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Abstract—Cuckoo is a popular card game, which originated
in France during the 15th century and then spread throughout
Europe, where it is currently well-known under distinct names
and with different variants. Cuckoo is an imperfect information
game-of-chance, which makes the research regarding its optimal
strategies determination interesting. The rules are simple: each
player receives a covered card from the dealer; starting from the
player at the dealer’s left, each player looks at its own card and
decides whether to exchange it with the player to their left, or
keep it; the dealer plays at last and, if it decides to exchange card,
it draws a random one from the remaining deck; the player(s)
with the lowest valued card lose(s) the round. We formulate the
gameplay mathematically and provide an analysis of the optimal
decision policies. Different card decks can be used for this game,
e.g., the standard 52-card deck or the Italian 40-card deck. We
generalize the decision model for an arbitrary number decks’
cards, suites, and players. Lastly, through numerical simulations,
we compare the determined optimal decision strategy against
different benchmarks, showing that the strategy outperforms the
random and naive policies and approaches the performance of
the ideal oracle.

Index Terms—Card games, games of chance, optimization,
optimal decision strategy.

I. INTRODUCTION

Cuckoo (also known as Coucou, As Qui Court, and Hère)
is a historical French card game (CG), and is currently

very popular throughout Europe. The game was mentioned as
early as 1490 in France, where it was known as Mécontent
[1] and played with the standard 52-card deck, while it was
referenced in Italy, for the first time, in 1547 as Malcontento
[2]. It appears with the name Hère [3] in 1690 and Coucou [4]
in 1721. In the early 18th century, dedicated decks started to be
produced, comprising 38 cards [5]. The earliest deck including
the rules of the game was produced in Bologna, Italy, in 1717
by Borzaghi [6]. The game, then, spread through north Europe,
where both the deck and the name changed [7]: in Bavaria
(Germany) it was called Hexenspiel or Vogelspiel. It was
known in Denmark as Gniao, and its deck had 42 cards. This
name was then translated to Gnav when it reached Norway,
and it was played with a set of dedicated wooden tokens,
instead of cards. The token values were printed and glued on
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its bottom, as showed in a mid-17th century Venetian print by
Stefano Scolari [8]. It was also brought to the Netherlands,
where it was known as Slabberjan. Finally, from 1881, the
game was known in England with the names Chase-the-Ace
and Ranter-Go-Round, and it was presumably first played in
Cornwall [9].

Despite the existence of all the aforementioned variants, the
general rules of Cuckoo are simple: given a covered card from
the dealer, players looks at it and decide whether to exchange
it with the player to the left or keep it; the player(s) with
the lowest card value lose the round. Nonetheless, the design
and definition of optimal winning strategies a challenging
problem; indeed, the decision space of possible strategies is
large due to the high number of cards and action combinations.
However, to the best of our knowledge, no studies have address
the modeling and analysis of Cuckoo under a comprehensive
theoretical and simulation-based framework. For the sake of
filling such a gap, in this paper, after describing and math-
ematically formulating the gameplay, we provide an analysis
of the optimal decision policies, which maximize the winning
likelihood. Different card decks can be used for this game,
e.g., the standard 52-card deck or the Italian 40-card deck.
For this reason, we generalize the decision model for decks
with an arbitrary number of cards and suites as well as players.
Lastly, through numerical game simulations, we show that the
determined optimal decision strategy outperforms the random
and naive policies and approaches the performance of the ideal
oracle.

The remainder of the paper is structured as follows. In Sec-
tion II, related works on determining the optimal strategies of
card games are discussed, highlighting the paper contributions.
Section III describes the game rules. After introducing the
basic definitions for the generalized card game, Section IV
formalizes the optimal strategy. Section V reports the game
results obtained from numerical experiments, and discusses the
outcomes of benchmarking analysis. Conclusions are drawn in
Section VI.

II. LITERATURE REVIEW AND PAPER POSITIONING

A. Related Works

The existing literature has prominently discussed the topic
of CGs both from its historical and cultural perspective [11],
being strongly linked to the traditions of a geographical area
and to the roots of its inhabitants. However, in the last decades,
the subject has been studied also from the strategical point of
view, with the aim of finding algorithms that would yield the
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Fig. 1. Italian 40-card deck with Neapolitan suites, manufactured by Dal Negro [10]. It is the most popular and commonly used deck, especially in Southern
Italy. Columns denotes the card value, while rows indicate the specific suit, with the corresponding one of the standard 52-cards deck. Some cards have a
proper name, in addition to their value: the card with the lowest value (i.e., equal to 1) is called asso (ace), while cards with value from 8 to 10 are called
donna (woman, queen), cavallo (horse, knight), and re (king), respectively

optimal game policy. For this reason, the analysis of CGs is
investigated not only for recreational purposes, but also for its
close proximity with computer and decision sciences.

The most notable CG which has attracted active research
is probably Poker [12]. In [13] authors review algorithms and
methods in the area of computer Poker, starting from the earli-
est attempts to create strong computerised Poker players, up to
more modern computational game-theoretical approaches. The
most recent Poker agents, based on techniques derived from
artificial intelligence, have reached superhuman capabilities:
in [14] an algorithm called “Pluribus” is presented, shown to
be stronger than top human professionals in six-player no-
limit Texas hold’em Poker. The game has also been studied
under different lenses, other than strategical optimality: in [15]
an emotion recognition model is described, which aims at
assisting the human player by providing advice based on the
current game situations and human player’s recognized emo-
tions. Further examples of well-known CGs for which optimal
strategies have been derived are Blackjack and Baccarat [16],
both sharing a strong gambling component. In [17] the optimal
strategy for Blackjack is discussed, where a mathematical ex-
pression is derived, providing a general solution to the player’s
problem of drawing additional cards, with a given hand, or not.
The game is also used in [18] as a baseline for examining the
advantages that quantum strategies allow in communication-
limited games. Regarding Baccarat, it has been shown in [19]

that, differently from Blackjack, the “card counting” technique
does not provide significant favorable strategies, both for the
Trente-et-Quarante and “Nevada” variants. A game-theoretic
discussion of the possible strategies for the game is provided
in [20], where the variant known as Chemin de fer is also taken
into consideration. A brief history of the evolution of the game
and its variants is provided in [21]. Another popularly studied
CG is Bridge [22], which shares an international diffusion
with the ones mentioned above, but is not prone towards
gambling. In [23] the existence of equilibrium points of a
best-defence model, for games with imperfect information, is
devised and used for analyzing search architectures that have
been proposed for Bridge. In [24], instead, a recursive Monte
Carlo (MC) approach is employed, in place of the traditional
depth-one MC Tree Search (MCTS), showing better results,
at the cost of a higher computational effort.

So far, we mentioned CGs which have a worldwide dif-
fusion. If we lower the granularity to the regional level, the
number of existing CGs roughly is estimated to be around
10,000 [25]. One of these, which belongs to the Italian cultural
heritage, is Scopone, whose strategy has been studied in [26].
Authors compare rule-based players using the most established
strategies against players using MCTS and Information Set
MCTS, with different reward functions and simulation strate-
gies.

On the top of this large list, there exists a further wide
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Fig. 2. Example of a game round with an Italian 40-card deck (characterized by S = 4 Neapolitan suites, each having C = 10 cards). Arrows indicate
possible card exchanges, whose decision is eventually made by players with the arrow tails. The dealer has the remaining deck from which a random card
is eventually extracted to fulfill its card exchange. The player having a card valued C = 10 is isolated from the adjacent players (Rule 2), while the player
with a card valued C − 1 = 9 makes the player on its right eventually “jump”, if the latter desires to change card (Rule 1).

category of CGs, denoted as collectible CG (CCG) [27],
such as Magic: The Gathering and Hearthstone. They are
all characterized by the possibility for players to customize
their own deck, deciding which cards to use for a specific
match. This feature adds a further layer of complexity to their
analysis, the since the in-game strategy strongly depends on
the optimal mix of cards constituting the deck [28], [29].

B. Paper Contributions

As many CGs, Cuckoo is a game of chance with imperfect
information, which makes the discussion regarding its optimal
strategy determination interesting. To the best of the authors’
knowledge, this is the first study regarding the decision mod-
eling and analysis of the Cuckoo game. To fill this gap, in
the following, after describing and mathematically formulating
the gameplay, we provide an analysis of the optimal game
strategies, which maximize the winning likelihood. The game
can be played with a variety of decks, from the standard 52-
card deck, up to national and regional ones, such as the Italian
40-card deck (Fig. 1). It can also be played with dedicated
tokens. For this reason, we generalize the decision model for
decks with an arbitrary number of cards and suites as well as
players. Lastly, we analyze the winning results achieved by the
optimal decision policies through numerical game simulations,
showing that their performance is closed to those of the ideal
oracle.

III. GAME RULES

The game is played with a S-suites deck, each containing
cards from 1 to C, for a total of CS cards. A match consists of
several rounds, which are played in accordance with the rules
described in the following. We refer to Fig. 2 as an illustrative

example of a typical game turn, specifically played with the
Italian 40-card deck, for which S = 4, C = 10.

At the end of each round, the objective of the player(s)
is not to be the one(s) with the lowest card value. At the
beginning of each round, the dealer gives to each player a
card, which has to be kept covered. Then, starting from the
players on the left of the dealer, each player looks at its own
card and decides whether to keep it or exchange it with the
player immediately on the left. This process is repeated for
each player in clockwise order, until the player on the right
of the dealer decides to change the card with the dealer or
not. Then, the dealer, being the last player of the round, may
choose to exchange its own card with a random card drawn
from the deck. Finally, all players uncover their cards. The
player(s) with the lowest card value lose the round. Usually,
each player has an initial number of lives: each lost round
corresponds to a lost life. A player who loses all lives must exit
the game. Rounds are repeated upon dealer role shifting over
players and cards reshuffling and redistribution, until there is
only a player left, i.e., the winner of the match. In addition,
there are two further rules that define specific conditions and
modalities of card exchange:

Rule 1. If a player has a (C − 1)-valued card, the player on
the right has to “jump” the player with the (C − 1)-valued
card, i.e., it can exchange its own card with the first player on
its left not having (C − 1)-valued card, if desired. The player
with the (C − 1)-valued card cannot change card at all.

Rule 2. If a player has a C-valued card, the player on the
right cannot change its own card at all. The player with the
C-valued card cannot change card as well.

We further assume that all players with either a (C − 1) or
a C-valued card have to uncover their card at the beginning
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of the round, showing the corresponding values to the other
players. The last player allowed to exchange its card, but
having no available players on its left, can randomly extract a
card for the deck: for instance, this is the case addressed by
player N − 1 (that does not have a (C − 1) or a C-valued
card) when the dealer (i.e., the player N ) has a (C − 1)-
valued card. Several variants of the game exist, which convey
more and different rules. In order not to render the discussion
too cumbersome, we adopt only the two previously mentioned
rules. Finally, in the case of a draw – i.e., all the players have
the same valued card – we adopt the convention such that all
players lose a life.

IV. THE DECISION STRATEGIES

Notation: N and Z denotes the set of natural and integer
numbers, respectively; given a, b ∈ N, with a ≤ b, [a, b]N
indicates [a, b]∩N; given n, k ∈ N, (n)k := n(n− 1) · · · (n−
k + 1) is the Pochhammer notation for the falling factorial;
given n, k ∈ N,

(
n
k

)
:= n!/(k!(n − k)!) is the notation for

the binomial coefficient; symbols ∨ and ∧ represent logical
operators OR and AND.

A. Preliminaries

The generic game with N players and a deck having S suites
and C valued cards for each suite, is denoted as G(S,C,N).
To ensure fairness, the number of players cannot be equal to
the number of cards, i.e., N ≤ CS − 1, otherwise the last
player would not have the possibility to change its card by
randomly drawing a card from the remaining deck. The N
players are indicated with the identifiers I = [Id1, · · · , IdN ]N;
however, due to the dealer role shifting, in each round players
are identified by the indices in the set N = [1, · · · , N ]N:
without loss of generality, we assume that player i + 1 (for
each i ≤ N − 1) is on the left of player i and player i = N
indicates the dealer. Clearly, these indices shift clockwise over
players round by round. The value of the card hold by the i-th
player is denoted as vi ∈ [1, C]N.

We define the set of successors of player i, Si, as the set of
all players on its left, whose card is not (C − 1)-valued, i.e.:

Si := {j ∈ [i+ 1, N ]N | vj ̸= C − 1}. (1)

Afterwards, we define the “subsequent player” of player i as
si:

si :=


min (Si), if Si ̸= ∅
N+1, if i=min {j∈ [1, N ]N | Si=Sj=∅}
∄, otherwise

(2)

where si = N+1 conventionally indicates the remaining deck.
In other terms, if Si ̸= ∅, then si is the first successor on the
left of i. Note that player i might not have any successor (i.e.,
Si = ∅), e.g., when player i is the dealer (i.e., i = N ). If
there are no successors, player i might extract a random card
from the deck, to eventually fulfill its card exchange, if it is
the first player without successors. For example, consider the
case where vi ̸= C − 1, vi+1 = · · · = vN = C − 1, and
S1 = · · · = Si−1 ̸= ∅: i is the first player without successors

and might extract a random card from the deck; contrarily,
players from i+1 to N would not have any subsequent player.

Similarly to (1), we define the set of predecessors of player
i, Pi, as the set of all players on its right, whose card is not
(C − 1)-valued, i.e.:

Pi = {j ∈ [1, i− 1]N | vj ̸= C − 1}. (3)

Subsequently, we define the “preceding player” of player i as
pi:

pi :=


max (Pi), if Pi ̸= ∅
0, if i=max {j∈ [1, N ]N | Pi=Pj=∅}
∄, otherwise

(4)
where pi = 0 conventionally indicates that i is the first player.
In other terms, if Pi ̸= ∅, then pi is the first predecessor on the
right of i. Note that player i might not have any predecessor
(i.e., Pi = ∅), e.g., when player i is the first player (i.e.,
i = 1). A player i > 1 may not have any predecessors, e.g.,
if v1 = · · · = vi = C − 1. If there are no predecessors, player
i does not undergo any request of card exchange.

Given that player i has a card of value vi, in the whole deck
there are v−i := S · (vi − 1) cards whose value is lower than
vi. Similarly, in the whole deck there are v+i := S · (C − vi)
cards whose value is higher than vi. Clearly, the number of
cards equal to vi is always S, including the vi-valued card of
player i. Hence, the following equality holds:

v−i + v+i + S = CS. (5)

For convenience, we also define ṽ+i := v+i + S and ṽ−i :=
v−i +S, i.e, the number of cards whose value is higher or equal
to vi, and lower or equal to vi, respectively. The objective of
each player, for each round, is not to be the one with the
lowest value card. For player i, the taken action is denoted
as ai, whilst the set Ai collects all the potential actions as
follows:

Ai := {vi ⇄ vsi ,∅} (6)

where the notation vi ⇄ vsi means that player i exchanges its
card with player si, while the symbol ∅ represents no action.
For si = N + 1, vi ⇄ vN+1 means that player i exchanges
its card with a random one from the remaining deck.

We remark that a player i has knowledge of some card
value different from its own if any of Rules 1 or 2 occurs
(public knowledge), or if player pi exchanges its card with
player i (private knowledge). We will refer to knowledge as
the totality of private and public knowledge [30]. We introduce
ki(h) : [1, C]N → [0, S]N as the function defining the number
of h-valued cards known by player i. In particular, for player
i we indicate with K+

i and K−
i the number of known cards

whose value is higher and lower than vi, respectively:

K+
i :=

C∑
h=vi+1

ki(h), K−
i :=

vi−1∑
h=1

ki(h) (7)

For convenience, for player i we also define K̃+
i := K+

i +
ki(vi) and K̃−

i := K−
i + ki(vi) as the number of known

cards whose value is higher or equal and lower or equal to vi,
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respectively. Notice that ki(vi) ≥ 1, since card vi is always
known by player i. Clearly, K−

i ≤ v−i and K+
i ≤ v+i .

B. Optimal Strategy

In the following, we establish the optimal strategy to be
adopted by the player i. Indicating with Ei the set of possible
events that player i deals with, we introduce the optimal
decision policy of player i as the function:

σi : 2
Ei → Ai. (8)

Let us provide the formulation of σi(·) for all the game
occurrences, classified in the sequel into three categories.

First, there are two possible events that trivially guarantee
that player i wins the round:
w1) There is at least one player j ̸= i such that vj < vi with

vj known by player i, i.e., K−
i ≥ 1. This might happen

in the case player pi decided to change card with player
i, giving to the latter a card with value vpi > vi.

w2) Player i has a card whose value is such that ṽ+i < N−1,
i.e., no matter how many players have a higher value card,
there is at least a player with a lower value card.

Let us group all the above described occurrences in the
winning event set Wi ⊂ Ei, defined as:

Wi := {(vpi
⇄ vi ∧ vpi

> vi) ∨ (ṽ+i < N − 1)}. (9)

It straightforwardly follows that for player i the best action
for all events in Wi is to not exchange card, i.e.:

σi(Wi) = ∅. (10)

Second, there is a unique event that trivially guarantees that
player i loses the round:
l1) player i has one of the lowest cards in the deck, either

received by the dealer at the beginning of the round or
got from player pi, and simultaneously player si on the
left has a card with vsi = C, thus preventing any card
exchange to player i.

The losing event is indicated with Li ⊂ Ei, which is formally
defined as follows:

Li := {(vi = 1 ∧ vsi = C)}. (11)

In this case the only possible action for player i is to not
exchange card, although it always ends up in losing the round,
i.e.:

σi(Li) = ∅. (12)

Remark 1. From (10) and (12), it follows that function σi is
non-invertible, for all i ∈ N .

Lastly, the third category of events include all the cases that
do not guarantee player i to neither win nor lose the round:
u1) Player pi does not exchanged card with player i, i.e.,

api = ∅.
u2) Player pi exchanges a card with value vpi < vi with

player i.
u3) Player i is the player that starts the round, i.e., pi = 0.

Similarly to the previous cases, let us group all the above
described occurrences in the set Ui ⊂ Ei, defined as:

Ui := {(api = ∅) ∨ (vpi ⇄ vi ∧ vpi < vi)∨ (pi = 0)}. (13)

Note that Wi ∪ Li ∪ Ui ⊆ Ei and Wi ∩ Li = Wi ∩ Ui =
Li ∩ Ui = ∅.

In order to establish the optimal policy σi(Ui) for player
i for all events in the set Ui, we need to characterize its
stochastic nature. To this aim, we identify the subset of Ui

containing the winning events for player i, for a given action
ai, which is denoted as Ω−

i in the sequel.
We preliminarily recall that, for player i to win the round,

it is sufficient that there exists at least one player with a card
with value lower than the card value of player i. For a given
d < N − 1, the event related to the existence of exactly d
players (different from player i) with a card value lower than
vi is denoted as Ω−

i,d and is defined as follows:

Ω−
i,d = {∃D ⊆ N \ {i} | vj < vi, ∀j ∈ D, |D| = d} (14)

where D represents the subset of d players whose card
value is lower than vi. It is apparent that D is not empty
(and consequently the event Ω−

i,d may occur) if and only if
d ≤M−, where M− is defined as:

M− := min (v−i , N − K̃+
i ). (15)

Note that (15) has the following meaning: on the one hand, the
number of players with a card value lower than vi cannot be
higher than v−i (i.e., the number of cards, in the whole deck,
with a value lower than v−i ); on the other hand, the number
of players with a card value lower than vi is upper bounded
by the number of remaining players whose cards are unknown
(i.e., N − K̃+

i ). Having defined Ω−
i,d, the event related to the

existence of at least one player j ̸= i such that vj < vi is:

Ω−
i =

M−⋃
d=1

Ω−
i,d. (16)

Furthermore, for the sake of convenience, we introduce the
event Ω+

i,b related to the existence of exactly b players (dif-
ferent from player i) with a card value higher or equal to vi.
Such an event is defined as follows:

Ω+
i,b = {∃B ⊆ N \ {i} | vj ≥ vi, ∀j ∈ B, |B| = b} (17)

where B represents the subset of b players whose card value
is higher or equal to vi. It is apparent that B is not empty
(and consequently the event Ω+

i,b may occur) if and only if
b ≤ M+, where M+ has a meaning similar to M− in (15)
and is defined as:

M+ := min (ṽ+i , N − K̃+
i ). (18)

The probability of the occurrence of event Ω−
i for player i

(i.e., its winning probability in the round), depending on ai ∈
Ai and K̃+

i is denoted as P(Ω−
i | ai, vi, K̃+

i ) and defined as
follows.

We know analyze the two cases, ai = ∅ and ai = vi ⇄ vsi ,
respectively. The following proposition provides the formula-
tion of the winning probability P(Ω−

i | ∅, vi, K̃+
i ) of player

i.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3239795

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. XX, MONTH 202X 6

(a) ai = ∅

(b) ai = vi ⇄ vsi

Fig. 3. Probability of the winning event Ω−
i with K̃+

i = 1 for player i in a
round of the game G(S = 4, C = 10, N ≤ 39), when the chosen action is
null (a) or card exchange (b).

Proposition 1. Probability P
(
Ω−

i | ∅, vi, K̃+
i

)
follows an

hypergeometric distribution [31], i.e.,

P
(
Ω−

i | ∅, vi, K̃+
i

)
=

M∑
d=1

(
v−i
d

)(
CS−K̃+

i −v−i
N − K̃+

i −d

)
(
CS−K̃+

i

N−K̃+
i

) . (19)

Proof. The winning probability P(Ω−
i | ai, vi, K̃+

i ) is com-
puted as:

P
(
Ω−

i | ∅, vi, K̃+
i

)
=

M−∑
d=1

P(Ω−
i,d)P

(
Ω+

i,N−K̃+
i −d

)
. (20)

Note that, given d players for which Ω−
i,d occurs, the remaining

players with unknown cards are N − K̃+
i −K−

i −d, although
K−

i = 0; otherwise, event Wi would have occurred. We can
explicitly write the term P(Ω−

i,d) in (20) as follows:

P(Ω−
i,d)=

(
N−K̃+

i

d

)
v−i

CS−K̃+
i

· · · v−i − d+ 1

CS−K̃+
i −d+1

(21)

which represents the probability of d players having a card
with a value lower than vi, for all the possible ways they can
be chosen from the N−K̃+ remaining players with unknown
cards. Equation (21) can also be expressed in combinatorial
form as:

P(Ω−
i,d) =

(
N − K̃+

i

d

)(
v−i
d

)(
CS − K̃+

i

d

)−1

. (22)

Similarly, the term P
(
Ω+

N−K̃+
i −d

)
in (20) can be written as:

P
(
Ω+

i,N−K̃+
i −d

)
=
CS − K̃+

i − v−i
(CS − K̃+

i )− d
· · · ·

· · · · (CS − K̃+
i − v−i )− (N − K̃+

i − d) + 1

(CS − K̃+
i )− (N − K̃+

i ) + 1
(23)

which represents the probability of the N−K̃+
i −d remaining

players having a card value higher or equal to vi. Also (23)
has an equivalent combinatorial formulation, i.e.:

P
(
Ω+

i,N−K̃+
i −d

)
=

(
CS−K̃+

i −v−i
N−K̃+

i −d

)(
CS−K̃+

i

d

)
(
N−K̃+

i

d

)(
CS−K̃+

i

N−K̃+
i

) . (24)

We can now write (20), from (21) and (23), as:

P
(
Ω−

i | ∅, vi, K̃+
i

)
=

=

M∑
d=1

(
N−K̃+

i

d

) (v−i )d(CS−K̃
+
i −v−i )N−K̃+

i −d

(CS − K̃+
i )N−K̃+

i

(25)

and, equivalently, we can rewrite its combinatorial form, from
(22) and (24), as in (19), showing that P

(
Ω−

i | ∅, vi, K̃+
i

)
follows an hypergeometric distribution.

A plot of P
(
Ω−

i | ∅, vi, K̃+
i

)
, as computed in (19), is

reported in Fig. 3.a, for different values of vi and N . It can be
noticed that the surface becomes flat for games with a large
number of players, independently from the card value, as long
as vi > 1, which would otherwise result in losing the round
if the card does not undergo an exchange.

Let us now focus on the case ai = vi ⇄ vsi . The
following proposition provides the formulation of the winning
probability P(Ω−

i | vi ⇄ vsi , vi, K̃
+
i ) of player i.

Proposition 2. Probability P(Ω−
i | vi ⇄ vsi , vi, K̃

+
i ) can be

expressed as the following compound distribution:

P(Ω−
i | vi ⇄ vsi , vi, K̃

+
i ) =

=
v+i −K+

i

CS − K̃+
i

+
ṽ−i

CS − K̃+
i

vi∑
h=1

ki(h)P
(
Ω−

i |∅, h, K̃
+
i +1

)
.

(26)
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Fig. 4. Heatmap of the optimal decision policy defined in (32) with K̃+
i = 1 for the game G(S = 4, C = 10, N ∈ [2, 39]N). Given a number of players

N and a card valued vi, shades represent the optimal action ai, while their intensity indicates the winning probability P(Ω−
i | ai, vi, K̃+

i ).

Proof. Differently from the previous case ai = ∅, we now
have dependency on the card value vsi of the subsequent
player. Therefore, we distinguish two possible sub-cases, i.e.:

P(Ω−
i | vi ⇄ vsi , vi, K̃

+
i ) =

=

{
1, if vsi > vi (27a)

P
(
Ω−

i |∅, vsi , K̃
+
i + 1

)
, if vsi ≤ vi. (27b)

Sub-case (27a) results in the existence of at least one player
with a card value higher than vi (i.e., K−

i ≥ 1), who corre-
sponds to the subsequent player of player i. Conversely, in sub-
case (27b), the occurrence probability of event Ω−

i coincides
with (19), evaluated with respect to vsi and considering that
the number of known players with card value higher or equal
to vi has to be increased of one unit (corresponding to the
card vi that player i has exchanged with its subsequent player
si). The compound distribution of (27) can be written as

P(Ω−
i | vi ⇄ vsi , vi, K̃

+
i ) =

= P(vsi > vi) + P(vsi ≤ vi)P
(
Ω−

i |∅, vsi , K̃
+
i + 1

)
. (28)

The occurrence probabilities of the above discussed sub-cases
(i.e, events vsi > vi and vsi ≤ vi) are computed as:

P(vsi > vi) =

C∑
h=vi+1

S − ki(h)

CS − K̃+
i

(29a)

P(vsi ≤ vi) =

vi∑
h=1

S − ki(h)

CS − K̃+
i

. (29b)

It is apparent that the two events vsi > vi and vsi ≤ vi are
complementary, and thus it can be straightforwardly demon-
strated that their probabilities add to 1, i.e.:

P(vsi > vi) + P(vsi ≤ vi) =

=

C∑
h=1

S − ki(h)

CS − K̃+
i

=
CS − K̃+

i −K−
i

CS − K̃+
i

= 1 (30)

recalling from (7) that
∑C

h=1 ki(h) = K+
i + K−

i + ki(vi),
K̃+

i = K+
i + ki(vi), and, given that event Ui occurred,

K−
i = 0. Substituting (29a) and (29b) in (28), yields

P(Ω−
i | vi ⇄ vsi , vi, K̃

+
i ) =

=

C∑
h=vi+1

S − ki(h)

CS − K̃+
i

+

vi∑
h=1

S − ki(h)

CS − K̃+
i

P
(
Ω−

i |∅, h, K̃
+
i +1

)
.

(31)

By definition,
∑C

h=vi+1 S = v+i and
∑vi

h=1 S = ṽ−i , from
which (31) can be further simplified to (26).

A plot of P(Ω−
i |vi ⇄ vsi , vi, K̃

+
i ), as computed in (26), is

reported in Fig. 3.b for different values of vi and N . It can be
noticed that the trend is opposed to (19) for low values of N .
Also, for vi close to 1, the probability of Ω−

i becomes high
when player i changes card with its subsequent player. This
implies that if vi = 1 and Li does not occur, player i is likely
not to lose the round.

Finally, we can define the optimal decision policy for
Ui, which consists in choosing the action σi(Ui) such that
maximizes either (19) or (26), i.e.:

σi(Ui) = argmax
ai∈Ai

P(Ω−
i | ai, vi, K̃+

i ). (32)

A heatmap for the optimal strategy defined in (32) is reported
in Fig. 4, where, for a given number of players N and card
value vi, the color shade and intensity indicate the optimal
action and the winning probability of player i, respectively. It
can be noticed how, for large values of N , the predominant
action is ∅: intuitively, this is due to the fact that the presence
of a low valued card is highly likely. Therefore, only players
with a 1-valued card will exchange it. Even if a player receives
a 1-valued card, exchanging it with the subsequent player will
likely lead to not losing the round, since the probability of the
event vi = vsi = 1 is low.

C. Inference from Previous Players Strategies

The optimal strategy defined in (32) addresses the agent’s
best strategy without knowing the actions previously taken
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by the preceding agents. We now take into account how the
preceding agents’ decisions can affect the game, with the aim
of gaining strategic advantage under the occurrence of event
U .

Consider player i ∈ N , whose turn to play has not come,
such that Pi ̸= ∅. Player i and j ∈ Pi possess the same amount
of knowledge (i.e., apart from vi and vj), if the preceding
player of j, pj , did not exchange its card. In fact, players who
still have the card received from the dealer, when it is their
turn to play, only know the numbers of uncovered C and C−1
valued card from the current hand, other than their own card.
Formally, given i ∈ N , we have

(j ∈ Pi ∧ apj
= ∅) =⇒

{
K̃+

i = K̃+
j

K−
i = K−

j

. (33)

Note that (33) does not generally hold in the opposite direc-
tion: suppose there are players k, h ∈ N such that apk

=
vpk

⇄ vk, aph
= vph

⇄ vh and vpk
< vk, vph

< vh; then,
players k and h would share the same knowledge. We know
from Remark 1 that σi is non-invertible, that is, even if players
i and j share the same amount of knowledge, the former
can neither determine vj nor which event of 2Ej occurred.
Nonetheless, since we have apj

= ∅ from (33), we can
restrict the conditions of Wj and Uj , since both events consider
apj = vpj ⇄ vj as occurrence. Specifically, recalling (9) and
(13), we define the restricted events W̃j and Ũj as follows:

∀j ∈ Pi | apj
=∅ :

{
W̃j := {ṽ+j < N − 1}
Ũj := {(apj

= ∅) ∨ (pi = 0)}
(34)

Note that event Lj in (11) does not undergo any variation if
(33) occurs. It can be already seen that if aj = ∅ occurs,
player i can not gain any useful insight since σj(Li) =
σj(W̃j) = ∅. Also, aj = ∅ may result from event Ũj

occurring. However, if aj = vj ⇄ vsj , player i can infer
that event Ũj occurred, since it is the only event that admits
a card exchange. If player j decided to exchange card, player
i can easily detect the subset of cards that vj belongs to. We
denote it as Vj ⊂ [1, C]N, collecting all cards v such that:

∀v ∈ Vj : (vj ⇄ vsj ) = argmax
aj∈Aj

P(Ω−
j | aj , v, K̃+

j ) (35)

that is, all cards valued v such that, given K̃+
j , the best action

is to exchange card. Now, player i will not exchange cards, in
spite of what (32) suggests, if vi > v, for all v ∈ Vj . However,
this does not crucially improves the optimal strategy so far
outlined, since it does not provides information for critical
cases: e.g., if vi = 2, and Ui occurs, ai = σi(Ui) = vi ⇄ vsi ,
for N ≤ 16 (see Fig. 4), then 2 ∈ Vj as well, which is not
enough for making ai = ∅ optimal.

V. NUMERICAL RESULTS

The decision strategies presented in Section IV are tested
numerically through simulations of the game G(S = 4, C =
10, N) with an Italian 40-card deck and with the players’
number N varying in the range [2, 39]N. Each player has L = 1
lives at the beginning of each match, for all game simulations.

For each N a total of 800 games have been run. The opti-
mal strategy is compared with three different benchmarking
policies, described in the following. The complete simulation
source code is available at [32].

A. Benchmarking Strategies

1) Ideal oracle: We define an ideal oracle, as the decision
policy players would employ if they could see all covered
cards, i.e., if K̃+

i +K−
i = N − 1 for all i ∈ N . We denote it

with ψi, and define

ψi : NN × 2Ei → Ai. (36)

Clearly, the action taken in case either Wi or Li occurs is the
same as in (10) and (12), respectively, i.e.,

ψi(v,Wi) = ψi(v,Li) = ∅, ∀i ∈ N (37)

where v = (v1, · · · , vN ) is the vector of cards’ values of all
the players, for the given hand. In case Ui occurs, we have
instead

∀i ∈ N : ψi(v,Ui) =

{
vi ⇄ vsi , if vi = min (v)

∅, otherwise
(38)

i.e., the i-th player exchanges its card only if vi is the lower
valued card in the current hand. Note that if vi = vsi =
min (v), either actions would be losing. The oracle, thus,
constitutes an ideal strategy, which bounds the performance
of any realistic conceivable policy.

2) Naive strategy: The naive strategy of player i is denoted
as:

µi : 2
Ei → Ai. (39)

Player i keeps its card if any of these two events occurs:
n1) The preceeding player pi exchanges its card with player

i, with vpi
< vi, thus implying that K−

i ≥ 1.
n2) Player i believes that the subsequent player si has a lower

valued card, i.e., if P(vsi < vi) > 1/2.
Occurrence (n1) is equivalent to the one described in (w1) for
the winning event Wi. Moreover, the probability in (n2) can
be calculated, from (29b), as:

P(vsi < vi) =

vi−1∑
h=1

S − ki(h)

CS − K̃+
i

=
v−i

CS − K̃+
i

. (40)

Conversely, if none of the events (n1) and (n2) occurs, player
i exchanges its card. The strategy is considered naive since
player i only reasons with respect to the state of its subsequent
player, ignoring that the winning condition resides in the
occurrences of event Ω−

i . Therefore, grouping the occurrence
(n1) and (n2) in the event set Mi ⊂ Ei we get

Mi =

{
(vpi ⇄ vi ∧ vpi < vi) ∨ P(vsi < vi) >

1

2

}
. (41)

The naive strategy µi can thus be formally expressed as
follows:

µ(Ω) =

{
∅, if Ω ∈ Mi

vi ⇄ vsi , otherwise.
(42)
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3) Random strategy: We define the random strategy of
player i as follows:

ρi : [0, 1]N → Ai (43)

depending on a binary random variable x ∈ [0, 1]N, which
follows a uniform probability distribution, i.e x ∼ U [0, 1].
Therefore, the random strategy ρi yields:

ρi(x) =

{
∅, if x = 0

vi ⇄ vsi , if x = 1.
(44)

B. Discussion of the Results

Figure 5 illustrates the distribution of winnings with respect
to each strategy, i.e., the fraction of games won using a given
strategy. During each game each player is randomly assigned
a specific strategy, so that all players play using different
policies game by game: strategies are assigned following a
uniform distribution, so that all strategies are played roughly
the same number of times during the whole simulation. In
particular, Fig. 5a reports the overall winning distribution over
all the simulated games. As expected, the random and oracle
strategy provide the performance lower and upper bounding,
respectively: players adopting the random strategy won 1.36%
of the time, whilst players playing as an oracle won 43.91%
of the time. Playing using the optimal strategy yields the best
results among the realistic policies, allowing players to win
31.44% of the time and thus improving the result of the naive
strategy, whose winning rate is 23.29%. In our simulations,
we coherently observe that the result of the naive strategy is
improved by the optimal strategy by 8.15%. The observed
gap between the ideal oracle and the optimal strategy is
instead 12.47%, also coherently with Fig. 5a. Figure 5b reports
the same winning distribution with respect to the number of
players in the game. It can be noted how the winning dynamics
is unaffected by the number of players, remaining uniform for
all N .

Finally, for the sake of highlighting the game dynamics,
Fig. 6 reports the average number of turns in which players
survive, when all of them adopt the same strategy, i.e., when
players share the same degree of rationality. Note that the
number of survived turns is an appropriate measure of how
well players perform, even when losing the game. From the
plots, it is apparent that the oracle and optimal strategy are
comparable, suggesting that players “resist” for the same
number of turns.

VI. CONCLUSIONS

In this paper we studied the optimal strategy for the well-
known Cuckoo card game. Since the game can be played with
a variety of dedicated decks, including the French-suited 52-
cards and the Italian 40-card deck, we analyzed the game for
a generic deck, with an arbitrary number of valued cards and
suites. The formal characterization of the stochastic nature of
the game, as well as the optimal strategies, were modeled
and tested numerically, showing that the optimal strategy
outperforms the naive and random strategies and approaches
the ideal oracle.

(a) Overall winnings distribution over all simulated games.

Oracle
(43.91%)

Optimal
(31.44%) Naive

(23.29%)

Random
(1.36%)

Total
winnings (%)

(b) Winning distribution clustered over the number of players.
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Fig. 5. Composition of total winnings with respect to each strategy: overall
(a) and clustered (b) distributions.
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Fig. 6. Average number of survived turns for each strategy over the number
of players: colored solid lines denote the average values, while shaded areas
represent the standard deviation bounds and are delimited by dashed lines
colored with the corresponding colors.

Future works will investigate different paths: the game will
be analyzed under the hypothesis of non-rational players, and
it will be used as a testing ground for machine learning based
control models, which will aim at enhancing the effectiveness
of the decision policies, for instance, through reinforcement
learning.
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