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Abstract—This letter presents a neural architecture search to optimize tactile elaboration systems taking into account
the computational cost of the whole pipeline consisting of data preprocessing and a convolutional neural network (CNN)
model to extract information. The strategy is exploited to train standard 1-D CNNs and binary CNNs on a three-class
touch modality classification dataset. The experimental results show that systems based on standard CNNs outperform
state-of-the-art techniques in terms of accuracy and computational cost, while the ones based on binary CNNs further
reduce the computational cost with a small accuracy drop.

Index Terms—Sensor applications, convolutional neural networks (CNNs), neural architecture search (NAS), smart sensors, tactile
systems, touch modality classification.

I. INTRODUCTION

Modern prostheses equip tactile sensors to convey the sense of
touch to humans. Effective and efficient wearable elaboration devices
are required to collect and process the data from such systems. This
letter addresses a touch modality classification problem [1] adopt-
ing an evolutionary neural architecture search (ENAS) [2] to design
the whole elaboration pipeline consisting of data preprocessing and
classification stages. The ENAS evaluates a custom loss function
suitable for resource-constrained devices that, differently from stan-
dard approaches, takes into account the computational cost of both
stages and the accuracy of the classifier because preprocessing could
primarily affect the computational cost of the system when designing
tiny classifiers. As a result of the ENAS evaluating the loss function
proposed by Gianoglio et al. [3], we outperform the state-of-the-art
(SoA) accuracy and computational cost by adopting 1-D convolutional
neural networks (CNNs) as classifiers. As a major result, the neural
architecture search (NAS) enables using binary-weight CNNs leading
to half of the computational cost with a slight deterioration of the
classification accuracy.

Touch modality classification is a well-known problem [4], [5], [6],
[7], [8]. Gastaldo et al. [1] performed three touch modalities on a
piezoelectric sensing patch, and they applied tensor support vector
machine (SVM) and tensor regularized least square algorithms to
classify the data. In subsequent years, researchers proposed solutions
to increase classification accuracy and reduce the computational cost:
k-nearest neighbor (k-NN) and SVM to address a two-class classifica-
tion [9], [10], applying approximate computing techniques to deploy
the algorithms on a resource-constrained device; transfer learning
technique, transforming the data into RGB images [11]; recurrent
neural networks to improve the accuracy and reduce the computational
cost [12]; shallow CNNs that achieved a good trade-off between
accuracy and computational cost [13], [14]; and a kernel SVM based
on a reduced space that attained 85.4% accuracy at the expense of a
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huge computational cost [15]. All these works lack exhaustive search
in the hypothesis space of the classifier architectures and/or on the
preprocessing techniques applied to the data that affect the accuracy
and the computational cost of the classification. Moreover, only a few
tackled the hardware implementation on resource-constrained devices
targeting shallow models.

The NAS sets the SoA for designing tiny networks [16], [17] thanks
to the capability of encoding hardware constraints directly in the
procedure [18], [19]. In this letter, we merge the idea of taking into
account the computational cost of the whole elaboration pipeline [3]
with ENAS by evaluating a custom loss function to optimize the
architecture. To the best of the authors’ knowledge, no previous works
based on NAS took into account the constraints on data preprocessing
besides the deep neural network (DNN) architecture. As a major result,
the proposed procedure offers an automatic strategy to optimize a data
elaboration system (ES) balancing the accuracy of the CNN classifiers
and the computational cost of the whole pipeline.

The approach is not tied to specific implementation details or
low-level optimization techniques. The deployment of the system on
a device is influenced by the characteristics of the target hardware
and the elaboration pipeline. Among the proposed elaboration steps,
CNNs have the largest computational requirement. However, many
optimized implementations for both specialized and general-purpose
computing units support the atomic operations involved in the forward
phase [19], [20], [21]. These optimizations can be applied to almost
all CNN architectures yielded by our proposed procedure. Therefore,
one can choose a target platform, retrieve hardware constraints, obtain
the most effective combination of processing and CNN by adopting
our strategy, and then deploy the architecture.

Experiments with a real-world dataset with three touch modalities
sensed by an e-skin confirmed the suitability of the proposed procedure
that based on the settings can generate very accurate systems, beating
previous SoA results of more than 3% [13], [15], or very efficient
systems based on a binary CNN that significantly reduce the compu-
tational cost.

To summarize: 1) We propose an ENAS for the exploration of
the hyperparameter space of CNNs and the input data preprocessing
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techniques, addressing the touch modalities’ classification problem,
and 2) the results show that the ENAS provides a valuable strategy to
optimize the hyperparameters of the architectures and the elaboration
techniques applied to the input data, even setting a hard constraint on
the computational cost.

II. METHODOLOGY

A recent work [3] proposed to optimize the elaboration pipeline
using a loss function composed of two terms measuring generalization
performance and computing the cost of the whole pipeline, obtaining
SoA results for touch modality classification. The optimization prob-
lem can be formalized as

i∗ = arg min
i

L̂m( f ∗
n,i ) + θRH ( f ∗

n,i ) (1)

where

f ∗
n,i = arg min

f ∈Fi

L̂n( f ) + λR( f ). (2)

where L̂m is the empirical risk computed on the validation set Dm, θ is a
hyperparameter that weights the computational cost of the processing
pipeline RH , Fi represents the space of the algorithms described
by different values of hyperparameters, L̂n( f ) is the empirical risk
computed on the training set Dn, and λ weights the regularization term
R (e.g., L2 norm) that prevents overfitting.

In this letter, an ENAS [2] is enhanced pursuing the same result
of [3]. The proposed approach optimizes the hyperparameters of a
CNN and the data processing techniques simultaneously, taking into
consideration the computational cost of the whole elaboration pipeline
and the generalization performance of the architecture. The optimiza-
tion procedure is supported by the ENAS, which, iteratively, mutates
parent models according to a search space generating an offspring.
The offspring are evaluated and ranked accordingly to a loss function.
The search is adjusted on the ranking to obtain a new pool of parents
for the next iteration. The optimization ends when a stop criterion
is met. The following sections detail our enhanced ENAS for touch
modality classification, describing the search space, search algorithm,
and evaluation criteria.

A. Search Space

In this proposal, the ENAS enables the tuning of hyperparameters of
DNNs and processing techniques while considering the computational
cost of the system. This allows for achieving a suitable balance between
classification accuracy and computational cost. We employed standard
CNNs and two variants based on the binarization of weights and the ac-
tivation functions to classify the tactile data. In many applications [21],
binary CNNs achieved accuracies similar to standard ones reducing the
computational cost.

In detail, the three kinds of CNN adopted in the experiments are a
standard 1-D CNN (1-D), a 1-D binary-weight CNN (BW) where the
weights are forced to be −1 or +1, and a 1-D full-binary CNN (FB)
where both weights and the output of activations of the convolutional
layers are binarized as −1 or +1. The 1-D consists of blocks connected
sequentially made of convolution, dropout, and average pooling (AP),
resulting in a single-branch network. The last layer provides the clas-
sification label and consists of a convolutional layer with a number of
filters equal to the number of classes and kernel size equal to 1, a global
AP layer to reduce the size of each filter to one, and the Softmax layer.
The BW and FB contain the same functional blocks of 1-D, with a batch
normalization layer after each AP layer. As hyperparameters of the

CNN architectures that form the search space SM of the models, we
chose the number of filters and kernel sizes of the convolutional layers.

As described in [3], a tactile sensing ES consists of the sensing array,
a preprocessing stage, and the inference stage. A datumX ∈ R

D1×D2×N

is collected by the sensing array, where D1 × D2 is the geometry of
the sensing patch (D2 = 1 if the sensors can be represented as an
array) and N is the number of samples collected from each sensor. The
preprocessing stage filters the data, reducing the noise and the number
of samples. As a result, X −→ X̃ ∈ R

D1×D2×Ñ , where Ñ ≤ N . The
resulting tensor X̃ feeds a CNN providing the classification label. The
data preprocessing affects both the accuracy and the computational
cost of the whole pipeline [3]. Thus, besides the hyperparameters of
the classifiers, the preprocessing techniques must be considered in the
search space of the ENAS. In this letter, besides not applying any
technique to the raw data, we adopted similar processing previously
used in [3] based on filtering: 1) a low-pass finite impulse response
filter with the hamming window; 2) a Gaussian window convolved
with the signals; and 3) a decimation technique to reduce the sampling
frequency. A moving average with 50% of overlapped samples was
also applied to reduce the number of data samples to three different
values. The search space of the preprocessing techniques will be named
SP in the following. It contains all the combinations of filtering and
no filtering with moving averages for 12 techniques.

B. Search Algorithm

Procedure 1 depicts the ENAS procedure. The ENAS initially gener-
ates a parent modelP from the search spaceSM.P is then trained with
data processed by the technique extracted from SP, solving (2) with
a fixed f = P. The ENAS computes the score by evaluating the loss
function solving (1) with fixed i and θ . Dn and Dm, in (1) and (2), corre-
spond to the training and validation sets extracted from the processed
data. At each step of the iterative procedure, the ENAS generates a child
C by applying two mutations to the convolutional layers of the parent
architecture blocks: 1) either adding one block to the network (only
if the maximum number of blocks is not achieved), either removing
one block from the network (only if the minimum number of blocks is
not attained), or no modification to the architecture; and 2) a random
mutation is always applied to a convolutional layer of a random block
accordingly to SM. As a result, the search on models adopts a schema
based on blocks of single-branch architectures. The weight sharing
technique [22] is also applied to enhance the accuracy performance
resulting also in a faster search. After the training, the ENAS computes
the score of C. The iterative procedure is repeated until a stop criterion
is satisfied: either ENAS reaches the maximum number of epochs or
the ENAS satisfies the early-stop criterion on the number of times none
of the children achieved a better score than the parent model.

C. Evaluation Criterion

Three constraints lead to the deployment of tactile sensing: inference
time (IT), memory occupation (MO), and energy consumption (EC).
On resource-constrained devices with limited parallelism, IT is propor-
tional to the floating point operations (FLOPs) number (simply FLOPs
from now on) that must be run from the CPU. The memory is divided
into two parts: flash memory hosting code and network parameters, and
RAM storing partial results as tensors. The bottleneck is usually the
RAM size, lower than the flash memory, since the tensors propagated
through the system easily become large. EC is strictly correlated with
the clock frequency, the total amount of operations, and the number
of operations that the processor can execute in one cycle. Since the
last performance highly depends on the targeted hardware and the
approach proposed in this letter is not designed for a specific device,
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Procedure 1: ENAS Procedure.
0. Input Search spaces SM and SP, User-defined parameter θ

[3]
1. Beginning Procedure

1) Generate a parent model P from SM
2) Train P with data processed by a technique picked from SP
3) save the score score_best computed by the loss function

2. Iterative Procedure
1: while stop criterion is not satisfied do
2: Apply a mutation to P based on SM generating a child C
3: Train C with data processed by a technique picked from

SP
4: Compute the score with the loss function [3]
5: If score > scorebest then P = C and save the

preprocessing technique as best else keep P and previous
technique as bests

6: end while
3. Output Return the best model and preprocessing technique

this letter proposes the evaluation of the loss function by measuring the
computational cost RH (1) as FLOPs or RAM MO during the ENAS.
In the first case, the ENAS computes FLOPs for both the preprocessing
and classification stages; in the second, the ENAS computes the largest
MO measured as the number of elements that have to be loaded in
the RAM or cache memory of the resource-constrained device during
the online inference. As a result, the largest MO corresponds to the
size of the biggest tensor processed by the ES because the operations
on the tensors are computed by the networks’ layers sequentially;
thus, the output of a layer is saved into the RAM to be processed
by the consequent layer. The FLOPs are computed according to the
convention presented in [3]. As an example, a multiply and cumulate
(MAC) operation between two floating point (FP) numbers requires
two FLOPs; one for multiplication and one for the summation with the
cumulative result. In the case of binary networks, a MAC operation
between an FP number and a binary weight requires only one FLOP
since, when the number is multiplied by a negative weight, it just
changes the sign; thus, only the summation matters. In the following,
LF and LM will refer to the FLOPs and memory loss functions,
respectively. During the evaluation of the two losses in the search
procedure, the measured FLOPs and MO are normalized between 0
and 1 by their maximum values that can be computed a priori.

III. RESULTS AND DISCUSSION

The dataset, available at https://github.com/cosmiclabunige/
Touch_modalities_dataset, consists of three actions (i.e., slide
a finger, roll a washer, and brush a paintbrush) on a 4 × 4
sensing patch. Each action counts 280 data with a duration of 10 s
sampled at 3 KSamples/s. Formally, D = {(X , y)i;Xi ∈ R

16×30000;
y ∈ {Slide, Brush, Roll}; i = 1, . . . , 840}. D can be processed during
the ENAS with 12 techniques, resulting from the combination
of filtering proposed in [3] and moving average that reduces the
number of samples to 50, 75, and 100. The pool of candidates network
hyperparameters is f ilters = [4, 8, 12, 16, 32, 64] and kernel_size =
[3, 4, 5, 6, 7, 8, 10, 12, 16]. During the procedure, data are split into
training (480 datasets, 160 per class), validation (120 datasets, 40 per
class) to evaluate the loss function, and testing (240 datasets, 80
per class) data to compute the generalization performance. We set
the minimum and maximum number of models’ blocks to 2 and 7,
respectively, the first parent model to four blocks, the dropout
percentage value to 0.2, the pooling size to 2, the stride for
convolutions to 1, and a learning_rate = 1e − 3. The best model

TABLE 1. Accuracy Results

P is fine-tuned for 100 epochs with an early-stop criterion with a
patience value of 8, user-defined parameter θ = 0, 1, 5, the maximum
number of ENAS epochs ste = 30, the maximum number of iterations
max_iter = 10 defining the early-stop criterion mentioned in
Section II-B, and the ENAS was run five times for each combination
of model-θ and the results averaged. In the following, we first present
the results of the accuracies attained by the ESs using the two loss
functions on each model, based on the θ values. Next, we compare
the accuracies, FLOPs, and memory usage of the ESs for the two loss
functions on each model, again based on the θ values.

Table 1 presents the accuracy of the ESs based on the three models
(1-D, BW, and FB), evaluated on the test set and averaged on the five
runs.

The first column lists ESs, and the others show the average accuracy
and the standard deviation for each ES evaluating the two loss func-
tions. The table highlights in bold the accuracies that outperform the
SoA results (85.4% in [15]). 1-Ds outperform the other ESs’ accura-
cies. Five out of six 1-Ds present an accuracy higher than SoA. For 1-Ds
and BWs, when adoptingLM , at the same value of θ , the accuracies are
higher with respect to LF . The BWs, with θ = 0, present an accuracy
drop lower than 3% with respect to the 1-Ds and a slight improvement
with respect to the SoA. When θ increases, the accuracy drop widens
up to ∼6%. At an equal value of θ , the accuracies achieved by BWs
trained withLM are slightly better than the ones obtained withLF . The
FBs achieved the lowest accuracies with respect to the other networks,
with a drop even higher than 20%. This deterioration is probably due
to the hard approximations of the full-binary architectures.

The radar plots in Fig. 1 show the ESs’ accuracy, FLOPs, and
MO with respect to θ values and the losses. Each plot displays a
colored triangle for θ = 1 and θ = 5, where the vertices are the
average accuracy, KFLOPs, and MO on the five runs. The values of
the three performances were normalized with respect to the maximum
values obtained with θ = 0, represented by the numbers below each
performance label. Since, with θ = 0, the ES computational cost is not
relevant, the maximum accuracies in the figure result as the averages
between the θ = 0 values shown in Table 1. Fig. 1(a) shows that FLOPs
and MO of the 1-Ds evaluated withLM are lower than the ones attained
with LF , at equal θ value. The reason is that constraining the MO, i.e.,
the dimensions of the tensors propagated through the systems, affects
the FLOPs since smaller models are targeted by the ENAS. When
θ = 0, the 1-Ds require ∼2.69 MFLOPs and 1840 elements in the
memory, while, considering LM , the system takes ∼695 KFLOPs and
800 elements when θ = 1, and ∼621KFLOPs and 800 elements when
θ = 5. As a comparison with SoA, in [13], the ES achieved an average
accuracy of 85% with ∼1.31 MFLOPs; thus, the 1-Ds with θ > 0
present greater performance for both accuracy and computational cost
measured as FLOPs. Fig. 1(b) shows that, considering LF , FLOPs and
MO of BW with θ = 1 are the highest. When θ = 5, BW with LF

attains the lowest FLOPs but with a similar value of MO of θ = 1.
On the other hand, the BWs with LM are better in terms of MO and
intermediate results in terms of FLOPs. When θ = 0, the BWs require
∼1.54 MFLOPs and 3360 elements in the memory; considering LM ,
the system takes ∼421 KFLOPs and 800 elements when θ = 1, and
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Fig. 1. Radar plots of systems performance. The solid lines refer to LM , while the dashed to LF . Red lines represent θ = 1 and green lines
represent θ = 5.

∼347 KFLOPs and 800 elements when θ = 5, while, with LF , the
system takes ∼530 KFLOPs and 1200 elements when θ = 1, and
∼236 KFLOPs and 1120 elements when θ = 5. Regarding 1-Ds, the
BWs require much lower FLOPs; concerning the MO, the BWs present
a bigger tensor when θ = 0, while it has similar sizes when θ > 0.
Hence, besides the drop in accuracy, BWs are valuable options when
the computational cost measured as FLOPs is relevant. Eventually,
looking at Fig. 1(c), the FBs fail to improve in terms of FLOPs and
MO with respect to the BWs, except in the case of θ = 0. In any case,
the high drop in accuracy of the FBs makes them unsuitable for an
embedded implementation.

Summarizing, the 1-Ds achieved the best results in terms of accuracy
also outperforming the SoA, 85% in our previous work [13] and 85.4%
in [15], for both the loss functions and for all the θ values but θ = 5
with LF . Moreover, with θ > 0, the FLOPs of 1-Ds are lower than
700K with respect to ∼1.31 MFLOPs in [13]. Eventually, BWs are
valuable options when the computational in terms of FLOPs is the
hardest constraint.

IV. CONCLUSION

The letter proposes an enhanced ENAS to optimize a tactile ES for
touch modalities’ classification. The ENAS, in the search procedure,
evaluates the computational cost of the preprocessing and classification
stages using a customized loss function. Results show that standard 1-D
CNNs attain the best accuracy, outperforming the SoA by more than
3%, while binary-weight CNNs present a better computational cost
than standard 1-D CNNs, with a drop in accuracy of at most 6%.
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