exploited to his 

advantage. 

Taking into account that, on a professional level, more than one 

round per second is played, becoming a good Morra player 

requires a lot of training.  

Over time, several adaptations of the game have been made 

for Personal Computers (PC) and smartphones. They allow you 

to play both against Artificial Intelligence (AI) and with other 

players online [12]. Several robots that can play against humans 

have also been developed. One of them, called Gavina2121, 

recently challenged human opponents in Bitti, Sardinia, taking 

a resounding defeat [13]. However, its creators have obtained 

important data from the challenge, which will serve to improve 

the robot itself.  

Quantum computers are currently of strong multidisciplinary 

interest as they can be faster than real computers for handling 

highly complex problems [14]. Another interesting feature is 

that, unlike classical computers, which can only generate 

pseudo-random numbers, they allow the generation of true 

random numbers [15]. In the case of Morra, this could allow for 

a truly unpredictable player and makes it impossible, even for 

an experienced player, to make any prediction of possible 

number generation patterns. Implementing a quantum random 

player for the Morra game requires knowledge of what it should 

do in the first place. It can therefore be assumed that it must 

return: 

• One random number between 1 and 5, corresponding 
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to the number mimicked with the hand. 

• One number equal to the sum of the previous number 

with another random number between 1 and 5, 

corresponding to the shouted number. 

To achieve this purpose, it is necessary to create two circuits: 

• One for generating two random numbers between 1 

and 5. 

• One for adding up the two previously generated 

numbers. 

Based on what was previously said, this paper intends to 

propose a novel quantum adaptation of the Morra game and 

some of its variants. It is subdivided as follows:  

• Section II will describe the state of the art related to 

quantum games and adders. The latter will be used for 

the implementation of Quantum Morra. In the same 

section, a brief introduction to quantum computing 

will be provided to improve the understanding of the 

entire work.  

• Section III will discuss the implementation of the 

Quantum Morra.  

• Sections IV and V will discuss the implementation of 

some variants of the Morra game.  

• Finally, Section VI will draw some conclusions and 

future improvements. 

II. RELATED WORK 

A. Quantum Games 

The terminology "quantum games" is often linked with 

quantum game theory, which extends classical game theory 

toward the quantum realm. According to [16], quantum games 

are “computer games where the rules of the game are based on 

quantum principles, such as superposition, entanglement, and 

the collapse of the wave function”. This concept of quantum 

games has been used multiple times, although it is quite limited 

as it concentrates solely on the educational aspect of the same. 

More recently, in [17] a three-dimensional characterization for 

the distinction of a quantum game compared to other types of 

games was also discussed. These dimensions concern: 

• Quantum physics, which concerns the use of 

notions of quantum physics in mechanics, graphics, or 

other parts of games. 

• Quantum technologies, which concern the 

impact of using quantum computers or software on 

both gameplay and game development. 

• Scientific purposes, which aims to test the 

capability and limitation of quantum computers. 

So, based on this characterization,  quantum games can be 

defined as “games that reference the theory of quantum physics, 

quantum technologies or quantum computing through 

perceivable means, connect to quantum physics through a 

scientific purpose or use quantum technologies” [17]. This 

definition is more comprehensive and appropriate to the 

continual changes brought forth by this new field. 

Many quantum games have been released so far. Some of 

them will be presented in the next lines. Cat/Box/Scissors was 

the first quantum game built to run on a quantum computer [18]. 

It is a Rock/Paper/Scissors variant in which there is a referee 

who decides the winner and four potential opponents to play 

with, although it is possible to play against one at a time. 

Quantum Battleship was instead the first turn-based multiplayer 

game made to run on a quantum computer [19]. It is a simplified 

version of Battleship where the first player places a ship and the 

second player has to try to sink it. The former wins if the ship 

is not sunk, while the latter wins if he manages to sink it. 

Quantum Chess is the adaptation of the classical game for 

quantum computers. Two different versions were proposed in 

[20] and [21]. The former focuses on teaching quantum 

mechanics properties, while the latter is more recent and 

focuses on being an environment to give players the ability to 

interact with quantum properties while playing. Diner's 

Dilemma is a classical problem related to game theory and 

economics. In the quantum world, it has been faced and solved 

in the 4-player variant [22] by implementing and testing a 

circuit built using IBM® Quantum Simulator. It has also been 

shown that players can reach both the Nash equilibrium point 

and the Pareto optimum point. A curious game about a unicorn 

attempting to fly over a castle, called Flying Unicorn, is 

presented in [23] with the aim of exploring the properties of 

superposition, qubit measurement, and uncertainty. Both the 

classical and quantum implementations of the game are 

provided in the paper. In [24] and [25] two implementations of 

Quantum Go have been presented. The first aimed to make 

quantum mechanics accessible to all, while the second aimed to 

become a test platform for new algorithms for AI. Quantum 

Minesweeper, differently from what can be thought of, is a 

classical computer game [16]. Its creators came up with it as a 

way of teaching basic quantum mechanics simply by playing a 

variation of the Minesweeper game. The Monty Hall problem 

is a probability puzzle proposed in 1975. Several quantum 

versions of it have been proposed over time since, in addition 

to being of scientific interest, its application could have a 

potential interest in the quantum information area [26] [27] 

[28]. A game similar to Texas Hold 'em, a variant of the game 

of Poker, was presented in [29] with the aim of teaching the 

phenomena underlying quantum computing. Also in this case, 

a proof-of-concept is provided with the paper. In [30], some 

quantum circuits were presented to solve the simplest Sudoku 

grid, 4x4 in size, through the use of the concept of duality 

computing and a probabilistic approach. An example code for 

detecting the location of new clues is also provided in the paper. 

Two slightly different versions of Quantum Tetris have recently 

been released for educational purposes [31] [32]. The former 

focuses mainly on teaching general notions of quantum theory, 

while the latter focuses on visualizing the possible effects of 

quantum noise on a normal run of the game. The last game that 

will be mentioned is Quantum Tic Tac Toe. In [33] it was 

developed as a didactic metaphor of nonlocality and quantum 

physics, while in [34] the goal was to create a minimal 

quantization of the classical game. 
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B. Brief Introduction to Quantum Computing 

In quantum computing, the qubit (an acronym for quantum 

binary digit) is the smallest unit of information that can be dealt 

with. Each obtainable state can be written as the superposition 

of two orthonormal basis states, coinciding with the possible 

states of classical binary digits (bits) [35]. Such states, or 

vectors, are normally represented in Dirac notation, also known 

as bra-ket notation, as |0⟩ and |1⟩ [36]. They can be represented 

geometrically by using the so-called Bloch sphere [37] [38]. 

Unlike traditional ones, all gates used in quantum computing 

must be reversible: this means that the original information can 

always be reconstructed. To clarify this concept, if we perform 

a subtraction, for example 9 − 4 = 5, it is not possible to return 

to the operands starting from the result; a loss of information 

then occurs. Examples of some gates normally used in quantum 

computing are the following [39]: 

• The NOT gate flips the state of a qubit from |0⟩ to |1⟩ 
and vice versa. It is graphically represented as a 

rounded block with a + on it or as a square block with 

an X on it. 

• The CNOT gate, which is also called the controlled-

not gate, flips the state of a target qubit from |0⟩ to |1⟩ 
and vice versa if the value of a second qubit, called 

control qubit, is set to |1⟩. It is graphically represented 

as a rounded block with a + near the target qubit and a 

line ending in a circle to represent the conjunction with 

the control qubit. 

• The Toffoli gate, which is also called the controlled-

controlled-NOT gate, flips the state of a target qubit 

from |0⟩ and |1⟩ and vice versa if the value of two 

control qubits is set to |1⟩. It can be used to implement 

NOT, AND, and XOR operations. It is graphically 

represented as a rounded block with a + near the target 

qubit and a line with two circles to represent the 

conjunction with the two control qubits. 

• The Hadamard gate puts the state of a qubit in an equal 

superposition; this means that the state of the qubit has 

the same probability of being |0⟩ and |1⟩. It offers the 

simplest way to achieve true randomness as discussed 

in the previous section. It is graphically represented as 

a square block with an H on it. 

• The SWAP gate, as the name implies, swaps the state 

of two qubits. It is graphically represented as a line 

with two X at the ends. 

• The RX gate performs a rotation of the qubit state 

around the x-axis by a certain angle. It is graphically 

represented as a square block on which RX and 

possibly the rotation value are written. 

• The RY gate, like the RX gate, performs a rotation of 

the qubit state around the y-axis by a certain angle. It 

is graphically represented as a square block on which 

RY and possibly the rotation value are written. 

• The RZ gate, like the RZ and RY gate, performs a 

rotation of the qubit state around the z-axis by a certain 

angle. It is graphically represented as a square block 

on which RZ and possibly the rotation value are 

written. 

While a classical bit value can be read at any time, the 

operation of reading a qubit, called measurement, destroys the 

coherence of the qubit itself and makes it collapse to a basis 

state. For this reason, the measurement operation is usually 

performed at the end of several classical and quantum 

operations on one or more qubits to extrapolate the result. All 

the quantum gates and operations previously described can be 

seen in Fig. 1. 

Today's quantum processors are similar in size to their classic 

counterparts. To preserve their properties, they operate in an 

isolated environment and at very low temperatures, close to 

absolute zero. This temperature is theoretically the lowest that 

can be reached according to the law of physics [14] [41]. 

C. Quantum Multi-Bit Adders 

The simplest way to add two bits is to use a half-adder. Given 

two inputs A and B, it returns their sum and the carryover. The 

problem with this adder is that it doesn't handle the previous 

carry, so it can't be stacked. 

For this reason, for multi-bit adders the basic reference 

element is the full-adder, which unlike the half-adder also 

manages the previous carry. Stacking multiple full-adders 

allows for multi-bit adders. Depending on how the carry is 

handled during the bitwise addition, multi-bit adders can be 

divided into different types. It is possible to implement such 

adders also in quantum computing. The most commonly used 

types of multi-bit quantum adders are the following:  

• The Quantum Ripple-Carry Adder (QRCA) [42] [43] 

[44] is the simplest of all adders. It calculates the carry 

of each bit addition and inputs it into the next bit 

addition. 

 

Fig. 2.  One of the possible quantum circuits that can be used to 

generate an equiprobable number between 1 and 5. 
 

                  
 

                 
 

  Fig. 1.  Icons showing the quantum gates and the operations 

described as shown in the IBM Quantum Composer [39] [40]. 

From left to right, top to bottom: NOT gate, CNOT gate, Toffoli 

gate, Hadamard gate, SWAP gate, RX gate, RY gate, RZ gate, 

barrier operation and measurement operation. 
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• The Quantum Carry-Save Adder (QCSA) [45] 

calculates subtotals and carry-over of multiple inputs. 

They will subsequently be used for the calculation of 

the final sum. 

• The Quantum Carry-Lookahead Adder (QCLA) [46] 

[47] [48] improves QRCA by solving the carry 

propagation problem at the cost of major complexity. 

It is currently the fastest-known technique for 

performing additions, especially with many bits. 

III. QUANTUM IMPLEMENTATION OF THE MORRA GAME 

According to the definition of quantum game given in [17], 

the implementation of the Quantum Morra game and the 

variants discussed in this paper has firmly recoursed to the 

dimension of quantum technologies for its development and 

actively uses it also for its functioning. This section will then 

provide a complete description of the making of the game. 

A. Tools Used 

IBM® Qiskit®, a leading open-source Software Development 

Kit (SDK) for the realization of quantum computing solutions, 

was used for the study and the realization of the circuits [49].  

In Qiskit®, every single run of a circuit is called a shot. This 

terminology, now in common use in quantum computing, will 

also be used in this paper. 

B. Generation of Equiprobable Quantum Numbers with Five 

Values 

The first step to creating a quantum random player for the 

Morra game consists in realizing a quantum circuit to extract 

the first number, which represents the number mimicked by the 

human hand, and a second number necessary to calculate the 

supposed sum. 

Previously it was said that, just like the bits of classical 

computers, once a qubit is measured it can have two possible 

states: 0 or 1. For this reason, also for quantum computers base 

2 is the reference one. This means that, given 𝑛 qubits, it is 

possible to represent up to 2𝑛 different values (states). For this 

reason, implementing a true randomizer circuit for powers of 

two numbers is very simple, since for each bit a Hadamard gate 

and a measurement operation are sufficient. However, things 

got a little complicated when it is needed to generate a number 

in a different interval. In these cases, it is necessary to reduce 

the probability that certain states can be reached to zero. This is 

generally achieved with rotations, which can induce phase 

changes.  

In the case of the Morra game, a number between 1 and 5 

must be extracted, desirably with the same probability. This 

means that it is possible to extract a total of 5 different numbers. 

Since 5 is not a power of two, to obtain such a number is 

necessary to take the power of two immediately higher, which 

is 8, and let the probability of reaching 8 − 5 = 3 possible 

states vanish. In this way, only numbers between 1 and 5 can 

be extracted. One of the possible circuits capable of obtaining 

this result is depicted in Fig. 2. It is composed of: 

• An RY gate, which rotates the qubit 𝑞2 by 

𝜋 1.4187762⁄  radians.  

• A Toffoli gate, which sets 𝑞1 to 1 only if 𝑞0 and 𝑞2 are 

equal to 1. 

• Two Hadamard gates, of which the first put 𝑞0 in 

equal superposition while the second resets its value to 

0 with a probability of 100%. The superposition of 𝑞0  

 

Fig. 4. The adder circuit implemented for the Morra game, 

in where is necessary to calculate the sum of two numbers 

representable with three qubits. 
 

 

Fig. 3. Comparison of the results obtained by running the five-

values number generator circuit for 16384 shots first on the flat 

IBM® QASM simulator (Noiseless) and then applying to it the 

noise model of IBM® Quito (Noisy), a real quantum computer. 

These last measurements were then further refined through 

calibration techniques (Mitigated) to remove, as far as possible, 

the unwanted states.  
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allows triggering the Toffoli gate. 

• A NOT gate, which flips the value of 𝑞2. 

• Three measurement operations, which are necessary to 

obtain the final value of each qubit. 

This circuit was obtained by using a Monte Carlo technique. 

Several tests were carried out to find a circuit capable of 

canceling 3 of the 8 output states. Once found, it has been 

optimized to reduce the number of gates and to have near output 

states. Subsequently, a brute force approach was applied to find 

the exact RY rotation that could lead to the same probability 

(20%) for each state. The final circuit can generate numbers 

between 0 and 4 and will be referred to below as the five-values 

number generator circuit. 

C. Analysis of the Results 

The five-values number generator circuit was run for 16384 

shots two times on the IBM® QASM simulator. In the first run 

there was no noise (Noiseless), while in the second was added 

the noise model of IBM® Quito, a real 5-qubit quantum 

computer (Noisy). The outcome of the execution can be seen in 

Fig. 4. It is immediately visible that, unlike the optimal results 

obtained by the IBM® QASM simulator in the absence of noise, 

8 values are returned instead of the expected 5. This is due to 

the fact that quantum computers are not perfect machines. To 

function optimally, they should be completely isolated from the 

surrounding environment. On classical computers, supplying 

one or more inputs to a program result in correspondingly one 

or more outputs. The problem with quantum computers is that 

their isolation property will be implicitly lost if it is wanted that 

their behavior varies based on the inputs provided. Due to this 

reason, despite continued efforts to improve this property, they 

will continue to suffer from noise and decoherence problems. 

Then, quantum error correction and mitigation algorithms are 

critical for improving the result of the calculations [50] [51].  

One of the possible ways to improve this result is to perform a 

measurement calibration. This is possible by preparing the 2𝑛 

basis input states and evaluating the probability of counting 

obtainable by measuring in another basis state. Since the 

number generator circuits analyzed in this paper uses three 

qubits, there will be 23 = 8 total possible quantum states. Using 

the IBM® QASM simulator, it is possible to calculate the 

calibration matrix in the absence of noise: in this particular case, 

it will be a simple identity matrix. By applying the noise model 

of a real quantum computer on the IBM® QASM simulator, 

such as that of IBM® Quito, it is possible to calculate the 

calibration matrix for this quantum computer to mitigate its 

measurement error. The Mitigated results obtained by applying 

this technique are always shown in Fig. 3. The improvement in 

the results is clearly visible. 

B. Adder for the Morra Game 

Now that the circuit for generating equiprobable random 

numbers in the desired range was found, it is necessary to build 

an adder for: 

• Generating the supposed sum of the quantum 

random player. 

• Calculating the effective sum for comparing it with 

the sums supposed by the players. 

The numbers to be added in the Morra game can be contained 

in three bits. For this reason will be used a simple multi-bit 

adder, depicted in Fig. 4. Since current quantum computers 

 
 

Fig. 6. A screenshot of the Quantum Morra game 

implementation. At the start of the game, it allows the user to 

choose whether to allow zero or not. 
 

 
 

Fig. 5. A screenshot of the comparator circuit, used to compare 

the supposed sum of the players with the correct one. 
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have a limited number of qubits available, a quantum circuit 

that mixes a half-adder for the first qubit and two full-adders 

for the remaining qubits has been used. In this way, to add two 

3-bit numbers only 9 qubits are needed. Given two 3-bit 

numbers A and B, starting from the Most Significant Bit (MSB) 

the bits should be input into the circuit as follows: 

• 𝐴[2] → 𝑞6, 𝐴[1] → 𝑞3, 𝐴[0] → 𝑞0. 

• 𝐵[2] → 𝑞7, 𝐵[1] → 𝑞4, 𝐵[0] → 𝑞1. 

Following the calculation, the output bits with a higher index 

will contain the MSBs of the resulting sum. So it will read as 

follows: 𝑂[3] → 𝑞8, 𝑂[2] → 𝑞7, 𝑂[1] → 𝑞4, 𝑂[0] → 𝑞1. 

E. Comparison of the supposed sums with the correct one 

To obtain the complete quantum version of the Morra game, 

a final circuit is needed to compare the two supposed sums by 

the players with the effective sum. Depending on their value: 

• They can both be different from the effective one. 

• One of them can be equal to the effective one. 

• Both can be equal to the effective one. 

The simplest circuit for comparing two qubits can be 

obtained simply using a CNOT gate and measuring the target 

qubit: if the qubits have the same value the output is 0, vice 

versa the output will be 1. By extending the same principle, it 

is therefore possible to use 12 qubits to compare the 4 control 

qubits of the effective sum (𝐶) with the respective 8 target 

qubits of the supposed sums (𝑆1, 𝑆2). Starting from their MSBs, 

the sums are input into the circuit in this way: 

• 𝐶[3] → 𝑞0, 𝐶[2] → 𝑞1, 𝐶[1] → 𝑞2, 𝐶[0] → 𝑞3 

• 𝑆1[3] → 𝑞4, 𝑆1[2] → 𝑞5, 𝑆1[1] → 𝑞6, 𝑆1[0] → 𝑞7 

• 𝑆2[3] → 𝑞14, 𝑆2[2] → 𝑞13, 𝑆2[1] → 𝑞12, 𝑆2[0] →
𝑞11 

After this step, a downsampling mechanism can be applied 

to measure the output of two single qubits, which are sufficient 

to represent the previously mentioned states. First, 8 NOT gates, 

4 for every single comparison, are used to flip the values of the 

8 target qubits. This operation is useful for restoring the 0𝑠 to 

1𝑠 after the previous operation. Second, 6  Toffoli gates, 3 for 

every single comparison, are used to downsample the 8 qubits 

to 2 qubits, 1 for every single comparison. The output of this 

downsampling operation will be 1 if all previous qubits were 

equal to 1, i.e. the two numbers being compared are equal, 

otherwise it will be 0.  

The final comparator circuit capable of carrying out the 

above operation is shown in Fig. 5. 

F. Final Circuit 

The final circuit was obtained by stacking two number 

generator circuits and the adder discussed above. A text-based 

interface has also been added to allow the user to play against 

the aforementioned quantum random player until one of them 

wins. An image of the final game is shown in Fig. 6. In this 

version, during each round the user must type in two numbers: 

the value mimicked with the hand and the supposed sum he will 

reach with the number thrown by the quantum random player. 

At this point, the quantum random player will do the same and, 

after making its choices, the final calculation will be made to 

verify the winner. The number of points needed to win is by 

default set at 16 as in the Sardinian Morra rules, but this value 

can be changed freely. 

 Along with this document, the complete Python code for the 

Quantum Morra is provided. An IBMid is required to obtain a 

new API token as it uses the IBM® Quantum services [52], 

which are necessary to play the game. 

IV. VARIANTS OF THE MORRA GAME WITH ZERO ALLOWED 

Some variants of the Morra game allow players to use the 

number zero, which can be mimicked by simply leaving the 

hand closed. These variants change both the total number of 

extractable numbers, which goes from 5 to 6, and the sum that 

players can suppose, which goes from a range between 2 and 

10 to one between 0 and 10. While the second point does not 

affect the adder circuit, the first requires creating a new number 

generator circuit, which will be discussed next. 

 

Fig. 7.  One of the possible quantum circuits that can be used to 

generate an equiprobable number between 0 and 5. 
 

 

Fig. 8. Comparison of the results obtained by running the six-

values number generator circuit for 16384 shots first on the flat 

IBM® QASM simulator (Noiseless) and then applying to it the 

noise model of IBM® Quito (Noisy), a real quantum computer. 

These last measurements were then further refined through 

calibration techniques (Mitigated) to remove, as far as possible, 

the unwanted states.  
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A. Six-Values Equiprobable Number Generator Circuit  

There are different ways to create a circuit capable of 

extracting a number between 0 and 5 with the same probability. 

Fig. 7 shows one that bears a strong resemblance to the one 

shown in Fig. 3. In fact, it was obtained starting from it and 

making the following substitutions: 

• One of the Hadamard gates has been replaced with an 

RX gate, which rotates the qubit 𝑞0 by 𝜋 2⁄ . 

• The RY gate has been replaced with an RX gate, which 

rotates the qubit 𝑞2 by 𝜋 1.4187762⁄  radians.  

In the previous number generator circuit, the first Hadamard 

gate acts on the qubit 𝑞0 to put it in equal superposition and 

activate the Toffoli gate if the qubit 𝑞2 is also equal to 1. The 

second Hadamard gate then returns the value of the qubit 𝑞0 to 

0 with a probability of 100%. In the novel circuit, however, the 

use of a single Hadamard gate followed by an RX gate does not 

remove the superposition state of the qubit 𝑞0 and this creates 

an additional state, which is exactly what was wanted to 

achieve. As with the previous circuit, the exact RX gate rotation 

was found with a brute force approach to obtain a probability of 

16.66667% for each output state. 

B. Results 

Like the previous number generator circuit, also this one was 

run for 16384 shots on the IBM® QASM simulator with and 

without the noise model of IBM® Quito. The calibration matrix 

was calculated to mitigate the unwanted effects due to noise and 

improve the results. They can be seen and compared in Fig. 8. 

C. Final Circuit 

The final circuit was obtained similarly as previously 

discussed for the Morra game. Also for this variant, the full 

Python code is provided alongside this paper.  

V. ODDS AND EVENS 

Odds and Evens is a known variant of the Morra game. It was 

known both by the Greeks with the term “artiazein” and by the 

Romans with the term “ludere par impar” [53] [54]. A late 

medieval reference, dated around 1300 AD, has been found in 

Hugh von Trimberg's “Der Renner” [55]. Nowadays, it 

continues to be played mostly by children in different parts of 

the world. It is known by several names, including “bucking 

up”, “choosies”, and “pick”. 

A. Rules 

Odds and Evens rules are simpler than those of the Morra 

game. At the beginning of the game, the two players decide by 

mutual agreement who will be awarded points for the odd 

numbers and, consequently, for the even ones. Using a 

synchronization mechanism based on shouted words such as 

"One, two, three, shoot!" or similar, both players quickly and 

simultaneously mimic two numbers between 0 and 5 or 1 and 

5 depending on whether zero is allowed or not. If the sum of the 

two mimicked numbers is odd, one point will be awarded to the 

odd player and vice versa. Players can choose to end the game 

after only one round, the best of three rounds, or after several 

rounds. 

B. Implementation 

The implementation of this variant of the Morra game does 

not require any additional circuits compared to those seen 

previously. The quantum random player can be implemented 

using either the five-values or the six-value number generator 

circuits. Then, the values chosen by the actual player and the 

quantum random player can be added using the quantum adder 

described above. Finally, parity can be verified by simply 

checking the Least Significant Bit (LSB) of the sum: if it is 

equal to 0 the number is even, while if it is equal to 1 the 

number is odd. An image of the final game, which performs 

these exact steps, is shown in Fig. 9. Also for Odds and Evens, 

the full Python code is provided alongside this paper. 

VI. CONCLUSIONS 

This paper discussed the implementation of a quantum 

random player to solve the Morra game and some of its variants 

in quantum computing. For the implementation of the classic 

Morra game and the variant with the zero allowed, such a player 

relies respectively on the use of a five-values or a six-values 

number generator circuit, needed to generate the base number 

and an additional number used for the calculation of the 

presumed sum, as well as an adder that performs this operation. 

On the other hand, for the odds and evens game, a single five-

values or six-values number generator circuit and a quantum 

adder are sufficient. The code of the classic version of the 

Morra and the variants presented therein is provided alongside 

this paper. In this way, everyone can try the game with a 

minimum setting of the Python environment. In the future, the 

authors want to further their research into the possibility of 

adapting other games into the world of quantum computing. 
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