
162 IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 1, MARCH 2024

A Novel Evolutionary Algorithm With Column and
Sub-Block Local Search for Sudoku Puzzles

Chuan Wang, Bing Sun, Student Member, IEEE, Ke-Jing Du, Jian-Yu Li , Member, IEEE,
Zhi-Hui Zhan , Senior Member, IEEE, Sang-Woon Jeon , Member, IEEE, Hua Wang , Senior Member, IEEE,

and Jun Zhang , Fellow, IEEE

Abstract—Sudoku puzzles are not only popular intellectual
games but also NP-hard combinatorial problems related to vari-
ous real-world applications, which have attracted much attention
worldwide. Although many efficient tools, such as evolutionary
computation algorithms, have been proposed for solving Sudoku
puzzles, they still face great challenges with regard to hard and
large instances of Sudoku puzzles. Therefore, to efficiently solve
Sudoku puzzles, this article proposes a genetic algorithm (GA)
based method with a novel local search technology called local
search-based GA (LSGA). The LSGA includes three novel de-
sign aspects. First, it adopts a matrix coding scheme to represent
individuals and designs the corresponding crossover and muta-
tion operations. Second, a novel local search strategy based on
column search and sub-block search is proposed to increase the
convergence speed of the GA. Third, an elite population learning
mechanism is proposed to let the population evolve by learning the
historical optimal solution. Based on the above technologies, LSGA
can greatly improve the search ability for solving complex Sudoku
puzzles. LSGA is compared with some state-of-the-art algorithms
at Sudoku puzzles of different difficulty levels and the results show
that LSGA performs well in terms of both convergence speed and
success rates on the tested Sudoku puzzle instances.

Index Terms—Combinatorial optimization problems,
evolutionary computation (EC), genetic algorithm (GA), local
search, Sudoku puzzle.
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I. INTRODUCTION

SUDOKU is a popular logic-based combinatorial puzzle
game for people of all ages, it was invented in 1979 and

was officially named “Sudoku” in 1984 [1]. The typical Sudoku
is composed of 81 cells (a 9×9 grid), as shown in Fig. 1. Fig. 1(a)
is a Sudoku puzzle with several given numbers, and Fig. 1(b) is
the solution to this puzzle. Moreover, with rapid development,
more complex high-dimensional Sudoku puzzles have appeared
in recent years, with dimensions of 16 × 16, 25 × 25, and even
100 × 100.

The rules of Sudoku are as follows: The game begins with
several given numbers in an N×N grid. Then, the player must fill
in the empty cells with numbers 1 to N in such a way that no num-
ber appears twice in the same row, column, or sub-block. Sudoku
puzzles are simple in form and definition, but it is not easy to find
solutions [2]. In 2003, Yato and Seta proved that solving Sudoku
is an NP-hard problem [3]. Generally, the factors for evaluating
the difficulty of a Sudoku puzzle include the dimension of the
problem, percentage and distribution of the given numbers, and
time cost to solve the Sudoku by a baseline solver. To evaluate
the difficulty of Sudoku, some typical tools have been developed,
including SUDOKUSAT, Sudoku explainer (SE), and Hoduku
explainer [4]. Currently, the most used tool is SE, which can
give a corresponding SE score. Generally, a higher SE score
indicates that the Sudoku puzzle is more difficult. For example,
the Sudoku puzzles can be divided into levels of easy, medium,
hard, evil, and even more difficult.

Nowadays, Sudoku is not only a game but also a kind of
core problem in many real-world applications in daily life and
industrial engineering, such as in data encryption [5], radar
waveform design [6], and education [7]. For example, Jana
et al. [5] proposed a video steganography technique that hid
encrypted data in videos by a Sudoku-based reference matrix.
This technique shows good performance in resisting fault attacks
if the Sudoku puzzle can be solved efficiently. Li et al. [8]
applied retracing extended Sudoku to image data-hiding tech-
nology. As the retracing extended Sudoku is a kind of Sudoku
containing multiple solutions, which imposes high demands on
the robustness of the algorithm for solving the Sudoku puzzle.
To improve the efficiency of photovoltaic systems, Horoufiany
and Ghandehari [9] proposed a Sudoku-based arrangement rule
to avoid mutual shading between fixed photovoltaic arrays and
obtained the optimal arrangement by solving the corresponding
Sudoku puzzle by a genetic algorithm (GA). Moreover, the
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Fig. 1. Example of 9 × 9 Sudoku puzzle and its solution. (a) Sudoku puzzle.
(b) Solution to the puzzle.

Sudoku is also studied as a representative of the exact cover
problem [10]. Therefore, the Sudoku puzzle widely exists in
various applications. The development of algorithms for solving
Sudoku has not only of academic research significance, but
also helpful for real-world applications, which has attracted
increasing attention.

So far, the existing algorithms for solving Sudoku puzzles
can be divided into mathematical algorithms [11] and heuristics
algorithms [12]. The exact algorithms are faster at solving Su-
doku puzzles, but lack portability [13]. Therefore, as a type of
heuristics algorithm, GA has gained widespread attention due
to its powerful search ability and versatility. During the past
decade, some studies have shown the great potential of GA in
solving Sudoku puzzles [14]. However, the GA-based methods
still have some shortcomings. When solving difficult Sudoku
puzzles, some GA-based methods still need to take a long time to
solve or even be unsolvable [15]. Therefore, developing a more
efficient method to solve Sudoku puzzles remains a challenge.

In this article, we propose an improved GA with local search
(LSGA) to effectively and efficiently solve Sudoku puzzles.
Specifically, the LSGA has three novel designs. First, we adopt
the matrix-based encoding for Sudoku, and based on this encod-
ing scheme, the crossover and mutation operations in LSGA are
designed. Second, we present a novel local search mechanism
based on column search and sub-block search to increase the
convergence speed of the GA. Third, to avoid being trapped in
local optimal solutions, an elite population learning mechanism
is proposed to randomly replace poor individuals with new in-
dividuals, which is very effective when solving difficult Sudoku
puzzles. To illustrate the efficiency of the proposed LSGA, we
evaluate it on Sudoku puzzles at different difficulty levels and
compare it with some state-of-the-art approaches.

The rest of the article is organized as follows: Section II
reviews studies on solving Sudoku puzzles in recent years.
Then, in Section III, the matrix-based GA is elaborated, and the
effectiveness and efficiency of the proposed LSGA are illustrated
by extensive experiments in Section IV. Finally, conclusion is
given in Section V.

II. RELATED WORK

The charm of Sudoku is that it is easy to learn but difficult
to master. Therefore, it has received much attention since it was

Fig. 2. Structure of standard N×N Sudoku puzzle.

first published in the newspaper “Times” [16]. Fig. 2 shows
the structure of a standard Sudoku puzzle. To summarize the
definition, the N ×N (

√
N is an integer greater than 0) Sudoku

puzzle must satisfy the following constraints.
1) Unique Solution Restriction: A Sudoku puzzle has only

one unique solution.
2) Rule of Rows: All 1 to N numbers in each row should

appear and not be repeated.
3) Rule of Columns: All 1 to N numbers in each column

should appear and not be repeated.
4) Rule of Sub-Blocks: All 1 to N numbers in each

√
N ×√

N
sub-block should appear and should not be repeated.

Many researchers have tried tackling Sudoku through different
methods. A widely used method is dancing links [17], which is
a brute force algorithm. This method transforms Sudoku puzzles
into exact cover problems and employs the backtracking method
to solve them. However, brute force algorithms cannot handle
those high-dimensional Sudoku puzzles at an acceptable time
and memory cost [18].

To overcome the shortage of brute force algorithms, many
heuristic approaches have been reported in the literature to solve
Sudoku. For example, Sevkli and Hamza. [19] proposed two
novel models based on the variable neighborhood search (VNS)
algorithm to solve Sudoku: Unfiltered-VNS and filtered-VNS.
The experiments showed that filtered-VNS can obtain better
solution quality than Unfiltered-VNS for easy- and medium-
level puzzles, while Unfiltered-VNS performs better in solving
hard-level puzzles. Betar et al. [20] introduced an improved
hill-climbing algorithm called the β-Hill-Climbing algorithm,
which could escape local optima by using a random operator.
Experimental results showed that theβ-Hill-Climbing algorithm
can find solutions within a very short time under the best param-
eter configuration.

Traditional Sudoku solution methods are ineffective in solv-
ing complex and high-dimension Sudoku puzzles because the
Sudoku puzzles have a huge search space [21]. Evolutionary
computation (EC) algorithms, such as GA [22], [23], [24], ant
colony optimization (ACO) [25], [26], [27], particle swarm
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Fig. 3. Initialization stage: non-given numbers in row i are randomly assigned
to empty spaces.

optimization (PSO) [28], [29], [30], [31], [32], differential evo-
lution [34], [35], [36], and estimation of distribution algorithms
[37] have shown promising performance in solving Sudoku puz-
zles and many other complex or real-world problems [38], [39],
[40], [41]. For example, Mantere and Koljonen [15] adopted GA
to solve the Sudoku puzzle, but this article could not effectively
solve difficult Sudoku puzzles. Pathak and Kumar [42] proposed
the wisdom of a crowd aggregate function for Sudoku puzzles,
which can effectively prevent GA from being trapped in local
optima. Deng and Li [43] proposed an efficient hybrid algorithm
for Sudoku. In this hybrid algorithm, the improved GA can
produce more abundant individuals to participate in crossover.
Then, they combined PSO with GA, so that the population could
better evolve towards the optimal solution. Lloyd and Amos [16]
adopted ACO to solve high-dimensional Sudoku puzzles and
compared the effect of the percentage of given numbers on the
difficulty of Sudoku.

Summarizing the above algorithms, we can conclude that
the search ability and convergence speed of the algorithms are
key indicators for solving Sudoku puzzles, because of the huge
search space and unique solutions of Sudoku puzzles. In this
article, we present an improved GA, called LSGA, which adopts
the new local search method designed for Sudoku puzzles and
a new elite population learning mechanism to solve Sudoku
puzzles more effectively and efficiently.

III. PROPOSED LSGA METHOD

A. Representations and Initialization

When solving Sudoku puzzles, it is necessary to encode the
possible solutions into data structures, which facilitate the evolu-
tionary operations of the GA. For example, Rodríguez-Vázquez
[44] recorded the given numbers and solutions of Sudoku with
two strings of length N2, and a string of length N to record
the numbers waiting to be selected in each row. Mantere and
Koljonen [15] used two arrays of N2 numbers to represent the
Sudoku solution: one represented the solution, and the other
recorded the position of the given numbers.

In our algorithm, we adopt two matrices to represent a chro-
mosome, one matrix is the major matrix that records the numbers
in each position of the Sudoku grids, while another matrix is the
associated matrix that records where each position is occupied
by a number. Specifically, the number in row i and column j in

Sudoku is recorded at position (i, j) of the major matrix. Mean-
while, for the associated matrix, if there is a given number at a
position, then the corresponding value of the associated matrix
is “1;” otherwise, it is “0.” This coding method facilitates the im-
plementation of crossover operation and local search operation.

The initialization stage is an important process of the GA. To
reduce the complexity of the puzzle, all non-given numbers in
each row are randomly assigned to the empty spaces, as shown
in Fig. 3. Therefore, the initial solutions will satisfy the row rules
of Sudoku.

B. Fitness Function

The goal of solving a Sudoku puzzle is to find the solution
where each number occurs only once on each row, column, and
sub-block. Therefore, when evaluating an individual, we count
how many rows, columns, and sub-blocks are incorrect (i.e., not
including all the numbers from 1 to N). Therefore, the fitness of
the optimal solution is 0, which means that the rows, columns,
and sub-blocks of this individual satisfy all rules of Sudoku.

As the individuals generated by the initialization already
satisfy the constraints of the row rule, LSGA only needs to
optimize the numbers in the columns and sub-blocks without
breaking the row rule. In summary, the fitness of each individual
can be evaluated by

F =

N∑
i=1

ci +
N∑
j=1

sj (1)

where N is the dimension of the Sudoku puzzle, and ci indicates
whether the ith column satisfies the rule of Sudoku. That is, ci
equals 0 if the ith column satisfies the rule and equals 1 if it does
not. Correspondingly, sj represents whether the jth sub-block
satisfies the limitations. F is the sum of ri and sj. When F equals
0, it indicates that the algorithm finds the optimal solution.

C. Crossover and Mutation

Crossover operations emphasize the exchange of genes
among individuals. In LSGA, the crossover operator is per-
formed by rows. Specifically, the parents are selected based on
the individual crossover rate PC1. Subsequently, based on the
row crossover rate PC2, the same rows from the parents are
selected to participate in the swap operation. An example of the
crossover is shown in Fig. 4. In this figure, two parents are
selected based on PC1. Then, the same rows of the two parents
are selected to swap based on PC2. Because the given numbers
in the same row are in the same position, such as “2” and “7” in
Fig. 4, the swap operation will not change the original Sudoku
puzzle.

The pseudocode of the crossover operation is shown in Algo-
rithm 1. In lines 2–3 of Algorithm 1, we select two individuals
based on the individual crossover rate PC1. Subsequently, in
lines 4-8, rows are selected to swap based on the row crossover
rate PC2. Finally, in line 10, the offspring of the crossover are
preserved.

Mutation is an important operation for the population to
explore the solution space and helps populations escape local
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Fig. 4. Crossover between two individuals.

Fig. 5. Two designed mutation operations. (a) Swap mutation. (b) Reinitialize
mutation.

Algorithm 1: Pseudocode of Crossover.
Input: population, individual crossover rate PC1, row

crossover rate PC2
1: For each individual in the population:
2: If rand1<PC1: // rand1 is a random variable in [0,1]:
3: Select the second parent from the population

randomly;
4: For each row in the individual:
5: If rand2<PC2: // rand2 is a random variable in

[0, 1]:
6: Parents exchange the selected rows;
7: End If
8: End For
9: End If

10: Save the offspring to the new population;
11: End For

Output: new population

optima. Here are two different mutation strategies to help the
GA improve its exploration capabilities: swap mutation and
reinitialization mutation.

The swap mutation operation is performed as a swap of two
positions inside random rows to ensure that each row satisfies
constraint (2) of Sudoku (see Section II). The associated matrix
is used to check if the position is appropriate for mutation. If
the value is “1,” this position is occupied by a given number
and this corresponding position is illegal to exchange; thus, the
given numbers will not be changed during the mutation. The
probability of the swap is determined by the swap mutation rate
PM1. As shown in Fig. 5(a), the above mutation is legal, while
the below mutation is illegal.

Algorithm 2: Pseudocode of Mutation.
Input: population, swap mutation rate PM1 and

reinitialization mutation rate PM2
1: For each individual in the population:
2: For each row in the individual:
3: If rand1<PM1: // rand1 is a random variable in

[0, 1]:
4: If the number of non-given numbers≥ 2:
5: Select two non-given numbers to exchange

positions;
6: End If
7: End If
8: If rand2<PM2: // rand2 is a random variable in

[0, 1]:
9: Reinitialize the row;

10: End If
11: End For
12: End For

Output: new population

The reinitialization mutation performs the mutation by reini-
tializing the distribution of the random rows. As shown in
Fig. 5(b), the number of given numbers is retained while the
non-given numbers are randomly assigned to the empty space
at random. The reinitialization mutation can help the algorithm
jump out of the local optima better than the swap mutation. How-
ever, a high mutation probability for reinitialization mutation
will slow the convergence of the algorithm, so the reinitialization
mutation rate PM2 is a value smaller than 0.1 and the fitness of
individuals is the worst.

The pseudocode of the mutation operator is shown in Al-
gorithm 2. In lines 3–7 of Algorithm 2, rows are selected to
participate in the swap mutation based on the PM1. In lines 4–6,
here is a judgment on the feasibility of the swap. If there is only
one non-given number in a row, this row cannot participate in
the swap. In lines 8–10, rows are reinitialized based on PM2.

D. Column and Sub-Block Local Search

Many studies have shown that local search is an effective
technique for improving the convergence speed of the algorithm
[45]. Therefore, we design a new novel local search method
in LSGA for solving Sudoku puzzles. It has two components:
column local search and sub-block local search.

The first component is the column local search, which is
designed to eliminate the repeating numbers in columns. First,
count all columns that do not meet the rules (called illegal
columns). We define the set C to record these columns. Then,
each illegal column is randomly paired with the other columns
in C, which will be swapped if the repeat numbers are in the
same row and none of them are in each other’s column. For
example, Fig. 6 depicts a part of the solution to a 9 × 9 Sudoku
puzzle, where we use 1 to mark the position of the repeated
number. According to the rules of Sudoku, the number “1” is
the repeat number in column A and “2” is the repeat number in



166 IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 1, MARCH 2024

Fig. 6. Example of column local search. Repeat numbers are marked as 1, and
others are marked as 0.

Fig. 7. Example of sub-block local search. Repeat numbers are marked as 1,
and others are marked as 0.

column B. Therefore, both columns all have repeat numbers in
the sixth row, so we can exchange “1” and “2” to make column B
a legal column. Then, column A continues to swap with column
C, which could make both of them meet the column rules.

The second component is the sub-block local search. Similar
to the column local search, the sub-block local search swaps the
repeat number in the same row. First, it counts all sub-blocks that
do not meet the rules (called illegal sub-blocks). We define the
set S to record these sub-blocks. Then, each illegal sub-block is
randomly paired with the other sub-blocks in S, swapping them
if the repeat numbers are in the same row and none of them is
in each other’s sub-block. For example, in Fig. 7, sub-block A
and sub-block B both have repeated numbers, one of which is
“9” and the other is “8”. Therefore, we can exchange them on
the same row to make both sub-blocks satisfy the Sudoku rules.

In summary, the basic idea of local search is to make the
columns and sub-blocks on both sides gradually satisfy the rules
of Sudoku by exchanging repeated values. Algorithm 3 describes
the basic framework of the local search.

Algorithm 3: Pseudocode of Local Search.
Input: population
1: For each individual in population:
2: Record all illegal columns (sub-blocks) in the set C (S);
3: For each column (sub-block) in C (S):
4: Randomly select another column (sub-block) from

C (S);
5: If the repeat numbers are in the same row:
6: If repeat numbers do not exist in both columns

(sub-blocks):
7: Swap these repeat numbers;
8: End If
9: End If

10: End For
11: End For

Output: new population

E. Elite Population Learning

As the local optimal solution and the global optimal solution
of Sudoku puzzles are very different, it is difficult for the GA to
jump out of the local optima. Thus, a learning mechanism based
on elite populations is proposed to avoid the GA falling into local
optima. The elite population is a queue structure, that records
the best individuals of each generation and updates them with
new optimal individuals. In elite population learning, the worst
individuals in the population are replaced by a random individual
xrandom from the elite population or are reinitialized. We define
the probability Pb to control this process.

The replacement operation is as follows:

xworst =

{
xrandom, if rand() < Pb

init(), otherwise
(2)

s.t. Pb =
Maxfx− fx(xrandom)

Maxfx
(3)

where xworst is the worst individual, Maxfx is the fitness of
xworst, xrandom is a randomly selected elite individual with
fitness is fx(xrandom), rand() outputs a random variable in
(0, 1), and init() is the initialization function.

According to (2), the worst individual in each generation
has only two choices: to be replaced or to be reinitialized.
Therefore, in most cases, the algorithm tends to search toward the
current optimal solution via replacement but still explores new
search directions via reinitialization. Thus, LSGA can balance
exploration and exploitation.

F. Overall LSGA Method

Integrating the above techniques using GA, the developed
LSGA is outlined in Algorithm 4. In detail, the individuals are
generated through initialization in line 1. Then, the population is
optimized by evolutionary operations in lines 4-6. Subsequently,
in lines 7–8, local search operations are applied to speed up the
convergence of the algorithm. Then, the fitness of individuals is
evaluated in line 9 and the elite population learning strategy is
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TABLE I
PARAMETERS IN LSGA

Algorithm 4: Pseudocode of LSGA.
Input: maximum number of generations FESmax,

population.
1: Initialize population;
2: Evaluate population;
3: While (count≤ FESmax) do:
4: Tournament selection;
5: Crossover;
6: Mutation;
7: Column local search;
8: Sub-block local search;
9: Evaluate population;

10: Elite population learning;
11: Reserve the best individual as gbest;
12: If fx(gbest) = = 0:
13: Break;
14: End If
15: End While
16: Obtain the best solution gbest and its fitness fx(gbest);

Output: fx(gbest) and gbest

executed in line 10. The algorithm iteratively repeats the above
operations until the optimal solution is found or the maximal
number of generations is reached.

IV. EXPERIMENTAL STUDIES

A. Comparisons With State-of-the-Art Methods

To illustrate the performance of LSGA, we compare it with
state-of-the-art algorithms, including the node-based coinci-
dence algorithm named NB-COIN [13], the preserve building
blocks GA named GA-I [46], and the GA with local optima
handling named GA-II [18]. To make a fair comparison, the pop-
ulation size is set to 150, while all algorithms run 1 × 104 gen-
erations. The parameter settings of LSGA are given in Table I.

In the experiments, six classic Sudoku puzzles, which are also
solved by the compared algorithms NB-COIN, GA-I, and GA-II,
are selected. These Sudoku puzzles cover three difficulty levels
(i.e., easy, medium, and hard), as shown in Fig. 8. Each algorithm
runs 100 times on each puzzle, where Succ_Count is the number
of runs among the 100 runs that can find the optimal solutions
within 1 × 104 generations, and Avg_Gen is the average number
of generations required to find the optimal solution. Note that to
ensure the fairness of the comparison, the experimental results of

the compared algorithms are obtained directly from their original
papers. Table II gives the experimental results.

From Table II, we can see that in these six Sudoku puzzles,
LSGA, NB-COIN, and GA-II all obtain the final results in all
100 runs, while GA-I in Hard 106 only finds the solution in 96
runs. Thus, LSGA, NB-COIN, and GA-II are better than GA-I.
Subsequently, compared with NB-COIN, the performance of
LSGA is worse than NB-COIN when solving easy-level puzzles.
Furthermore, as NB-COIN depends on probability distributions
to generate solutions for Sudoku, NB-COIN is less influenced by
local optimal solutions than other GAs. Specifically, both LSGA
and the other comparison algorithms solve Hard 106 with more
generations than Hard 77, but the performance of NB-COIN on
the two puzzles is not very different. By analyzing the solution
process, we found that there is a very competitive local optimal
solution in the Hard 106. This local optimal solution has only
two columns that do not conform to the rules of Sudoku, but its
structure is different from the best solution. As a result, the GAs
can easily fall into this local optimum. In general, comparing the
results of solving medium-level, and hard-level Sudoku puzzles,
the average number of generations of LSGA is less than GA-I,
GA-II, and NB-COIN. Therefore, the performance of LSGA in
solving Sudoku puzzles is very competitive.

Next, we conduct an experiment on three so-called super diffi-
cult Sudoku puzzles named super difficult-1 (SD1), AI-escargot
(SD2), and super difficult-2 (SD3) selected from [14]. These are
shown in Fig. 9. Among these three puzzles, the AI Escargot
is one of the most difficult Sudoku puzzles in the world [46].
Table III gives the comparison result of LSGA and some other
algorithms that have successfully solved these super difficult
puzzles: GA-III [14], GPU-GA [47], and GA-I [46]. Each
algorithm runs 100 times on each puzzle, where Succ_Count
is the solution success rate among the 100 runs within 1 × 104

generations, and Avg_Gen is the average number of generations
required to find the optimal solution.

From Table III, we see that LSGA and GPU-GA can solve all
puzzles with 100% success rate, while GA-I and GA-III cannot.
Moreover, both LSGA and GPU-GA require fewer number of
generations than the other algorithms in each puzzle, and LSGA
requires the fewest. Furthermore, we evaluate the difficulty of
SD1, SD2, and SD3 with the help of the SE and get scores of 7.2,
10.5, and 2.8, respectively, which means, for the Sudoku solving
methods that have been recorded in SE (such as WXYZ-Wing,
Swampfish, ALS-Wing, etc.), SD2 is very difficult to solve,
but SD3 is much simpler. However, the experimental results
in Table III are different. Compared with SD1 and SD2, LSGA
uses much more generations to solve the SD3, this situation
not only occurs in LSGA, but also in other compared GAs in
Table III. Therefore, we consider that if some known methods
for solving Sudoku can be introduced into GA, the efficiency of
solving difficult Sudoku puzzles could be greatly improved.

B. Statistical Performance on Open Sudoku Puzzles

To illustrate the statistical performance of LSGA on more
Sudoku puzzles, we conduct experiments based on a large
number of Sudoku puzzles selected from the open website
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Fig. 8. Six Sudoku puzzles and their solutions. (a) Initial Sudoku puzzle. (b) Solution to puzzle. (c) Initial Sudoku puzzle. (d) Solution to puzzle. (e) Initial Sudoku
puzzle. (f) Solution to puzzle. (g) Initial Sudoku puzzle. (h) Solution to puzzle. (i) Initial Sudoku puzzle. (j) Solution to puzzle. (k) Initial Sudoku puzzle. (l) Solution
to puzzle.

TABLE II
RESULTS OF PROPOSED LSGA AND OTHER METHODS FOR SOLVING SUDOKU ON SIX DIFFERENT SUDOKU PUZZLES

TABLE III
RESULTS OF PROPOSED LSGA AND OTHER METHODS FOR SOLVING SUDOKU ON THREE SUPER DIFFICULT SUDOKU PUZZLES
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Fig. 9. Three super difficult Sudoku puzzles and their solutions. (a) Initial
Sudoku puzzle. (b) Solution to puzzle. (c) Initial Sudoku puzzle. (d) Solution to
puzzle. (e) Initial Sudoku puzzle. (f) Solution to puzzle.

www.websudoku.com. We select Sudoku puzzles from four
difficulty levels: easy; medium; hard; and evil. In each difficulty
level, 30 puzzles are randomly selected. Therefore, totally 120
puzzles are adopted for testing. The details of all the 120 puzzles
are provided in the Supplemental_Material. The configurations
of LSGA are the same as those in Table I. LSGA runs 10 times
on each puzzle and the average performance of the 10 runs is
calculated and given as Avg_Gen in Table S.I in the Supplemen-
tal_Material. Then, the mean performance of the LSGA on all the
30 puzzles (i.e., the 30 Avg_Gen values) in each difficulty level is
given as Mean_Gen in the last row of Table S.I. Moreover, all the
Mean_Gen values of the four difficulty levels and other statistical
values are given in Table IV. For example, in the second row
of Table IV for all the 30 puzzles in easy level, the average
number of generations needed by LSGA to obtain the optimal
solution to each puzzle among the 10 runs is calculated, and then
the maximal average number and the minimal average number
among the 30 puzzles are given as Max_Gen and Min_Gen.
Moreover, the mean of the 30 average numbers is given as
Mean_Gen and the Mean_Succ_Rate is the success rate of LSGA
in solving all the 30 puzzles in all the 10 runs.

TABLE IV
RESULTS OF PROPOSED LSGA FOR SOLVING SUDOKU PUZZLES AT

WWW.WEBSUDOKU.COM

Fig. 10. Distributions of the average generations needed by LSGA to solve
Sudoku puzzles with different difficulty levels.

From Table IV, we see that LSGA efficiently solves all puz-
zles. As the difficulty level increases, the number of generations
needed by LSGA to obtain the optimal solution also increases
exponentially, especially for the puzzles of the evil level. There-
fore, we conduct a further investigation on the factors affecting
the performance of the LSGA in the following part.

C. Further Investigation and Discussion

To further study the factors affecting the performance of
LSGA, we decide to rate and generate Sudoku puzzles by using
SE. The score of a Sudoku puzzle in SE is determined by the
complexity of the skills required to solve it. The more complex
the skills required to solve a Sudoku puzzle, the higher SE
score it will get, which can determine the difficulty level of
the Sudoku puzzle accordingly. This type of evaluation is very
effective for players and is widely used [4]. Therefore, we use
SE to generate Sudoku puzzles with seven difficulty levels, each
difficulty level containing 10 different Sudoku puzzles. These
seven levels are called easy, medium, hard, superior, fiendish,
super, and advance, and their SE score intervals are [1.0, 1.2],
[1.3, 1.5], [1.6, 2.6], [2.7, 3.9], [4.0, 5.9], [6.0, 6.9], and [7.0,
8.0], respectively. The details of all the 70 puzzles are given in
the Supplemental_Material. The LSGA is adopted to solve these
Sudoku puzzles. Similar to the experiments in Section IV-B, each
puzzle is solved ten times and the average number of generations
needed by LSGA to obtain the optimal solution of the ten runs
is calculated. Then, we can obtain ten average results on each
difficulty level (i.e., there are ten puzzles and each puzzle has
an average result). The details of these ten average results are
given in Table V and their distribution is plotted as Box in
Fig. 10. There are seven columns in Table V and seven Boxes in

www.websudoku.com
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TABLE V
AVERAGE GENERATIONS NEEDED BY LSGA TO SOLVE EACH SUDOKU

PUZZLE WITH DIFFERENT DIFFICULTY LEVELS

Fig. 11. Mean generations needed by LSGA to solve Sudoku puzzles with
different given numbers.

Fig. 10 for seven difficulty levels. Moreover, we also look into the
number of given numbers in all the 70 puzzles. Fig. 11 shows
the average number of generations needed by LSGA to solve
Sudoku puzzles with different given numbers. For example, the
first bar means that, there may be several puzzles among the
70 puzzles that are with 23 given numbers, then the average
number of generations needed by LSGA to solve each of these
several puzzles among the 10 runs is calculated, and at last the
mean of these several average values is calculated, which is 177.

As shown in Fig. 10 and Table V, we can conclude that the
required generations for LSGA to solve Sudoku are not signifi-
cantly affected by difficulty levels. For example, the generations
required to solve most Sudoku puzzles at the hard and superior
levels are less than that at the Medium level. That is, LSGA
inherits the problem-independent characteristics of GA and is
more general for Sudoku puzzles. Moreover, as shown in Fig. 11,
we can conclude that there is a correlation between the difficulty
of solving Sudoku puzzles and the number of given numbers.
More given numbers can give LSGA more help in finding a
solution, because the given numbers can effectively reduce the
search space and eliminate interference solutions. However, the
relationship between the given numbers and difficulty is not
strictly linear or exponential. That is, there exists the situation
that some Sudoku puzzles with more given numbers but are

more difficult to be solved because these given numbers do not
provide enough clues to determine the non-given numbers. For
example, in Section IV-A, Sudoku puzzle hard 106 (with 24
given numbers) is more difficult than Sudoku puzzle SD2 (with
23 given numbers), because some Sudoku puzzles like Hard
106 have many local optimal solutions and their given numbers
cannot effectively help LSGA to escape from the local optimal
solutions.

V. CONCLUSION

In this article, we propose an improved GA with a local search
(named LSGA) for Sudoku. In particular, we adopt a matrix-
based encoding GA and devise mutation and crossover operators
for this coding scheme. Then, to improve the convergence speed
of LSGA, a local search method incorporating column and sub-
block search is proposed. Finally, by comparing with GA-based
algorithms in different dimensions and levels of Sudoku puzzles,
LSGA successfully solves all of these puzzles and shows good
performance.

LSGA can also be applied to solve other types of Sudoku
puzzles such as Mini Sudoku and Ring Sudoku. However, for
Sudoku variants, such as Killer Sudoku and Kakuro Sudoku
[48], the initialization and local search strategies need to be
redesigned because the local search in LSGA is designed for
regularly shaped sub-blocks. Furthermore, for puzzles without
sub-blocks, such as those of Futoshiki and Takuzu [49], the
column local search strategy is still applicable. Therefore, LSGA
deserves further research to better solve other Sudoku puzzles.
Although our algorithm is successful in solving many Sudoku
puzzles, there is still room for improvement. For example, with
the help of manual Sudoku solving methods, such as direct hid-
den pair and fish methods [50], humans can easily find numbers
in the irrational position and adjust them, whereas LSGA needs
several, tens, or even hundreds of generations to achieve the same
results. Therefore, in the future, we can improve the performance
of LSGA by combining it with other Sudoku-solving methods.

REFERENCES

[1] J.-P. Delahaye, “The science behind SUDOKU,” Sci. Amer., vol. 294, no. 6,
pp. 80–87, Jun. 2006.

[2] X. Qi, G. Li, N. Wang, X. Wang, and L. Wen, “Method study on solving
sudoku problem,” in Proc. 3rd Int. Conf. Data Sci. Bus. Analytics, 2019,
pp. 269–271.

[3] T. Yato and T. Seta, “Complexity and completeness of finding another solu-
tion and its application to puzzles,” IEICE Trans. Fundamentals Electron.,
Commun. Comput. Sci., vol. E86-A, no. 5, pp. 1052–1060, May 2003.

[4] M. Henz and H.-M. Truong, “SudokuSat—A tool for analyzing difficult
sudoku puzzles,” in Tools and Applications with Artificial Intelligence,
vol. 166, New York, NY, USA: Springer, 2009, pp. 25–35.

[5] S. Jana, A. K. Maji, and R. K. Pal, “A novel SPN-based video stegano-
graphic scheme using Sudoku puzzle for secured data hiding,” Innov. Syst.
Softw. Eng., vol. 15, no. 1, pp. 65–73, Jan. 2019.

[6] N. R. Munson, T. D. Bufler, and R. M. Narayanan, “Sudoku based
phase-coded radar waveforms,” in Proc. Radar Sensor Technol., Apr. 2021,
vol. 11742, pp. 81–93.

[7] S. Jose and R. Abraham, “Influence of Chess and Sudoku on cognitive
abilities of secondary school students,” Issues Ideas Educ., vol. 7, no. 1,
pp. 23–30, Mar. 2019.

[8] X. Li, Y. Luo, and W. Bian, “Retracing extended sudoku matrix for high-
capacity image steganography,” Multimedia Tools Appl., vol. 80, no. 12,
pp. 18627–18651, Feb. 2021.



WANG et al.: NOVEL EVOLUTIONARY ALGORITHM WITH COLUMN AND SUB-BLOCK LOCAL SEARCH FOR SUDOKU PUZZLES 171

[9] M. Horoufiany and R. Ghandehari, “Optimization of the Sudoku based
reconfiguration technique for PV arrays power enhancement under mutual
shading conditions,” Sol. Energy, vol. 159, pp. 1037–1046, Jan. 2018.

[10] M. Harrysson and H. Laestander, “Solving sudoku efficiently with dancing
links,” Exp. Math., vol. 23, pp. 190–217, Dec. 2014.

[11] J. Gunther and T. Moon, “Entropy minimization for solving Sudoku,” IEEE
Trans. Signal Process., vol. 60, no. 1, pp. 508–513, Jan. 2012.

[12] L. Clementis, “Advantage of parallel simulated annealing optimization
by solving sudoku puzzle,” in Proc. Emergent Trends Robot. Intell. Syst.,
2015, pp. 207–213.

[13] K. Waiyapara, W. Wattanapornprom, and P. Chongstitvatana, “Solving
sudoku puzzles with node based coincidence algorithm,” in Proc. 10th Int.
Joint Conf. Comput. Sci. Softw. Eng., 2013, pp. 11–16.

[14] M. Becker and S. Balci, “Improving an evolutionary approach to Sudoku
puzzles by intermediate optimization of the population,” in Proc. Int. Conf.
Inf. Sci. Appl., 019, pp. 369–375.

[15] T. Mantere and J. Koljonen, “Solving and rating sudoku puzzles with
genetic algorithms,” in Proc. 12th Finnish Artif. Intell. Conf. Step, 2006,
pp. 86–92.

[16] H. Lloyd and M. Amos, “Solving Sudoku with ant colony optimization,”
IEEE Trans. Games, vol. 12, no. 3, pp. 302–311, Sep. 2020.

[17] D. E. Knuth, “Dancing links,” in Millennial Perspectives in Computer
Science, Boston, MA, USA: Palgrave Macmillan, 2000, pp. 187–214.

[18] F. Gerges, G. Zouein, and D. Azar, “Genetic algorithms with local optima
handling to solve sudoku puzzles,” in Proc. Int. Conf. Comput. Artif. Intell.,
Mar. 2018, pp. 19–22.

[19] A. Z. Sevkli and K. A. Hamza, “General variable neighborhood search
for solving sudoku puzzles: Unfiltered and filtered models,” Soft Comput.,
vol. 23, no. 15, pp. 6585–6601, Aug. 2019.

[20] M. A. Al-Betar, M. A. Awadallah, A. L. Bolaji, and B. O. Alijla, “β-hill
climbing algorithm for Sudoku game,” in Proc. Palestinian Int. Conf. Inf.
Commun. Technol., 2017, pp. 84–88.

[21] J. Horn, “Solving a large sudoku by co-evolving numerals,” in Proc. Genet.
Evol. Comput. Conf. Companion, 2017, pp. 29–30.

[22] J.-Y. Li, Z.-H. Zhan, H. Wang, and J. Zhang, “Data-driven evolutionary
algorithm with perturbation-based ensemble surrogates,” IEEE Trans.
Cybern., vol. 51, no. 8, pp. 3925–3937, Aug. 2021.

[23] Z. H. Zhan et al., “Matrix-based evolutionary computation,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 6, no. 2, pp. 315–328, Apr. 2022.

[24] J.-Y. Li, Z.-H. Zhan, C. Wang, H. Jin, and J. Zhang, “Boosting data-driven
evolutionary algorithm with localized data generation,” IEEE Trans. Evol.
Computation, vol. 24, no. 5, pp. 923–937, Oct. 2020.

[25] X. Zhang, Z.-H. Zhan, W. Fang, P. Qian, and J. Zhang, “Multipopulation
ant colony system with knowledge-based local searches for multiobjective
supply chain configuration,” IEEE Trans. Evol. Comput., vol. 26, no. 3,
pp. 512–526, Jun. 2022.

[26] L. Shi, Z. H. Zhan, D. Liang, and J. Zhang, “Memory-based ant colony
system approach for multi-source data associated dynamic electric vehicle
dispatch optimization,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10,
pp. 17491–17505, Oct. 2022, doi: 10.1109/TITS.2022.3150471.

[27] J. Y. Li et al., “A multipopulation multiobjective ant colony system
considering travel and prevention costs for vehicle routing in COVID-
19-like epidemics,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12,
pp. 25062–25076, Dec. 2022, doi: 10.1109/TITS.2022.3180760.

[28] J. R. Jian, Z. G. Chen, Z. H. Zhan, and J. Zhang, “Region encoding
helps evolutionary computation evolve faster: A new solution encoding
scheme in particle swarm for large-scale optimization,” IEEE Trans. Evol.
Comput., vol. 25, no. 4, pp. 779–793, Aug. 2021.

[29] J. Y. Li, Z. H. Zhan, R. D. Liu, C. Wang, S. Kwong, and J. Zhang, “Gen-
eration level parallelism for evolutionary computation: A pipeline-based
parallel particle swarm optimization,” IEEE Trans. Cybern., vol. 51, no. 10,
pp. 4848–4859, Oct. 2021.

[30] X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,
“Coevolutionary particle swarm optimization with bottleneck objective
learning strategy for many-objective optimization,” IEEE Trans. Evol.
Comput., vol. 23, no. 4, pp. 587–602, Aug. 2019.

[31] Z. J. Wang et al., “Dynamic group learning distributed particle swarm
optimization for large-scale optimization and its application in cloud
workflow scheduling,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2715–2729,
Jun. 2020.

[32] X. Xia et al., “Triple archives particle swarm optimization,” IEEE Trans.
Cybern., vol. 50, no. 12, pp. 4862–4875, Dec. 2020.

[33] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “Dual differential grouping: A
more general decomposition method for large-scale optimization,” IEEE
Trans. Cybern., to be published, doi: 10.1109/TCYB.2022.3158391.

[34] J. Y. Li, K. J. Du, Z. H. Zhan, H. Wang, and J. Zhang, “Distributed
differential evolution with adaptive resource allocation,” IEEE Trans.
Cybern., to be published, doi: 10.1109/TCYB.2022.3153964.

[35] Z. H. Zhan, Z. J. Wang, H. Jin, and J. Zhang, “Adaptive distributed dif-
ferential evolution,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4633–4647,
Nov. 2020.

[36] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “A meta-knowledge transfer-
based differential evolution for multitask optimization,” IEEE Trans. Evol.
Comput., vol. 26, no. 4, pp. 719–734, Aug. 2022.

[37] J. Y. Li, Z. H. Zhan, J. Xu, S. Kwong, and J. Zhang, “Surrogate-
assisted hybrid-model estimation of distribution algorithm for mixed-
variable hyperparameters optimization in convolutional neural net-
works,” IEEE Trans. Neural Netw. Learn. Syst., to be published,
doi: 10.1109/TNNLS.2021.3106399.

[38] Z. H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolutionary
computation for complex continuous optimization,” Artif. Intell. Rev.,
vol. 55, no. 1, pp. 59–110, Jan. 2022.

[39] Z. H. Zhan, J. Y. Li, and J. Zhang, “Evolutionary deep learning: A survey,”
Neurocomputing, vol. 483, pp. 42–58, Apr. 2022.

[40] Z. G. Chen, Z. H. Zhan, S. Kwong, and J. Zhang, “Evolutionary computa-
tion for intelligent transportation in smart cities: A survey,” IEEE Comput.
Intell. Mag., vol. 17, no. 2, pp. 83–102, May 2022.

[41] J. Y. Li, Z. H. Zhan, and J. Zhang, “Evolutionary computation for expensive
optimization: A survey,” Mach. Intell. Res., vol. 19, no. 1, pp. 3–23,
Jan. 2022.

[42] N. Pathak and R. Kumar, “Improved wisdom of crowds heuristic for
solving sudoku puzzles,” in Proc. Soft Comput. Signal Process., 2019,
pp. 369–377.

[43] X. Q. Deng and Y. D. Li, “A novel hybrid genetic algorithm for solving
sudoku puzzles,” Optim. Lett., vol. 7, no. 2, pp. 241–257, Oct. 2013.

[44] K. Rodríguez-Vázquez, “GA and entropy objective function for solving
sudoku puzzle,” in Proc. Genet. Evol. Comput. Conf. Companion, 2018,
pp. 67–68.

[45] N. Musliu and F. Winter, “A hybrid approach for the Sudoku problem:
Using constraint programming in iterated local search,” IEEE Intell. Syst.,
vol. 32, no. 2, pp. 52–62, Mar./Apr. 2017.

[46] Y. Sato and H. Inoue, “Solving Sudoku with genetic operations that
preserve building blocks,” in Proc. IEEE Conf. Comput. Intell. Games,
2010, pp. 23–29.

[47] Y. Sato, N. Hasegawa, and M. Sato, “GPU acceleration for Sudoku solution
with genetic operations,” in Proc. IEEE Congr. Evol. Comput., 2011,
pp. 296–303.

[48] N. Pillay, “Finding solutions to Sudoku puzzles using human intuitive
heuristics,” South Afr. Comput. J., vol. 49, no. 1, pp. 25–34, Sep. 2012.

[49] A. Groza, “Japanese puzzles,” in Modelling Puzzles in First Order Logic,
Berlin, Germany: Springer, 2021, pp. 221–253.

[50] X. Peng, Y. Huang, and F. Li, “A steganography scheme in a low-bit rate
speech codec based on 3D-sudoku matrix,” in Proc. IEEE 8th Int. Conf.
Commun. Softw. Netw., 2016, pp. 13–18.

Chuan Wang received the B.S. degree in computer
science and M.S. degree in education from Henan
Normal University, Xinxiang, China, in 1999 and
2009, respectively.

He is currently an Associate Professor with the
College of Software, Henan Normal University.
His current research interests computational intelli-
gence and its applications on intelligent information
processing and Big Data.

Bing Sun (Student Member, IEEE) received the B.S.
degree in computer science and technology from
Henan University of Science and Technology, Henan,
China, in 2020. He is currently working toward the
M.S. degree in electronic and information engineer-
ing with Henan Normal University, Xinxiang, China.

His current research interests mainly include evo-
lutionary computation, swarm intelligence, and their
applications in real-world problems.

https://dx.doi.org/10.1109/TITS.2022.3150471
https://dx.doi.org/10.1109/TITS.2022.3180760
https://dx.doi.org/10.1109/TCYB.2022.3158391
https://dx.doi.org/10.1109/TCYB.2022.3153964
https://dx.doi.org/10.1109/TNNLS.2021.3106399


172 IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 1, MARCH 2024

Ke-Jing Du received the B.S. degree from Sun Yat-
Sen University, Guangzhou, China, in 2012, and the
M.S. degree from City University of Hong Kong,
Hong Kong, in 2014. She is currently working toward
the Ph.D. degree with Victoria University, Melbourne,
VIC, Australia.

Her current research interests include evolutionary
computation (EC) and supply chain management,
especially the distributed EC and application of EC
in supply chain, feature selection, and games.

Jian-Yu Li (Member, IEEE) received the Bachelor’s
and Ph. D. degrees in computer science and technol-
ogy from the South China University of Technology,
Guangzhou, China, in 2018 and 2022, respectively.

His research interests mainly include computa-
tional intelligence, data-driven optimization, machine
learning including deep learning, and their applica-
tions in real-world problems, and in environments of
distributed computing and Big Data.

Dr. Li has been the Reviewer for IEEE TRANS-
ACTIONS ON EVOLUTIONARY COMPUTATION and the

Neurocomputing journal, and the program committee member and reviewer of
some international conferences.

Zhi-Hui Zhan (Senior Member, IEEE) received the
Bachelor’s and Ph. D. degrees in computer sci-
ence from the Sun Yat-Sen University, Guangzhou
China, in 2007 and 2013, respectively.

He is currently the Changjiang Scholar Young
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou, China. His current research interests in-
clude evolutionary computation, swarm intelligence,
and their applications in real-world problems and
environments of cloud computing and Big Data.

Dr. Zhan was a recipient of IEEE Computational Intelligence Society Out-
standing Early Career Award in 2021, the Outstanding Youth Science Foundation
from National Natural Science Foundations of China in 2018, and the Wu
Wen-Jun Artificial Intelligence Excellent Youth from the Chinese Association
for Artificial Intelligence in 2017. His doctoral dissertation was awarded the
IEEE CIS Outstanding Ph.D. Dissertation and the China Computer Federation
Outstanding Ph. D. Dissertation. He is one of the World’s Top 2% Scientists for
both Career-Long Impact and Year Impact in Artificial Intelligence and one of
the Highly Cited Chinese Researchers in Computer Science. He is currently the
Chair of Membership Development Committee in IEEE Guangzhou Section and
the Vice-Chair of IEEE CIS Guangzhou Chapter. He is currently an Associate
Editor for IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, the Neuro-
computing, the Memetic Computing, and the Machine Intelligence Research.

Sang-Woon Jeon (Member, IEEE) received the B.S.
and M.S. degrees from Yonsei University, Seoul,
South Korea, in 2003 and 2006, respectively, and the
Ph.D. degree from the Korea Advanced Institute of
Science and Technology, Daejeon, South Korea, in
2011, all in electrical engineering.

He has been an Associate Professor with the De-
partment of Military Information Engineering (under-
graduate school) and the Department of Electronics
and Communication Engineering (graduate school),
Hanyang University, Ansan, South Korea, since 2017.

From 2011 to 2013, he was a Postdoctoral Associate with the School of Computer
and Communication Sciences, Ecole Polytechnique Federale de Lausanne, Lau-
sanne, Switzerland. From 2013 to 2017, he was an Assistant Professor with the
Department of Information and Communication Engineering, Andong National
University, Andong, Korea. His research interests include network information
theory, wireless communications, sensor networks, and their applications to the
Internet of Things and Big Data.

Dr. Jeon was a recipient of the Haedong Young Scholar Award in 2017, which
was sponsored by the Haedong Foundation and given by the Korea Institute of
Communications and Information Science (KICS), the Best Paper Award of the
KICS journals in 2016, the Best Paper Award of IEEE International Conference
on Communications in 2015, the Best Thesis Award from the Department of
Electrical Engineering, KAIST, in 2012, the Best Paper Award of the KICS
Summer Conference in 2010, and the Bronze Prize of the Samsung Humantech
Paper Awards in 2009.

Hua Wang (Senior Member, IEEE) received the
Ph.D. degree from the University of Southern
Queensland, Toowoomba, QLD, Australia, in 2004.

He is currently a Full-Time Professor with Vic-
toria University, Footscray, VIC, Australia. He has
expertise in electronic commerce, business process
modeling, and enterprise architecture. As a Chief
Investigator, three Australian Research Council Dis-
covery grants have been awarded since 2006, and 200
peer-reviewed scholar papers have been published.

Jun Zhang (Fellow, IEEE) received the Ph.D. degree
from the City University of Hong Kong, Hong Kong,
in 2002.

He is currently a Korea Brain Pool Fellow Pro-
fessor with Hanyang University, South Korea. He has
authored or coauthored more than 150 IEEE Transac-
tions papers in his research areas. His current research
interests include computational intelligence, cloud
computing, operations research, and power electronic
circuits.

Dr. Zhang was a recipient of the Changjiang Chair
Professor from the Ministry of Education, China, in 2013, The National Science
Fund for Distinguished Young Scholars of China in 2011 and the First-Grade
Award in Natural Science Research from the Ministry of Education, China,
in 2009. He is currently an Associate Editor for IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION and the IEEE TRANSACTIONS ON CYBERNETICS.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


