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Distributed Spatial Filtering by
a Two-Hop Consensus-Type Algorithm

Shinsaku Izumi , Member, IEEE, Xin Xin , Senior Member, IEEE, and Taiga Yamasaki

Abstract—In this letter, we discuss distributed spatial
filtering (DSF) on networked systems to obtain signal val-
ues with a desired spatial frequency characteristic from
those assigned to nodes by a distributed algorithm. We
present a two-hop consensus-type algorithm for DSF based
on an existing one-hop algorithm. We prove that the range
of the filter characteristics the presented algorithm can
achieve is broader than that for the existing algorithm by
deriving a necessary and sufficient condition for achieving
DSF. Simulation results show that our filtering algorithm
and a new filter characteristic it provides are effective in
distributed anomaly detection by sensor networks.

Index Terms—Control of networks, distributed control,
filtering, sensor networks.

I. INTRODUCTION

IN the systems and control community, networked systems,
constructed by connecting subsystems (or nodes), have

been a major research topic. This is motivated by the fact
that modern engineering applications, e.g., swarm robots and
sensor networks, can be categorized into networked systems.

Herein, we focus on distributed spatial filtering (DSF) on
networked systems. DSF is to transform signal values given for
nodes into ones with a desired spatial frequency characteristic
in a distributed way. Fig. 1 shows an example for high-pass
filtering, where xi denotes the signal value given for node i and
it is assumed that nodes are closer to each other as their indices
are closer. The nodes transform the given signal values for
reducing the amplitudes of the low-frequency components in a
distributed way. The main advantage of DSF is that the spatial
properties of signals to be processed can be used. For instance,
the spatial frequency of temperature is generally low because
it takes similar values at close locations. With this property,
we can reduce the noise in temperature measurements from
a sensor network through spatial low-pass filtering. Further,
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Fig. 1. Example of DSF with a high-pass characteristic.

some anomalies (e.g., fires) increase or decrease temperature
at specific locations and make the spatial frequency of the
measurements high, and thus spatial high-pass filtering allows
to detect the anomalies.

Izumi et al. [1] proposed a DSF method by focusing on
the relation between a consensus algorithm and signal pro-
cessing on graphs [2]. Then, in [3], a more sophisticated DSF
method was proposed and verified through experiments with a
real sensor network. However, the DSF method in [3] has the
drawback that the achievable filter characteristics are limited to
ones described as polynomials with non-zero real roots. This
limitation is severe because the degree of the describing poly-
nomial corresponds to the degree of freedom in choosing the
filter characteristic, while high-degree polynomials generally
have complex roots.

We thus aim to develop a DSF method to overcome this
limitation. Our contributions are as follows. First, we present
an extended version of the DSF method in [3]. By focusing
on the fact that the filtering algorithm in [3] is a one-hop
consensus-type algorithm, we extend the existing algorithm to
the two-hop version where each node uses information on its
two-hop neighbors, i.e., the neighbors of its neighbors. We
then prove that DSF is achieved using our algorithm even
for the filter functions described as polynomials with com-
plex roots. This overcomes the above limitation and makes
the range of the achievable filter characteristics wider. Second,
we demonstrate the effectiveness of our DSF method through
its application to anomaly detection by sensor networks. We
choose a filter function that cannot be handled by the existing
algorithm [3]. We then show that our DSF method with this
filter function achieves higher detection performance than that
when using the existing algorithm.

Finally, we discuss related works. This letter is related to
several topics: spatial frequencies for distributed systems [4],
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signal processing over graphs [5] and its applications [6],
and distributed control with multi-hop communication [7], [8].
In [4], Bode integrals based on spatial frequencies were intro-
duced for distributed systems. Mollaebrahim and Beferull-
Lozano [5] investigated the linear transformations of signals
over graphs, and Yi et al. [6] considered average consen-
sus with the filtering of signals over graphs. In [7], [8],
coverage and consensus with multi-hop communication were
discussed, respectively. However, the purposes of these works
are different from ours.

Notation: We describe the real number field and the set
of positive real numbers using R and R+, respectively. Let I
be the identity matrix. For the numbers x1, x2, . . . , xn ∈ R,
we use diag(x1, x2, . . . , xn) to represent the diagonal matrix
with x1, x2, . . . , xn on its diagonal. We define [xi]i∈I :=
[xi1 xi2 · · · xim]� ∈ R

m with I := {i1, i2, . . . , im} ⊆
{1, 2, . . . , n}. The cardinality of the set S is denoted by |S|.
For an undirected graph, we represent its graph Laplacian by
L; i.e., L is defined as the difference between the degree matrix
and adjacency matrix of the graph.

II. EXISTING RESULTS ON DSF

We first review the existing results [3] on DSF.

A. Preliminary: Spatial Filtering of Graph Signals

Consider an undirected graph with n vertices, which is
described by G = (V,E) for the vertex set V := {1, 2, . . . , n}
and the edge set E. We suppose that a signal value is assigned
to each vertex of G, and describe the signal values for n ver-
tices using s ∈ R

n. Then, (G, s) is referred to as a graph
signal, where the edges of G specify the connections between
the signal values.

For the graph signal (G, s), its Fourier transform (i.e., the
graph Fourier transform) is given as follows. For the graph
Laplacian L of G, we define its i-th smallest eigenvalue in the
sense of the modulus by λi (i ∈ V). Then, the graph Fourier
transform f ∈ R

n is written as

f (λ1, λ2, . . . , λn) := V�s (1)

for the orthogonal matrix V ∈ R
n×n such that V�LV = �

with � := diag(λ1, λ2, . . . , λn). Because L is a symmet-
ric matrix by its definition, we can always find a V that
satisfies V�LV = � for a given L. The graph Fourier trans-
form f provides an expression for (G, s) in spatial frequency
domain. Specifically, f expresses the magnitude of the dif-
ferences between signal values connected by the edges of G.
In (1), λi (i ∈ V) corresponds to the spatial frequency, and the
component of λi is denoted by the i-th element of f , where it is
noteworthy that λ1, λ2, . . . , λn are nonnegative real numbers
because L is the graph Laplacian of the undirected graph G.

The graph Fourier transform (1) allows the spatial filtering
of graph signals described by

s̃ = Vdiag(h(λ1), h(λ2), . . . , h(λn))V
�s, (2)

where s̃ ∈ R
n represents the signal values of a filtered graph

signal and h : R+ ∪ {0} → R is a function to characterize the
filter. From (1) and the orthogonality of V , i.e., V� = V−1, (2)

implies that the spatial filtering is to filter a signal transformed
into one in the spatial frequency domain by (1) using h and to
perform the inverse transform of (1). In this way, we can obtain
an s̃ such that the graph signal (G, s̃) has a spatial frequency
characteristic specified by h.

B. Problem Formulation

Consider the networked system � having n nodes. Node i
(i ∈ V) is given as the discrete-time model

xi(t + 1) = g([xj(t)]j∈Ni, t), (3)

where xi(t) ∈ R and [xj(t)]j∈Ni ∈ R
|Ni| are the state and the

input, respectively, and Ni ⊆ V is the index set of nodes
of which node i has access to the information. The function
g : R|Ni| × {0, 1, . . .} → R specifies the behavior of the node.
Using g rather than gi means that the behavior of all the nodes
is determined by a common function, which allows to make
� scalable.

We represent the network topology of the system � using
the undirected graph G defined above, where the vertex set V
and the edge set E express the indices of n nodes and the con-
nections between them, respectively. In this case, the set Ni is
given by Ni := {i}∪{j ∈ V | (j, i) ∈ E}. Moreover, let x(t) ∈ R

n

denote the state of �, i.e., x(t) := [x1(t) x2(t) · · · xn(t)]�.
Then, (G, x(t)) can be regarded as one of graph signals
described in Section II-A by considering G and x(t) as the
graph and the signal values, respectively.

Based on this observation, our interest here is to construct
a system � that works as a desired spatial filter for graph
signals. To this end, we regard the initial state x(0) and the
final state x(∞) as the signal values of an original graph signal
and those of the filtered one, respectively, and address the
following problem.

Problem 1: For the networked system �, suppose that a
filter function h and an initial state x(0) are given. Find a
function g (i.e., a distributed algorithm executed by n nodes)
to produce an x(∞) such that the graph signal (G, x(∞)) has
a spatial frequency characteristic specified by h.

C. Filtering Algorithm

The idea of [3] to solve Problem 1 is to design the function
g so that the relation between x(0) and x(∞) is equivalent to
the spatial filtering (2) of graph signals when regarding x(0)

and x(∞) as s and s̃, respectively. Based on this,

g([xj(t)]j∈Ni, t) := �0(t)xi(t) + �1(t)
∑

j∈Ni

(xj(t) − xi(t)) (4)

was provided, where �0(t) ∈ R \ {0} and �1(t) ∈ R are time-
varying gains that satisfy �0(t) = 1 and �1(t) = 0 when t ≥
m for a positive integer m. The provided g and (3) yield a
consensus-type distributed algorithm. It should be noted that
this algorithm converges in m timesteps due to �0(t) = 1 and
�1(t) = 0 for t ≥ m.

We suppose that the system � operates according to a dis-
tributed algorithm such as that given by (3) and (4). If for a
filter function h, the relation between x(0) and x(∞) is equiv-
alent to (2) as described above, we say that � achieves DSF
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Fig. 2. Filter function h(λ) := 1/(1 + e−20(λ−0.2)) (the thick blue line)
and its polynomial approximations h10 (the thin red line) and hr

10 (the
dashed black line).

of the graph signal (G, x(0)) for h. Then, the following result
was obtained in [3].

Lemma 1: For the networked system �, suppose that a filter
function h is given and let g be given by (4). Then, � achieves
DSF of the graph signal (G, x(0)) for h if and only if h is a
polynomial of the form

h(λ) := amλm + am−1λ
m−1 + · · · + a1λ + a0 (5)

with a frequency variable λ, where a0, a1, . . . , am ∈ R and the
roots of the polynomial must be non-zero real numbers.

Lemma 1 indicates that DSF is achieved using (3) and (4)
if and only if the filter function h is a real polynomial having
non-zero real roots.

D. Problem to Be Considered

Although Lemma 1 gives a necessary and sufficient con-
dition on h for achieving DSF, it is difficult to achieve some
filter characteristics under this condition. An example is shown
in Fig. 2. The thick blue line and the thin red line indicate
h(λ) := 1/(1 + e−20(λ−0.2)) and its polynomial approximation
h10(λ) ≈ 0.000149λ10 − 0.00453λ9 + 0.0583λ8 − 0.413λ7 +
1.74λ6 −4.41λ5 +6.15λ4 −3.21λ3 −2.18λ2 +3.27λ+0.01001

via a least square fitting, respectively (and the green cir-
cles are detailed in Section III-C). As demonstrated later, h10
describes a filter characteristic that is useful in an application
to sensor networks. However, we can numerically confirm that
h10 has complex roots and does not satisfy the condition in
Lemma 1. Therefore, we seek the polynomial approximation
with non-zero real roots by solving an optimization problem
for fitting using the function “fminsearch” in MATLAB, and
obtain hr

10(λ) ≈ −(4.37 × 10−13)λ10 + (2.60 × 10−11)λ9 +
(1.16×10−9)λ8−(5.38×10−8)λ7−(2.81×10−7)λ6+(2.07×
10−5)λ5+(3.64×10−5)λ4−0.00305λ3−0.00790λ2+0.160λ+
0.7061. However, the plot of hr

10 indicated by the dashed black
line in Fig. 2 is quite different from that of the original h,
compared with the case of h10.

III. DSF BY TWO-HOP CONSENSUS-TYPE ALGORITHM

In this section, we overcome the aforementioned difficulty
by extending the results in [3].

A. Proposed Algorithm

Consider the networked system � again. We suppose here
that the model of node i (i ∈ V) is given by

1The coefficients of the polynomials are rounded off for brevity.

{
xi(t + 1) = g1([xj(t)]j∈Ni, [yj(t)]j∈Ni, t),

yi(t) = g2([xj(t)]j∈Ni, t),
(6)

where [yj(t)]j∈Ni ∈ R
|Ni| is the input, yi(t) ∈ R is the output,

and g1 : R
|Ni| × R

|Ni| × {0, 1, . . .} → R and g2 : R
|Ni| ×

{0, 1, . . .} → R are functions to determine the node behavior.
Under this setting, we extend the results in [3] by solving
Problem 1 where the design parameter g is replaced by g1
and g2.

Our approach to the modified problem is to extend the
existing filtering algorithm given by (3) and (4) to the two-
hop version, i.e., a consensus-type algorithm that uses the
information on two-hop neighbors on the graph G in addi-
tion to that on the (one-hop) neighbors. Based on this, we
propose

g1([xj(t)]j∈Ni, [yj(t)]j∈Ni, t) := �0(t)xi(t) + �1(t)

×
∑

j∈Ni

(xj(t) − xi(t)) + �2(t)
∑

j∈Ni

(yj(t) − yi(t)), (7)

g2([xj(t)]j∈Ni, t) :=
∑

j∈Ni

(xj(t) − xi(t)), (8)

where �2(t) ∈ R is a time-varying gain satisfying �2(t) = 0 for
t ≥ m. In the proposed algorithm given by (6)–(8), the output
yi(t), transmitted to the neighbors of node i, contains the state
xj(t) (j ∈ Ni), and thus the nodes can obtain the information
on their two-hop neighbors.

B. Main Result

For the proposed algorithm given by (6)–(8), the following
main result is obtained.

Theorem 1: For the networked system � where the node
model (3) is replaced by (6), suppose that a filter function h is
given and let g1 and g2 be given by (7) and (8), respectively.
Then, � achieves DSF of the graph signal (G, x(0)) for h if
and only if h is a real polynomial of the frequency variable λ

with at most degree 2m and non-zero roots.
Proof: See the Appendix.
Theorem 1 shows that DSF is achieved using the proposed

algorithm given by (6)–(8) even if the filter function h is a
polynomial with complex roots. This makes the range of the
achievable filter characteristics wider. Here, the gains �0(t),
�1(t), and �2(t) are chosen as, for instance, (12)–(14) or
(12)–(14) and (18) (see the Appendix). Further, Lemma 1
ensures that the existing one-hop algorithm given by (3)
and (4) cannot handle h other than polynomials with non-zero
real roots. In this sense, Theorem 1 implies that the extension
to the two-hop algorithm is a key to handling the case of the
complex roots.

From the above discussion, our method to solve Problem 1
with the design parameters g1 and g2 is as follows: (i) approxi-
mate the given filter function h by a polynomial with non-zero
roots; (ii) give g1 and g2 using (7), (8), (12)–(14), and (18).

An example to demonstrate our results is provided. Consider
the system � with n := 8 and a network topology G
(detailed later). The initial state x(0) is given as x(0) :=
[0.564 0.567 0.454 0.325 0.324 0.237 0.180 0.177]�. We
choose h10 in Section II-D as the filter function h, for which
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Fig. 3. Final state x(5) given by the proposed algorithm and the
collective signal value s̃ given by (2) for s := x(0).

m := 5. Let us recall that h10 is a polynomial with complex
roots and thus cannot be handled by the existing algorithm
given by (3) and (4). From h10, (6)–(8), and (12)–(14), the
algorithm for the nodes is obtained, where we use the fact
that the degree of h10 is even. The resulting final state x(5),
which is equal to x(∞) (see the Appendix), is depicted in
Fig. 3, where the thick red lines represent the elements of
x(5) and the blue circles and lines represent the vertices and
edges of G, respectively. Moreover, the thin green lines indi-
cate the collective signal value s̃ given by (2) for s := x(0),
where s̃i is the i-th element of s̃. We see that x(5) and s̃ are the
same although the proposed algorithm is distributed but (2) is
not. This demonstrates our results.

Remark 1: The degree of the polynomial approximation of
the filter function h should be chosen according to the guide-
line given in [1, Remark 6]. Note here that we do not need
to consider the constraint that the resulting polynomial has no
complex roots, unlike the case of [1].

C. Application to Distributed Anomaly Detection by
Sensor Networks

Next, we apply the proposed DSF method to distributed
anomaly detection by sensor networks, i.e., finding sensor
nodes such that the measurements are quite different from
those from other nodes in a distributed way. As explained
in Section I, an example of anomaly is a fire, which causes
the differences between temperature measurements.

Our idea to achieve the anomaly detection is to remove
only the component of the zero frequency at which the signal
values for all the nodes are the same. By removing the zero
frequency component, we can extract the differences of the
signal values from a typical one in the group of the nodes,
which allows the anomaly detection. In the following, we show
that the proposed algorithm can handle even a specialized filter
function to remove only the specific frequency component, and
demonstrate that the anomaly detection can be achieved by the
proposed algorithm and the filter function.

Consider the example in Section III-B again. We represent
the eigenvalues λ1, λ2, . . . , λ8 of the graph Laplacian L of the
graph G depicted in Fig. 3 by the green circles in Fig. 2.
These eigenvalues correspond to the spatial frequencies of
which the associated graph signal has the components, and

Fig. 4. Final states for the two filter functions h10 and hr
10.

TABLE I
SUCCESS RATES [%] OF THE ANOMALY DETECTION FOR 1000 TRIALS

thus Fig. 2 indicates that the filter function h10 has the prop-
erty of removing only the zero frequency component of graph
signals with G. As seen above, the proposed algorithm given
by (6)–(8) and (12)–(14) can handle h10. Hence, we perform
the distributed anomaly detection using the proposed algorithm
for h10.

For x(0) := [9.39 10.6 10.2 14.8 9.25 9.80 9.94 8.96]�,
we show the resulting final state x(5) by the thick red lines in
Fig. 4, where node 4 has to be detected. It turns out that the
elements other than x4(5) are close to zero. Thus, by introduc-
ing a threshold, node 4 can be detected. The thin green lines
in Fig. 4 represent the corresponding result when using the
existing algorithm given by (3) and (4) for the filter function
hr

10 in Section II-D. We see that the elements other than x4(5)

are not sufficiently reduced compared with the result for h10.
This implies that the anomaly detection with the existing algo-
rithm for hr

10 is difficult because the choice of the threshold
heavily depends on the final states of nodes other than those
at which anomaly occurs.

We evaluate the detection performance of the proposed algo-
rithm for h10 in the following way. We suppose that anomaly
occurs at a node j and j is randomly chosen from the set V
with equal probability. The initial state xj(0) of node j is set as
xj(0) := b+ε+w, where b, ε, w ∈ R are a base value, measure-
ment noise, and disturbances due to the anomaly, respectively.
The noise ε is Gaussian noise with mean 0 and variance 0.5,
and w takes ±10 randomly with equal probability. For the
other nodes, let xi(0) := b + ε (i ∈ V \ {j}). Then, we say that
the anomaly detection is successful if only |xj(m)| is larger
than the threshold d ∈ R+. Under this setting, the success
rates for 1000 trials are summarized in Table I, where by
considering the differences in the algorithms and the filter
functions, we choose the different thresholds d := 5 and d := 9
for the proposed algorithm and the existing algorithm, respec-
tively. Table I indicates that the detection performance of the
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proposed algorithm is higher than that of the existing algorithm
for all of b := 10, b := 20, and b := 30. The reason for this is
explained as follows. As seen in Fig. 4, the existing algorithm
for hr

10 cannot sufficiently reduce the states of the nodes other
than that to be detected. As a result, the existing algorithm
cannot handle the case where |xj(0)| is smaller than the other
states. Therefore, the anomaly detection for w = −10 fails,
demonstrated as the success rate 51.2 % for b := 10. In addi-
tion, the existing algorithm cannot handle the different values
of b by the common threshold d because the remaining states
depend on b. This leads to the differences in the success rates
for b := 20 and b := 30.

Remark 2: From (6)–(8), (12)–(14), and (18), the proposed
algorithm does not depend on the graph G. However, the
resulting signal values depend on G because the eigenvalues
of the graph Laplacian L, i.e., the distribution of the frequency
components of the associated graph signal, change depending
on G.

IV. CONCLUSION

In this letter, we improved an existing DSF method for
networked systems to overcome the difficulty of the limited
achievable filter characteristics. In particular, we extended the
existing one-hop filtering algorithm to the two-hop version. We
then derived a necessary and sufficient condition on the filter
function for achieving DSF. The advantage of the proposed
algorithm is that the filter functions described as polynomi-
als with complex roots can be handled, unlike the existing
algorithm.

APPENDIX

PROOF OF THEOREM 1

We begin with the proof of the “only if” part. It is assumed
that for a filter function h, DSF of the graph signal (G, x(0))

is achieved by the system �. From (6)–(8), the behavior of �

is described as

x(t + 1) = �0(t)x(t) − �1(t)Lx(t) − �2(t)Ly(t)

= (�0(t)I − �1(t)L + �2(t)L
2)x(t) (9)

for y(t) := [y1(t) y2(t) · · · yn(t)]�. Hence, the relation
between x(0) and x(m) is written as

x(m) =
( m∏

t=1

(�0(m − t)I − �1(m − t)L + �2(m − t)L2)

)
x(0)

=
( m∏

t=1

(�0(m − t)VV� − �1(m − t)V�V�

+ �2(m − t)V�V�V�V�)

)
x(0)

= V

( m∏

t=1

(�0(m − t)I − �1(m − t)�

+ �2(m − t)�2)

)
V�x(0), (10)

where the second equality is derived from V� = V−1 and
V�LV = � and the last one follows because �0(t), �1(t), and
�2(t) are scalars and V�V = I holds. Noting that the matrix

�0(m − t)I − �1(m − t)�+ �2(m − t)�2 in (10) is diagonal for
every t ∈ {1, 2, . . . , m}, we obtain

x(m) = Vdiag

( m∏

t=1

(�0(m − t) − �1(m − t)λ1

+ �2(m − t)λ2
1),

m∏

t=1

(�0(m − t) − �1(m − t)λ2

+ �2(m − t)λ2
2), . . . ,

m∏

t=1

(�0(m − t)

− �1(m − t)λn + �2(m − t)λ2
n)

)
V�x(0). (11)

Besides, x(m) = x(∞) holds due to (6)–(8) and �0(t) = 1,
�1(t) = 0, and �2(t) = 0 for t ≥ m. By substituting this
for (11) and considering x(0) and x(∞) as s and s̃ in (2),
respectively, we can show h(λ) = ∏m

t=1(�0(m − t) − �1(m −
t)λ + �2(m − t)λ2) from the assumption of achieving DSF by
�. Because of �0(t) ∈ R \ {0} and �1(t), �2(t) ∈ R for every
t ∈ {1, 2, . . . , m}, this h is a real polynomial of λ with at most
degree 2m and non-zero roots. Therefore, the “only if” part is
proven.

Next, we give the proof of the “if” part. It is assumed that
a real polynomial of λ with at most degree 2m and non-zero
roots is given as the filter function h. Because the complex
roots of real polynomials come in complex conjugate pairs [9],
we denote the complex roots of h by αj±βji (j = 1, 2, . . . , mc),
where i := √−1 and mc ∈ R+∪{0} is the number of the pairs.
Further, we let αj ∈ R \ {0} (j = mc + 1, mc + 2, . . . , μ) be
the real roots of h, where μ := mc + mr for the number mr

of the real roots. In the following, we assume that the degree
of h is even. Then, mr is even from the above property of the
complex roots of real polynomials.

With the above notations and μ̄ := mc + mr/2, we set

�0(t) :=
{

a0 if t = 0,

1 otherwise,
(12)

�1(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a0α1

α2
1 + β2

1

if t = 0,

2αt+1

α2
t+1 + β2

t+1

if t ∈ {1, 2, . . . , mc − 1},
αt+1 + αt+mr/2+1

αt+1αt+mr/2+1
if t ∈ {mc, mc + 1, . . . , μ̄ − 1},

0 otherwise,

(13)

�2(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0

α2
1 + β2

1

if t = 0,

1

α2
t+1 + β2

t+1

if t ∈ {1, 2, . . . , mc − 1},
1

αt+1αt+mr/2+1
if t ∈ {mc, mc + 1, . . . , μ̄ − 1},

0 otherwise,

(14)

where a0 is the zero degree term of h, as shown in (5). From
m ≥ μ̄, these gains satisfy �0(t) = 1, �1(t) = 0, and �2(t) = 0
for t ≥ m, where the inequality on m is derived from the facts
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that the degree of h is at most 2m and the number of the roots
of h is 2mc +mr. From (12)–(14), the following equality holds
for every i ∈ V:

m∏

t=1

(�0(m − t) − �1(m − t)λi + �2(m − t)λ2
i )

= a0

⎛

⎝
mr/2−1∏

t=0

(
1 − (αμ̄−t + αμ−t)λi − λ2

i

αμ̄−tαμ−t

)⎞

⎠

×
(mc−2∏

t=0

(
1 − 2αmc−tλi − λ2

i

α2
mc−t + β2

mc−t

))(
1 − 2α1λi − λ2

i

α2
1 + β2

1

)
. (15)

By applying this equality and x(m) = x(∞) to (11) and by
a discussion similar to the above, we see that if the right-
hand side of (15) is equivalent to the given h for every i ∈
V, the system � achieves DSF of the graph signal (G, x(0))

for h.
To show the equivalence of the right-hand side of (15) and

h, we factorize h as h(λ) = ama

∏ma−1
j=0 (λ − rma−j) for ma :=

2mc+mr. Noting that mr is even as explained above, we obtain

ama

ma−1∏

j=0

(λ − rma−j)

= ama

(mc−1∏

j=0

(λ − αmc−j − βmc−ji)(λ − αmc−j

+ βmc−ji)
)(mr/2−1∏

j=0

(λ − αμ̄−j)(λ − αμ−j)

)

= ama

(mc−1∏

j=0

(λ2 − 2αmc−jλ + α2
mc−j + β2

mc−j)

)

×
(mr/2−1∏

j=0

(λ2 − (αμ̄−j + αμ−j)λ + αμ̄−jαμ−j)

)

= ama

(mc−1∏

j=0

(
α2

mc−j + β2
mc−j

))

×
(mc−1∏

j=0

(
λ2 − 2αmc−jλ

α2
mc−j + β2

mc−j

+ 1

))(mr/2−1∏

j=0

αμ̄−jαμ−j

)

×
(mr/2−1∏

j=0

(
λ2 − (αμ̄−j + αμ−j)λ

αμ̄−jαμ−j
+ 1

))
. (16)

In (16), we notice that ama(
∏mc−1

j=0 (α2
mc−j +

β2
mc−j))(

∏mr/2−1
j=0 αμ̄−jαμ−j) = a0 holds because the zero

degree term of h is a0. Hence, it follows that

h(λ) = a0

(mc−1∏

j=0

(
λ2 − 2αmc−jλ

α2
mc−j + β2

mc−j

+ 1

))

×
(mr/2−1∏

j=0

(
λ2 − (αμ̄−j + αμ−j)λ

αμ̄−jαμ−j
+ 1

))
. (17)

Replacing λ in (17) by λi (i ∈ V) shows the equivalence of the
right-hand side of (15) and h for every i ∈ V, which proves
the “if” part by the above discussion. Also in the case that the
degree of h is odd, we can prove the statement in a similar
way, where �1(t) in (13) for t ≥ mc is replaced by

�1(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αt+1 + αt+(mr−1)/2+1

αt+1αt+(mr−1)/2+1
if t ∈ {mc, mc + 1, . . . , mc + (mr − 1)/2 − 1},
1

αμ

if t = mc + (mr − 1)/2,

0 otherwise.

(18)

This completes the proof.
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