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Anti-Windup Design for a
Reaction-Diffusion Equation
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Abstract—This letter focuses on the anti-windup design
for saturated 1-D linear reaction-diffusion equation which
admits a finite number of unstable poles. We consider a
scenario in which the system is controlled via a dynamic,
finite-dimensional output feedback controller ensuring
closed-loop exponential stability. A method is proposed to
design a dynamic anti-windup compensator to maximize
the region of attraction and minimize the effect of exter-
nal perturbations. More precisely, the sufficient condi-
tions for the local exponential stability of the closed-loop
system are derived and expressed in terms of a set of
matrix inequalities. Using generalized sector conditions
and proper change of variables, the conditions are then
recast as an optimization problem solving linear matrix
inequalities. A numerical example is provided to showcase
the proposed method and highlight its effectiveness.

Index Terms—Partial differential equations, Lyapunov
methods, saturated control, linear matrix inequalities.

I. INTRODUCTION

IN VARIOUS control engineering problems, the linearity
of the modeled system is hindered by a nonlinear saturated

control input. This constraint on the control input generates
an inconsistency (also called a windup) described by an offset
between the plant input and the unconstrained control signal.
The main goal for introducing an anti-windup compensator
is to compensate for this offset and therefore restore consis-
tency within the closed-loop system. The early anti-windup
technique was presented in [6] and then later extended to
observer-based approaches in [1], [24]. There have been sev-
eral advancements in different anti-windup schemes in the
general context of finite-dimensional systems (see [5], [11],
[23] for some literature on this topic).

A popular approach is LMI-based, in which the saturation
is treated as a sector nonlinearity and Lyapunov methods are
used to derive linear matrix inequalities (LMIs) conditions
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that can guarantee the desired regions of attraction for the
system origin and performance levels. The method can be
briefly described as measuring the difference between the con-
trol signal before and after saturation and injecting it into the
compensator system which then recovers the discrepancy, in
a manner that satisfies the LMI conditions, and emits a sig-
nal into the controller state equation. In some applications, the
compensator emits a second signal into the saturated control
input directly. In the general context of infinite-dimensional
systems, the notion of anti-windup compensation is yet to be
explored. This letter presents, for the first time, the problem
of anti-windup design for a distributed parameter system,
particularly for a reaction-diffusion equation.

Infinite-dimensional systems emerge to be of utmost rel-
evance when studying physical systems throughout all engi-
neering domains such as quantum systems, fluid mechanical
systems, wave propagation, diffusion phenomena. Therefore,
the control theory of infinite-dimensional systems remains a
necessary area of research and its motivation has been well
established (see more in [4], [14], [15]). The problem of
output feedback control by means of an observer-based con-
trol, adaptive control or model predictive control has been
previously presented in (see [3], [25]) and output-feedback
control extensions to PDEs (see, e.g., [2], [26]).

In this letter, we focus on the output feedback stabilization
of a specific type of partial differential equation called the
reaction-diffusion equation. The global stability of a reaction-
diffusion equation has been investigated in previous papers [7],
[8], [9], [12], [19] and the extension to local stability in
the case of saturated actuator was studied in [13]. We will
use the regional, LMI-based anti-windup scheme presented
in [21], [22] to achieve local exponential input-output stability
for a class of distributed parameter systems. More precisely,
a dynamic anti-windup compensator will be introduced to a
stable closed-loop system consisting of a reaction-diffusion
plant in feedback with a saturated dynamic controller of finite
dimension. Unlike [19], where the control is placed at the
boundary, the control input is in-domain and assumed to
be known. Using Lyapunov methods, dead-zone nonlinear-
ities and associated sector conditions, we tackle two main
issues. The first is estimating the region of attraction for the
closed-loop system given in terms of linear matrix inequal-
ities when the in-domain exogenous signal is considered to
be null. The second is evaluating the performance level of
each system by estimating the input-output stability (IOS) gain
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when the in-domain exogenous signal is different than zero and
is energy-bounded. In the process of achieving these two goals,
an optimization problem for the anti-windup design problem
is presented which allows the optimization of the region of
attraction and the stability gain. Finally, the efficiency of the
proposed method is illustrated using numerical simulations
which clearly demonstrate the benefits of the anti-windup
compensator in a saturated control problem.

The remainder of this letter is organized as follows.
Section II presents preliminary definitions and results and
states the problem that we solve. Section III presents the main
results pertaining to stability analysis and anti-windup design.
Section IV solves the optimal design problem and Section V
showcases the effectiveness of the proposed method through
a numerical example.

Notation and basic notions: The symbol Sn
p denotes the

set of real n × n symmetric positive definite matrices. The
symbol N� denotes the set of strictly positive natural numbers.
We use the notation He(A) = A+A� for square matrices. For
a symmetric matrix A, positive definiteness (negative definite-
ness) and positive semidefiniteness (negative semidefiniteness)
are denoted, respectively, by A > 0 and A ≥ 0 (A ≤ 0). Also,
λmin(A) (respectively λmax(A)) denotes its smallest (respec-
tively largest) eigenvalue. We use the equivalent notation for
Euclidean vectors (x, y) = [

x� y�]�
. In partitioned symmet-

ric matrices, the symbol � stands for symmetric blocks. For a
vector z ∈ R

n, ‖z‖ denotes its Euclidean norm. For U ⊂ R,
f : U ⊂ R −→ V , we denote by1 ‖f ‖L2 = (

∫
U‖f (z)‖2dz)

1
2 f .

The Fréchet derivative of f at z is denoted by Df (z). Given
f : U ⊂ R −→ V , we say that f ∈ L2 if f is measurable
and ‖f ‖L2 is finite. For an interval2 U ⊂ R and a normed
vector space V , the symbol Ck(U; V) denotes the set of func-
tions f : U → V that are k-times continuously differentiable,
the symbol Lip(U; V) denotes the set of Lipschitz continuous
functions f : U → V , and the symbol W1,1(U,V) denotes
the subset of measurable integrable functions f : U → V
with measurable integrable weak derivative. Let k a positive
integer, the symbol Hp(0, 1), denotes the set of functions
f : [0, 1] → R such that f , d

dz f , . . . , dk−1

dzk−1 f are absolutely

continuous on (0, 1) and dk

dzk f ∈ L2.
Let p ∈ C1([0, 1];R) and q ∈ C0([0, 1];R) with p, q > 0.

Let the Sturm-Liouville operator A : D(A) ⊂ L2(0, 1;R) −→
L2(0, 1;R) be defined by

Af := −(pf ′)′ + qf (1)

on the domain D(A) ⊂ L2(0, 1;R) given by D(A) :=
{f ∈ H2(0, 1) : f ′(0) = f (1) = 0}. The set of eigenvalues
λn, n ≥ 1, constituting the spectrum of A, are simple, non-
negative, and form an increasing sequence with λn −→ +∞
as n −→ +∞. Moreover the associated unit eigenvectors
�n ∈ L2(0, 1;Rn) form an orthonormal basis and we also
have D(A) = {f ∈ H2(0, 1;R) :

∑
n≥1 λ

2
n|〈f ,�n〉|2 < +∞}

and Af = ∑
n≥1 λn〈f ,�n〉�n. Let p�, p�, q�, q� ∈ R be such

that 0 < p� ≤ p(x) ≤ p� and 0 < q� ≤ q(x) ≤ q� for all

1In this letter, we only consider Lebesgue measurable functions.
2If the interval is not open, derivative means right (or left)-derivative at the

right (or left) end point.

x ∈ [0, 1], then it holds (see, e.g., [16]), for all n ≥ 1,

0 ≤ π2(n − 1)2p� + q� ≤ λn ≤ π2n2p� + q�. (2)

Consider the following isomorphism ι defined by ι(�j) =
�j(·), where �j is the j-unit vector in R

N. Having this iso-
morphism in mind we identify L2(0, 1;R) with �2(N∗,R) and
H1(0, 1;R) with �

1(N∗,R) where �2(N∗,R) := {(wn)n∈N∗ ∈
R
N

∗
:

∑∞
n=1 |wn|2 < ∞}, and �

1(N∗,R) := {(wn)n∈N∗ ∈
R
N

∗
:
∑∞

n=1 λn|wn|2 < ∞}. For a1, a2, . . . , an ∈ R, the
notation diag(a1, a2, . . . , an) denotes diagonal matrix with
diagonal terms a1, a2, . . . , an respectively.

II. PROBLEM STATEMENT

We consider the stabilizability problem of a
one-dimensional linear reaction-diffusion equation by
means of a distributed control input u. The system model is
given for all t ≥ 0 and for z ∈ (0, 1):

wt(t, z) = (p(z)wz(t, z))z + (qc − q(z))w(t, z)

+ b(z)u(t)+ m(z)d(t)

wz(t, 0) = w(t, 1) = 0

y(t) = w(t, 0). (3)

The state-space of this system is L2(0, 1;R), and we assume
that qc ∈ R and b,m ∈ L2(0, 1;R). The exogenous sig-
nal d ∈ Lip(R≥0;R). We suppose that the control input
is subject to a symmetric magnitude limitation ūl such that
u := σ(v) = min(|v|, ūl)sign(v) where the input signal v is
given by the output of the control system dynamics specified
later. The dynamics are written in abstract form, and given an
initial condition w0, the Cauchy problem is written as:

ẇ = −Aw + qcw + bu + md

w(0) = w0. (4)

for the Sturm-Liouvile operator defined by (1).

A. Partition of the System Into Stable and Unstable Parts
The Sturm-Liouville operator A consists of positive simple

eigenvalues (λn)n≥1 such that λn → ∞, as n → ∞. Now,
introduce the coefficients of projection wn = 〈w(·),�n〉, bn =
〈b,�n〉 and mn = 〈m,�n〉 for n ∈ N

�. We have for all w(t, ·) ∈
D(A) and for all t ≥ 0 and for n ∈ N

�:

ẇn = (−λn + qc)wn + bnu + mnd,

y = ∑
i≥1�i(0)wi. (5)

Let N0 ≥ 1 and δ > 0 be given such that −λn + qc < −δ < 0
for all n ≥ N0 + 1. We now introduce an arbitrary integer
N ≥ N0 which will be further constrained later. We design a
finite-dimensional output feedback controller that will act on
and modify the first N modes of the plant. First, we introduce
the following vectors:

WN := [
w1 w2 · · · wN

]�
,B1 := [

b1 b2 · · · bN
]�
,

B2 := [
m1 m2 · · · mN

]�
,

A0 = Diag(−λ1 + qc, . . . ,−λN + qc)
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and we focus on the following finite-dimensional truncation
of (5):

ẆN = A0WN + B1u + B2d. (6)

When d = 0, if qc > λ1, then system (6) is unstable. We
assume that the pair (A0,B1) is controllable.

Definition 1: Let ξ > 0. We suppose that the Lipschitz con-
tinuous exogenous disturbance d is amplitude bounded if it
belongs to the following set of functions S := {d : R≥0 →
R : d2(t) ≤ ξ−1, ∀t ≥ 0}.

Given N ≥ N0, consider the following state space represen-
tation for the continuous-time linear plant P:

ẆN = A0WN + B1σ(v)+ B2d,

ẇn = (−λn + qc)wn + bnσ(v)+ mnd n ≥ N + 1,

y =
∑

i≥1

�i(0)wi. (7)

The closed-loop system is composed of the plant P with a lin-
ear time-invariant dynamic, finite-dimensional output feedback
controller Kc given by:

Ẋc = AcXc + Bcy + Yaw

v = CcXc (8)

where Xc ∈ R
N is the state of the controller and Ac ∈

R
N×N,Bc ∈ R

N and Cc ∈ R
1×N and the term Yaw, related

to the anti-windup setting, is considered to be null at this
point. We assume that the control parameters Ac,Bc,Cc,Dc
are given such that, for no saturation limitation and without
disturbances, the origin of the closed-loop system (7) is glob-
ally exponentially stable (the design of such matrices is done
in, e.g., [7]). The main objective of this letter is to introduce
and design an anti-windup compensator such that we meet
the desired system performance levels in terms of stability
gain and region of attraction. The general framework of the
anti-windup compensator is presented next.

B. General Set-Up for the Anti-Windup
We introduce an anti-windup compensator to the overall

system such that the output of the anti-windup plant is plugged
into the dynamics of the control state Xc. The extra input Yaw
is given in the following simplified direct anti-windup system
Ka presented in [20, Ch. 7] called the direct linear anti-windup
design:

Ẋaw = AawXaw + Baw(σ (v)− v)

Yaw = CawXaw + Daw(σ (v)− v), (9)

where Xaw ∈ R
2N is the anti-windup state such that the

dimension of the anti-windup state is the sum of the dimen-
sions of WN and Xc and the output of the anti-windup
plant Yaw is injected into the dynamics of the controller
state. The goal is to design suitable anti-windup parameters
Aaw ∈ R

2N×2N,Baw ∈ R
2N,Caw ∈ R

N×2N and Daw ∈ R
N so

that the origin of system (10) achieves input-output stability
with smaller IOS gain and larger region of attraction.

Let Xf := [
WN Xc Xaw

]�. For all ζa ∈ �
1(N;R),

we define the following norm: ‖ζa‖H1
a

:=√
X�

f Xf + ∑
n≥N+1 λnw2

n. The deadzone nonlinear-
ity is defined by φ(v) := σ(v) − v. Denoting

C := (�1(0),�2(0), . . . �N(0)) and ỹ := ∑
i≥N+1�i(0)wi,

the interconnection of (7), (8), and (9) can be formally written
as (P,Kc,Ka):
⎧
⎪⎪⎨

⎪⎪⎩

Ẋf = A11Xf + B11φ(KXf )+ B12d + B13ỹ
ẇn = (−λn + qc)wn + bnCcXc + bnφ(KXf )+ mnd

n ≥ N + 1
y = CWN + ỹ.

(10)

where

A11 :=
⎡

⎣
A0 B1Cc 0

BcC Ac Caw

0 0 Aaw

⎤

⎦ =:
[A B

0 Aaw

]

B11 :=
⎡

⎣
B1

Daw

Baw

⎤

⎦,B12 :=
⎡

⎣
B2

0
0

⎤

⎦,B13 :=
⎡

⎣
0

Bc

0

⎤

⎦,K :=
⎡

⎣
0

Cc

0

⎤

⎦

�

. (11)

Using the Lipschitz continuity of σ , the wellposedness result
follows from [17, Th. 1.6, Ch. 6, p. 189]:

Proposition 1 [17]: Let d be Lipschitz continuous. The
closed-loop system (10) has a unique strong solution pair3

(ζa, d) ∈ W1,1(domζa; �2(N�;R)) ∩ C0(domζa; �1(N�;R))
×Lip(domd;R)) where domd = domζa is an interval of R≥0
including zero.

There are two main issues to tackle in system (10). The first
issue is in the case when d = 0, where the goal is to optimize
the region of attraction. The second issue is in the case when
the energy bounded exogenous signal d �= 0, where the goal is
to minimize the effect of the disturbance signal on the input-
output stability property. We are now able to formally state
the problem we solve in this letter.

Problem 1: Given p ∈ C2([0, 1];R), q ∈ C0([0, 1];R) with

p, q > 0 and qc ∈ R. Given the control parameters

[
Ac Bc
Cc 0

]
.

Design the anti-windup parameters Aaw,Baw,Caw,Daw such
that the following properties hold for (10):

• the origin of the closed-loop system is zero-input locally
exponentially stable with region of attraction Ra,

• for some (solution independent) ψa, υa, ρa > 0, for each
strong solution pair (ζa, d) ∈ Ra × S to the closed-loop
system, the following bound holds for all t ∈ R≥0:

|y(t)| ≤ ψae−υat‖ζa(0)‖H1
a
+ ρa

√∫ t

0
d(θ)2dθ. (12)

Inequality (12) corresponds to an input-output stability
(IOS) bound for the closed-loop system. The main contribu-
tion of this letter is to design an anti-windup system Ka in
order to further minimize the effect of the gain ρa for d �= 0
and further maximize the region of attraction Ra for d = 0.
In the next section, we provide an explicit estimate of the IOS
gain ρa and the region of attraction Ra.

III. INPUT-OUTPUT LYAPUNOV STABILITY ANALYSIS

This section presents sufficient conditions for the solution
to Problem 1. The result relies on an exponential dissipation
inequality. This is done by proving the following proposition:

3A pair (ζa, d) is a strong solution pair to (10) if ζa is differentiable almost
everywhere and it satisfies its dynamics for a.e. t.
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Proposition 2: Assume there exist a Fréchet differentiable
functional V : �

1(N;R) −→ R≥0 and c1, c2, c3, c4, χ ∈ R>0
such that

χ2 < ξc3c4, (13)

where ξ is defined in Definition 1 and such that for each d ∈ S
and ζa ∈ �

1(N�;R) satisfying V(ζa) ≤ c4, the following hold:

c1‖ζa‖2
H1

a
≤ V(ζa) ≤ c2‖ζa‖2

H1
a
, (14)

DV(ζa)ζ̇a ≤ −c3V(ζa)+ χ2d2, (15)

where ζ̇a = (Ẋf , ẇn) ∈ �2(N�;R) as defined in (10). Then, the
origin of the closed-loop system (10) is zero-input exponen-
tially stable with region of attraction containing {ζ, V(ζ ) ≤
c4}. In particular, (12) holds with:

ψa =
√

2c2

c1
, υa = c3

2
, ρa = √

2
χ√
c1
. (16)

Proof: Define Ra = {ζa, V(ζa) ≤ c4}. We consider
a strong solution pair (ζa(t), d(t)); i.e., ζa ∈ Ra and
d ∈ S ∩ Lip(domd;R) for all t ∈ domζa where domζa is
an interval of R≥0 including zero. Now, consider the func-
tion W : dom ζa −→ R defined by W(t) = (V ◦ ζa)(t). Then,
since V : �

1(N�;R) is Fréchet differentiable everywhere and
ζa : domζa −→ �

1(N�;R) is differentiable almost everywhere, it
follows that Ẇ(t) = DV(ζa(t))ζ̇a(t). Using (15), one gets, for
all t ∈ domζa, Ẇ(t) ≤ −c3W(t)+ χ2d(t)2. With (13), using
a similar argument as [10, Lemma 9.2, p. 347], one has that
ζa cannot leave the set Ra. Therefore, since W is continuous
on dom ζa, from comparison lemma [10, p. 102], we have:

W(t) ≤ e−c3tW(0)+ χ2
∫ t

0
e−c3(t−θ)d(θ)2dθ, ∀t ∈ domζa.

The latter, thanks to (14), ensures that the origin of the
closed-loop system is locally exponentially stable with respect
to the H1

a-norm and with a region of attraction Ra when
d = 0. The rest of the proof follows the proof done in
[19, Proposition 2].

A. Construction of the Functional V
The result given next provides sufficient conditions for

local exponential stability in the form of quadratic matrix
inequalities.

Theorem 1: Suppose there exist P ∈ S
4N
p ,T ∈ R>0,G ∈

R
1×4N , Aaw ∈ R

2N×2N,Baw ∈ R
2N,Caw ∈ R

1×2N and
α, β, γ, τ1, τ2 ∈ R>0 such that:

�a :=

⎡

⎢⎢⎢
⎣

A1 PB11 − G�T PB12 PB13

� α′‖b‖2
L2 − 2T 0 0

� � α′‖m‖2
L2 − τ2 0

� � � − β

⎤

⎥⎥⎥
⎦

≤ 0 (17)

[
P K

� − G�
� ū2

l

]
≥ 0 (18)

τ2ξ
−1 − τ1 < 0 (19)

�n := λn

(
−λn + qc + τ1 + 3

α
+ β

2γ
Mφ

)
≤ 0,

∀n ≥ N + 1 (20)

where α′ = αγ , A1 := He(PA11) + τ1P + A22, A22 :=
[

0 0 0
0 α′‖b‖2C�

c Cc 0
0 0 0

] and M� := ∑
i≥N+1

�i(0)2

λi
. Then, the

parameters Aaw,Baw,Caw,Daw solve Problem 1. In particu-
lar, (12) holds with:

ρa =
√

2τ2√
min{λmin(P), γ p�, γ q�} , va = τ1

2

ψa =
√

2 max{λmax(P), γ p�, γ q�}
min{λmin(P), γ p�, γ q�} . (21)

Proof: The proof of the result hinges upon Proposition 2
with the following selection of the Lyapunov functional:

V : �
1(N�;R) −→ R

ζa �→ X�
f PXf + γ

∑

n≥N+1

λnw2
n. (22)

Condition (14) holds for c1 := min{λmin(P), γ p�, γ q�} and
c2 := max{λmax(P), γ p�, γ q�} which are strictly positive. Now
we show that under the assumptions of the result, (15) holds.
In particular, let V̇(ζa, d) := DV(ζa)ζ̇a.

To this end, let V1(Xf ) := Xf
�PXf . Then, one gets:

DV1(Xf )Ẋf =
[ Xf

d
ỹ
φ

]�[
He(PA11) PB12 PB22 PB23

‘� 0 0 0
� � 0 0
� � � 0

][ Xf
d
ỹ
φ

]

.

Let G := [
G1 G2

] ∈ R
1×2N × R

1×2N . Note that, due to
condition (18), for any Xf satisfying X�

f PXf ≤ 1, it holds
Xf ∈ {Xf ∈ R

4N; |KXf − GXf | ≤ ūl}. Therefore, by using [20,
Lemma 1.6, p. 43] with v1 = KXf and v2 = GXf , it holds

φ(KXf )
�T(φ(KXf )+ GXf ) ≤ 0 (23)

for all Xf satisfying X�
f PXf ≤ 1. In particular ζa ∈ Ra, then

we have that X�
f PXf ≤ 1 and so (23) holds, and we get the

following inequality

DV1(Xf )Ẋf − τ2d�d

≤ DV1(Xf )Ẋf − τ2d�d − 2φT(φ(KaXf )+ GXf ). (24)

Now, let V2(wn) := γ
∑

n≥N+1 λnw2
n with γ > 0. Then

DV2(wn)ẇn = 2γ
∑

n≥N+1

λn((−λn + qc)w
2
n + bnσ(v)wn

+ mndwn).

Thus, bearing in mind that V = V1 + V2, using (24) for all
ζa ∈ Ra, one gets:

V̇(ζa, d)+ τ1V(ζa)− τ2d2

≤ π�

⎡

⎢
⎢
⎣

He(PA11)+ τ1P PB11 − G�T PB12 PB13

� − 2T 0 0
� � − τ2 0
� � � 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

Xf

φ

d
ỹ

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
π

+ 2γ
∑

n≥N+1

λn[(−λn + qc + τ1)w
2
n + bnKXf wn + bnφwn

+ mndwn] (25)

The rest of the proof follows the proof in [19, Th. 4] with
adjustments. Thus, for all ζa ∈ Ra and d ∈ R,

V̇(ζa, d)+ τ1V(ζa)− τ2d2

≤ π��aπ + 2γ
∑

n≥N+1

λn

(
−λn + qc + τ1 + 3

α
+ β

2γ
M�

)
w2

n
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where �a is defined in (17). Therefore, due to the satisfaction
of (17), (18), and (20), one gets, for all ∀ζa ∈ Ra, d ∈ R:
V̇(ζa)+ τ1V(ζa)− τ2d2 ≤ 0, which corresponds to (15) with
χ = τ2, c3 = τ1, and c4 = 1. To conclude, observe that with
the above selection of the parameters in Proposition 2, (19)
matches (13). Hence, the result is established.

IV. COMPENSATOR DESIGN AND OPTIMIZATION ISSUES

Theorem 1 provides sufficient conditions for the solution to
Problem 1. However, it turns out that the matrix �a in (17)
is nonlinear in the decision variables P,Aaw,Baw,Caw,G,
and T . Thus, we transform the quadratic conditions found in
Theorem 1 into linear matrix inequalities that can be exploited
numerically in order to calculate the anti-windup parameters.

A. LMI-Based Compensator Design
Using Theorem 1 and getting inspiration from [18], we can

use a change of variables and derive a sufficient condition,
so that Problem 1 is numerically tractable, as stated in the
following proposition.

Proposition 3: Assume there exist X,Y ∈ S
2N
p ,K ∈

R
2N×2N,M ∈ R

N×2N , Q1 ∈ R
N×1, Q2 ∈ R

2N×1, Z1, Z2 ∈
R

1×2N , S, β, α′, α′′ ∈ R>0 and τ1, τ2 ∈ R>0 satisfying (19)
and:

� :=

⎡

⎢⎢⎢⎢
⎢
⎣

A2 B1 − Z B2 B3 ‖b‖L2��C�
c

� α′′ − 2S 0 0 0

� � α′‖m‖2
L2 − τ2 0 0

� � � − β 0

� � � � − 1
α′

⎤

⎥⎥⎥⎥
⎥
⎦

≤ 0 (26)

⎡

⎢
⎣

Y I YC�
2 − Z�

1

� X C�
2 − Z�

2

� � ū2
l

⎤

⎥
⎦ > 0 (27)

where A2 := He(A)+τ1 and the following matrices are defined
as:

A :=
[AY + B̄M A

K XA
]
,X :=

[
Y I
I X

]
,Z :=

[
Z1
Z2

]
;

B1 :=
[

B′
1S + B̄Q1

Q2

]
,B2 :=

[
B′

2
XB′

2

]
,B3 :=

[
B′

3
XB′

3

]

and C2 := [
0 Cc

]
, � := [

YB̄ B̄
]�. Then, I − YX is nonsin-

gular. Let U; V ∈ R
2N×2N be nonsingular matrices such that

YX + VU� = I and γ, α > 0 such that α′ = αγ.

Assume moreover that (20) holds. Then, the anti-windup
parameters defined by

[
Aaw Baw
Caw Daw

]
=

[
U XB̄
0 I

]−1[
K L
M E

][
V−� 0

0 I

]
−

[
XAY 0

0 0

]
(28)

where B̄ := [
0 I

]�, E := Q1S−1, L := Q2S−1 − XB′
1, solve

Problem 1 with (21).
Proof: Let T = S−1. First note that, due to (27), I − YX

is nonsingular. Let Y :=
[

Y I
V� 0

]
and P :=

[
X U

U� X̂

]
, where

X̂ := U�(X−Y−1)−1U. Since V is nonsingular, it follows that
Y is so. Simple manipulations yield

�′
a := Diag(Y, S, I, I)��aDiag(Y, S, I, I)

=

⎡

⎢⎢
⎣

A3 Y�PB11S − Y�G� Y�PB12 Y�PB13

� α′‖b‖2
L2 S2 − 2S 0 0

� � α′m‖2
L2 − τ2 0

� � � − β

⎤

⎥⎥
⎦

with G :=
[

Z1
Z2

]�
Y−1 ∈ R

1×4N and A3 := Y�(He(PA11) +
A22 + τ1P)Y .

We may check that

Y�(He(PA11))Y = He(A); Y�PY = X;
Y�PB11S =

[
B′

1 + B̄Daw

X(B′
1 + B̄Daw)+ UBaw

]
S = B1;

Y�PB12 = B2; Y�PB13 = B3; Y�G� = Z;
Y�A22Y = ��α′‖b‖2

L2 C�
c Cc�. (29)

Thus, using Schur complement lemma, the following equiva-
lence holds �′

a < 0 ⇐⇒ � < 0. Therefore, under (26), (17)
holds. Moreover, notice that from (27), it holds X > 0.
Hence, thanks to the second relationship in (29) and Y being
nonsingular, it follows that P > 0.

In addition, again by relying on the nonsingularity of Y ,
multiplying the matrix in the left-hand side of (18) by Y�
and Y on the right-hand side, we obtain that (18) is implied
by (27). Therefore all the assumptions in Theorem 1 hold,
thereby concluding the proof.

Remark 1: Notice here also that the matrix in (26) is non-
linear in the terms X,Y, τ1, α

′. The nonlinear terms τ1X, τ1Y ,
1
α′ , become linear if τ1, α′ are fixed by performing a line
search on τ1, α

′ ∈ R≥0. By choosing γ = β, we can deduce
the value of α from α′.

Remark 2: It is worth to mention that, due to the specific
construction of the Lyapunov functional in Theorem 1, our
conditions are only sufficient.

B. Optimal Compensator Design

The minimization problem of the effect of the external per-
turbations on system (3) in closed loop with (8) and (9) boils
down to designing the anti-windup with minimal ρa in (12).
Due to (21), such minimization can be achieved by solving
the following optimization problem:

inf τ2 + r − β

s.t: (19), (20), (26), (27),X,Y ∈ S
2N
p ,

[
−rI V� 0
� −Y I
� � −X

]
≤ 0. (30)

Minimizing the value of r is equivalent to maximizing
λmin(P) with P as in Proposition 3. Indeed, it turns out that
P−1 = [ Y V

� V�(Y−X−1)−1V ] and the last constraint in (30) is
equivalent to P−1 − rI ≤ 0, i.e., λmin(P)−1 ≤ r. Other
optimization problems could be solved, as the maximization
of the size of the region of attraction for the local expo-
nential stability of the origin of (3) in closed loop with (8)
and (9).

Remark 3: The basic algorithm to design the anti-windup
compensator is as follows. For the given system, we numer-
ically solve the linear conditions (19), (26), (27) for N ≥ 1.
Then, we confirm that (20) holds for the chosen N. If not,
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Fig. 1. Left: time evolution of the output y with anti-windup (solid-
blue line), without anti-windup (dashed-red line) and without saturation
(dotted-black line). Right: time evolution of the saturated control sig-
nal u(t).

we increment N and repeat the procedure. The anti-windup
parameters are then deduced using (28).

V. NUMERICAL SIMULATION

In this section, we use the YALMIP package in MATLAB
to solve the LMIs and derive a feasible solution to Problem 1.
Consider (3) with b(z) = m(z) = p(z) = q(z) ≡ 1. We illus-
trate the result of Section IV using a modal approximation
that captures the 50 dominant modes of the reaction-diffusion
plant with an in-domain disturbance given by, for all t ≥ 0,
d(t) = 0.5 sin(2t), so that Definition 1 hold with ξ = 1. The
saturation limit is ūl = 1. Choose qc = 3 such that the open-
loop plant is unstable with N0 = 1. We consider a given output
feedback controller rendering the closed-loop, system with-
out saturation, exponentially stable. Following the algorithm
described in Remark 3, (20) holds for a minimum dimension
of the finite-dimensional controller N = 2 for which condi-
tion (20) holds. For this selection of the controller, solving (30)
gives:

Aaw =
[

0.53 0.01 −0.18 5.17
−0.02 −22 5.05 −1.87
−0.25 1.36 −149 1.65
−7.42 9.23 −24 −1.4

]

,Baw =
[ −81

−14
34−195

]

Caw = [ −18 −34 −12 −28
−4 −23 15 −29

]
,Daw = [

197
124

]
(31)

Figure 1 shows that the norm of the output of (10) with
anti-windup converges to zero faster and smoother than that
without anti-windup, imitating the linear behavior. Also, the
effect of the disturbance on the steady-state reflects the bound
in (12) with ρa = 1.3, ψa = 21, νa = 0.5. Furthermore,
Figure 1 shows that the control input in the closed-loop
system with anti-windup tends to saturate for a longer time.
In addition, we notice that λmin(P)with anti-windup = 0.34 >
λmin(P)without anti-windup = 0.9 which means the region of
attraction is indeed maximized.

VI. CONCLUSION

In this letter, we designed an anti-windup compensator for
a reaction diffusion equation with in-domain saturated con-
trol inputs. The proposed compensator allowed to compensate
for the control saturation. Sufficient conditions for regional
exponential stability and input-output stability were devised.
A numerical affordable approach to the design of the com-
pensator was proposed. The use of more general Lyapunov
functionals and alternative anti-windup schemes are currently
part of our research.
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