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Local Convergence of Multi-Agent Systems
Toward Rigid Lattices

Andrea Giusti

Abstract—Geometric pattern formation is an important
emergent behavior in many applications involving
large-scale multi-agent systems, such as sensor
networks deployment and collective transportation.
Attraction/repulsion virtual forces are the most common
control approach to achieve such behavior in a distributed
and scalable manner. Nevertheless, for most existing
solutions only numerical and/or experimental evidence of
their convergence is available. Here, we revisit the problem
of achieving pattern formation in spaces of any dimen-
sion, giving sufficient conditions to prove analytically
that under the influence of appropriate virtual forces, a
large-scale multi-agent swarming system locally converges
towards a stable and robust rigid lattice configuration.
Our theoretical results are complemented by exhaustive
numerical simulations confirming their effectiveness and
estimating the region of asymptotic stability of the rigid
lattice configuration.

Index Terms—Distributed control, multi-agent systems,
pattern formation, stability analysis, swarm robotics.

. INTRODUCTION

ANY natural and artificial systems consist of multiple
interacting agents; their behavior being determined by
both the individual agent dynamics and their interaction. In
some applications the number of agents can be extremely large
(large-scale multi-agent systems) and the role played by their
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interconnections becomes predominant over their individual
dynamics [1]. Examples include cell populations [2], swarm-
ing multi-robot systems [3], social networks [4] among many
others. Some of the most relevant emerging behavior exhibited
by these systems involve their spatial organization, coordina-
tion, and cooperation [5]. A notable case is geometric pattern
formation [6] where the agents are required to self-organize
into some desired pattern, such as, for example, triangular lat-
tices consisting of repeating adjacent triangles. Applications of
pattern formation include sensor networks deployment [7], col-
lective transportation and construction [8], [9], and exploration
and mapping [10].

Most of the existing distributed control algorithms for geo-
metric pattern formation rely on the use of virtual forces
(or virtual potentials), [7], [11], [12], [13], [14], [15], [16],
[17], [18]. Within this framework, agents move under the
effect of forces generated by the presence of their neighbor-
ing agents and the environment, causing attraction, repulsion,
alignment, etc.

Interestingly, most strategies are validated only numerically
or experimentally [7], [11], [12], [13]. Among the exceptions,
in [19], a geometric control approach based on trigonomet-
ric functions is proposed to build triangular lattices, and its
global convergence is proved. The extension to 3D spaces is
validated analytically in [20]. Moreover, harmonic approxima-
tion [21] provides necessary conditions for the local stability
of a lattice. These conditions are used in [14] to numerically
design a virtual force that locally stabilizes a hexagonal lat-
tice. A general analysis of the effects of attraction/repulsion
virtual forces is carried out in [22], where the authors prove
that the agents converge inside a bounded region, even though
the specific equilibrium configuration is not characterized. We
wish to remark here that formation control [15], [16], [17] dif-
fers from geometric pattern formation because of a typically
smaller number of agents (order of tens) with, possibly, unique
identifiers, numerous roles for the agents and often some coor-
dinated motion of the agents. Similarly, when solving flocking
control problems, the emergence of coordinated motion is the
crucial concern [18], [23], [24].

In this letter, we revisit the problem of geometric pattern for-
mation using attraction/repulsion virtual forces with the aim
of bridging a gap in the existing literature and deriving a gen-
eral proof of convergence when considering the formation of
rigid lattice configurations. When compared to previous work,

For more information, see https://creativecommons.org/licenses/by/4.0/
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e.g., [18], [19], [20], [21], [22], our stability results (i) can
be applied to most control laws based on virtual forces (or
potentials), rather than only to a specific algorithm [19], (ii) are
sufficient rather than necessary conditions, as, e.g., in [21], (iii)
characterize the asymptotic configuration of the agents, rather
than just proving its boundedness [22], and (iv) guarantee the
emergence of rigid lattices rather than less regular ones, e.g.,
the a-lattices studied in [18], which allow for disconnected
graphs and the coexistence of heterogeneous patterns (e.g.,
triangular and square).

Il. MATHEMATICAL PRELIMINARIES

Given a vector v € RY, [v]; is its i-th element, ||v| its
Euclidean norm, and v := %” its direction. 0 denotes a column
vector of appropriate dimension with all elements equal to 0.
Given a matrix A, [A]; is its (i, j)-th element.

Definition 1 (Incidence matrix): Given a digraph with n
vertices and m edges, its incidence matrix B € R"™™ has
elements defined as

+1, if edge j starts from vertex i,
[B];j := {—1, if edge j ends in vertex i,
0, otherwise.

Definition 2 Framework [16, p. 120]: Consider a (di-)graph
G = (V, £) with n vertices, and a set of positions py, ..., Ppn €
R9 associated to its vertices, with p;i #p; Vi,je{l,...,n}
A d-dimensional framework is the pair (G, p), where p =

'll' p,TL]T € R Moreover, the length of an edge, say
i) € & is | pi — pj-

Definition 3 (Congruent frameworks [25, p. 3]): Given a
graph G = (V, £) and two frameworks (G, p) and (G, q), these
are congruent if ||p; — p;| = |ai — q;| Vi.j e V.

Definition 4 (Rigidity matrix [25, p.5]): Given a d-
dimensional framework with n > 2 vertices and m edges, its
rigidity matrix M € R"*" has elements defined as

[p; — pilk, if edge e starts from vertex i and ends in vertex j,

[pi — pjlk,
0, otherwise.

Mle, a—d+k) = if edge e starts from vertex j and ends in vertex i,

with k e {1,...,d}.

Definition 5 (Infinitesimal rigidity [16, p. 122]): A frame-
work with rigidity matrix M is infinitesimally rigid if, for any
infinitesimal motion, say u,! of its vertices, such that the length
of the edges is preserved, it holds that Mu = 0.

To give a geometrical intuition of the concept of infinites-
imal rigidity, we note that an infinitesimally rigid framework
is also rigid [16, p. 122], according to the definition below.?

Definition 6 (Rigidity [25, p. 3]): A framework is rigid if
every continuous motion of the vertices, that preserves the
length of the edges, also preserves the distances between all
pairs of vertices.

Consequently, in a rigid framework, a continuous motion
that does not preserve the distance between any two vertices
also does not preserve the length of at least one edge.

lu can be interpreted as either a velocity or a small displacement.

2Rarc:ly, a rigid framework is not infinitesimally rigid; e.g., [25, p. 7].

R A
N\ ® 9—n
R

JAVAN VAVA
JAVAVAVAVAVAVAVAVAVAY
\VARVAVAVAVERY

() (b) (©)

Fig. 1. (a) Adjacency set (red) of an agent (black). (b) A rigid lattice with
d =2, n=100. (c) A rigid lattice with d = 3, n = 8.

Theorem 1 [26, Th. 2.2]: A d-dimensional framework with
n > d vertices and rigidity matrix M is infinitesimally rigid if
and only if rank(M) = dn — d(d + 1)/2.

We denote by swarm a set of n € N. identical agents,
say S :={1,2,...,n}, that can move in R4 and interact with
their neighbors to generate emergent behavior [5]. For each
agent i € S, x;(f) € R denotes its position at time 7 € Rx.
Moreover, we call x() = [xI(t) x;ll—(t)]T € R the con-
figuration of the swarm, define x.(¢) = %Z?:l x;() € R?
as its center, and denote by r;(t) = x;(¢) — x;(?) € R? the
relative position of agent i with respect to agent j.

Definition 7 (Adjacency set): Given a swarm S, the adja-
cency set of agent i at time ¢ is A;(¢) := {j € S\{i} : |[rj(®)| <
Ry}, where R, € R. is the maximum link length.

In practice, we will say that two agents are connected if and
only if their distance is at most R,; see Fig. la.

Definition 8 (Links): A link is a pair (i, j) € S X S such that
Jj € Ai(0); x| is its length. The set of all links existing in
a certain configuration X is denoted by £(X).

Notice that (i,j) € £(X) < (j, i) € £E(X).

Definition 9 (Swarm graph and framework): The swarm
graph is the digraph G(X) = (S, £(X)). The swarm framework
is F(X) = (G(X), X).

Definition 10 (Rigid lattice): Given a swarm with frame-
work F(x*), we call X* a rigid lattice configuration if

(A) F(x*) is infinitesimally rigid, and
B) || =R. Vi.j) € EE),
where R € R. ¢ denotes the desired link length.

Figs. 1b, 1c portray examples of rigid lattices, for d = 2 and
d = 3: a tessellation of triangles, and one of tetrahedra and
octahedra, respectively. It is immediate to verify that rigid lat-
tices are characterized by connected graphs where each agent
has at least d links, yielding robustness to link failure. A sim-
ilar structure is the «-lattice from [18], which requires 10 but
not 10 (hence, a rigid lattice is an «-lattice, but the converse is
false). Thus, «a-lattices can display more heterogeneous struc-
tures, containing different polytopes (e.g., squares, cubes), or
even be disconnected, which can be unsuited for applications
such as region coverage or distributed sensing. Note however
that vacancies, i.e., holes in the lattice, can be present in both
rigid and «-lattices.

In a rigid lattice, we denote by Rpex; the minimum distance
between two not directly connected agents (e.g., Ryext = RV3
if d =2 and Rpext = RV2 if d = 3). Here, we assume that
Ry € 1R; Rpexi[, so that, when the swarm is in a rigid lattice
configuration, the adjacency set (Definition 7) of any agent
includes only the agents in its immediate surroundings, and all
the links (Definition 8) have length R (see Fig. 1). Moreover,
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Fig. 2. (a): Sets of rigid lattices configurations. (b): Sets used in the
proof of Theorem 2.

T C R is the set of all rigid lattice configurations; it is
immediate to verify that 7 is unbounded and disconnected.

Definition 11 (Congruent configurations): Given a config-
uration X°, we define the set of its congruent configurations
['(x°) as the set of configurations with congruent associ-
ated frameworks (see Definition 3), that is I'(x®) = {Xx €
Rdn . ||x,- — xj“ = fo — x;?”, Vi,j € S}.

These configurations are obtained by translations and rota-
tions of the framework F(X°); thus, it is immediate to verify
that ['(x®) is connected and unbounded for any X° (see
Fig. 2a). Also, note that X* € T < I'(x*) C 7, and

T = U I'(x"). (1)
x*eT
In the following, we omit the dependence on time when
clear from the context.

1. PROBLEM STATEMENT

Consider a swarm S of n agents, with agents’ dynamics
Xi() =wi(1), VieSs, 2

where v;(7) € R? is a distributed control law. We aim to select
and validate such a law to let the swarm achieve a rigid lattice
configuration. Then, let Ry € R.o be a sensing radius and
define the interaction set of agent i at time ¢ as

ity = {j € S\ {i} : [ry(@)] < Ry}

Given an interaction function f : R.g — R, we select u;(?)
in (2) as the distributed virtual forces control law

w = Y f(|r0]) &5 3)
JELi(D)
Note that in general there is no specific relation between
7Z; and A; (see Definition 7); however, we reasonably assume
that Ry > R,, so that

A CT;, Vied. 4)

The following result slightly extends [22, Lemma 1].

Lemma 1: The position of the center of the swarm, say X,
under the control law (3) is invariant, that is X, = 0 Vx € R,

Proof: Exploiting (2) and (3), the dynamics of the center
of the swarm is given by X, = 13" % = 13" wu =
% iy Zjel',-f(”rij”) r;. Since the existence of any link (i, j)
implies the existence of link (j, i) (see Definition 7), for any

term f(||r,:,~||) r; there exists a term f(||rjl~ ||) ri = —f(“rij H) T
(because |r;;| = ||rji|| and tj; = —F};). Therefore, the sum of
the two is zero, yielding the thesis. |

(a) (b)

Fig. 3. (a): An interaction function f satisfying Assumption 1 and its
potential P. (b): Interaction functions in (12) and (13) in the case d = 2.
The red dot highlights the zero of the functions in z = R.

IV. CONVERGENCE TO A RIGID LATTICE
CONFIGURATION

We can now state our main result, i.e., that, given an
interaction function f (in (3)) generating short range repulsion
and long range attraction, the set of rigid lattice configurations
is locally asymptotically stable [27, Definition 1.8].

Assumption 1: f (in (3)) is such that:

(al) f(R) =0,

(a2) f(z) > 0 for z € 10; R[ and f(z) < O for z € 1R; R,[,

(a3) f(z) is continuous in ]0; R,],

(a4) f(z) =0 for any z > R,.

An exemplary interaction function fulfilling the assumption
above is portrayed in Fig. 3a.

Without loss of generality, we further assume that, under
Assumption 1, in a sufficiently small neighborhood of a rigid
lattice configuration, all other equilibria are also rigid lat-
tice configurations (supporting evidence showing that this
assumption is not restrictive is reported in the Appendix).

Theorem 2: (Stability of rigid lattices): Let Assumption 1
hold. Then, for any rigid lattice configuration X*, I'(x*) is a
locally asymptotically stable equilibrium set. Consequently, 7
is also a locally asymptotically stable equilibrium set.

Proof: Let us consider any rigid lattice configuration X* €
T, with center x! := 13 x* and relative positions ry,
and the set I'(x*) of its congruent configurations. Recalling
Definition 10(B). and (al), we have that X* is an equilibrium
point of (2)—(3); thus, I'(x*) and 7 are equilibrium sets. Next,
we will prove local asymptotic stability of I'(x*) C 7, which
implies local asymptotic stability of 7 through (1).

Step 1 (Lyapunov function): Given a configuration X €
R with center x. and inducing the links in £(X) according
to Definition 8, let m := |£(X)| and order the links in &(X)
arbitrarily, so that ry, ..., r;, refer to the relative positions r;j
for (i,j) € £(X). Recalling (a3), we can define the potential
function P:]0,R,] — R given by P(z) = — [pf(y)dy (see
Fig. 3a). Note that P(R) =0, d—P(z) = —f(2), and, from (a2),

P(z) >0 VzeR.o\({R}. (®))

Then, let us consider the candidate Lyapunov function

VE =[xt x|+ Y P, (©6)
ke&(X)

By (5), it holds that V(x) > 0 VX € R and V = 0 if and
only if both x. = x? and Definition 10(B) holds.
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Step 2 (Properties of V): V(X) is discontinuous over Rdn
(because £(x) changes when links (dis-)appear). However,
V(X) is continuous and differentiable in any subset of R%
where the set £(X) of links is constant. To find such a set, we
seek conditions on X such that £(X) = £(x*) (see Definitions 7
and 8), i.e.,

V(i) € EXF),
V(i j) & EXF).
Eq. (7a) means that all links in £(x*) are preserved in £(X),
while (7b) means that no new links are created in £(X) with

respect to £(x*).With simple algebraic manipulations it is
possible to show that (7a) and (7b) hold if x € B, where

(7a)
(7b)

Jey| < R
Ity > R

Bi=(xe R : [|ry] - |}

’ <B, VijeS), 8

and B < min;jes|Ra — [Irjlll; B can be intended as a
“neighborhood” of I'(x*) with “width” 8 (see Fig. 2b). Thus,
E(x) = £(X*) in B and V is continuously differentiable in 5.

Step 3 (Analysis of V): Now, we restrict our analysis
to the set B to study the attractivity of I'(x*). We start
by studying the dynamics of the agents. From (2)-(3), we
have x; = ZjeLf(||rU||)fl]' Hypothesis (a4) and (4) imply
that Zjez,-f(”l'ij”)f'ij = ZjeAif(”rij”)f'ij- Hence, using the
incidence matrix B (Definition 1) of the swarm graph, we get

m
= flegDig = Y Blaf (lrlDie. ©)
jeA; k=1
Moreover we can write the dynamics of the relative positions
along a link k as ¥x = )7, [BlaX;. Therefore, exploiting (6),
Lemma 1, and (9), we get

m

"9V Al "
V&) = r, = )24 T Bl k.
® Zanrkn arg kZ <||rkn>rk§[ lacks

k=1 =1

==Y flind) BTG % = - > &% = —x"x <0, (10)
i=1

i=1 k=1

allegll _ &T
o = Tk We

can hence conclude that V(X) = 0 if and only if x=0,ie.,
in correspondence of equilibrium configurations.

Choosing g in (8) small enough, we exclude the presence of
equilibrium configurations not belonging to I'(x*), and hence

{ V(X) =0, if x € ['(X*),

where we also used that P/ = —f and that

V(X) <0, if X € B\ ['(X*). an

Step 4 (Applying LaSalle’s invariance principle): To com-
plete the proof, we define a forward invariant neighborhood of
x* and then apply LaSalle’s invariance principle. Given some
o € R, let Q be the largest connected set containing X* such
that V(X) < w VX € Q (see Fig. 2(b)). In particular, we select
o small enough that Q2 C B.3 Since V(X) < w and V(X) < 0
for all x € 2, then 2 is forward invariant. Moreover, 2 is
closed, because V is continuous in €2, and 2 is the inverse
image of the closed set [0, w]. €2 is also bounded because

3Such w exists because B is a “neighborhood” of " (X*) (in the sense of (8))
and, by the rigidity of framework F (x*) (Definition 6), any continuous motion
of the vertices that changes the distance between any two vertices also changes
the length of at least one link, causing V to increase.

(i) translations too far from Xx* cause V to increase beyond w
(see (0)), and (ii) 2 C B implies that the deformations of the
framework are bounded (see (8)).

As Q is closed, bounded (thus compact) and forward invari-
ant, we can apply LaSalle’s invariance principle [28, Th. 4.4],
and noting that, in Q, V(X) = 0 if and only if X € I'(X*)
(see (11)), we get that all the trajectories starting in 2 con-
verge to ['(x*) N Q. This and the forward invariance of
imply that I'(x*) is locally asymptotically stable, and so is 7~
because of (1). |

Proposition 1 (Collision — avoidance): ~Let  P° =
lim,\ o P(z). (i) No collisions between agents occur if
PY = oo0. (ii) In a sufficiently small neighborhood of a rigid
lattice configuration, no collisions occur if x(0) is such that
Zkgg()_() P(|lrg ) < P

A proof of Proposition 1 can be found in the Appendix.

Remark 1 (Path tracking): Path tracking can be obtained
by adding a velocity term w(f) on the r.h.s. of (2). Theorem 2
still holds, as the analysis can be carried out on new states y;,
with y;(t) = x;(t) — [y w(t)dt and y; = u;.

Remark 1 only aims to show feasibility of path tracking;
clearly, more sophisticated strategies can be designed.

Remark 2 (Second order dynamics): It is possible to show
that the results in Theorem 2 also hold in the case of second
order nonlinear dynamics, that is X; = v;, v; = g(||vi|)Vv; +
u;, where x; and v; are the position and velocity of agent i,
and g : R59g — R<p is a friction term with g(z) = 0 &
z = 0 and such that ve(r) = Y ., v{(t) — 0. Namely, the
proof of Theorem 2 can be adapted by using the function
V = Y ieew PUrel) + %Z;’Zl V;er' in (6) and exploiting
that x.(f) := ) i, X;(¢) remains bounded, to apply LaSalle’s
invariance principle.

V. NUMERICAL VALIDATION

In this section, we validate numerically the result presented
in Section IV and estimate the basin of attraction of 7.

A. Simulation Setup

We set n =100, R=1, Ry = 3, Ry = (1 + Rpext)/2 (ie.,
R, ~ 137 if d = 2; R, =~ 1.21 if d = 3). We validate our
strategy using two interaction functions, depicted in Fig. 3(b).
The first one is

2 .
g(% _ }-e) B if z€ 10;RI,
fi) =1 —gsin(@-Rgig) if z€ WR, (1D
0 if z > Ry;

with g = 0.5. f satisfies Assumption 1, is smooth in ]0; R,[
and limp o f1(z) = oo. The second interaction function f is
the Physics-inspired Lennard-Jones function [5], [11], i.e.,

H@ = min{(;% - Z%) 1},

where we select a = b = 0.5 and ¢ = 12 when d = 2 and
¢ = 24 when d = 3; see Fig. 3b. f> saturates to 1 as z \( 0 to
comply with possible actuator saturation. Moreover, f satis-
fies (al), (a2) and (a3) in Assumption 1 exactly, but (a4) only
approximately. This is intentional as it allows to account for

(13)
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Fig. 4. Time evolution of e for various interaction functions and values
of d. In each panel, 10 simulations with random initial conditions are
showed; the solid line is the mean; the shaded area is the minimum and
maximum.

long range attraction between the agents, which is frequently
required in swarm robotics applications [22].

To assess if the swarm is in a rigid lattice configuration, we
check conditions (A), (B) in Definition 10. To evaluate 10 we
use Theorem 1. To evaluate (B), we define the error e(t) :=
maxgeg o | ITe(® || — R|, which is zero when (B) holds. Also,
as long as e(f) stays strictly lower than R, — R, links in the
configuration of interest are neither created nor destroyed.

For each simulation, the initial positions of the agents are
obtained by picking a random rigid lattice configuration and
then applying, to each agent, a different random displacement
drawn from a uniform distribution over a disk (when d = 2)
or a sphere (when d = 3), having radius § € Rx.

All simulation are run in MATLAB;* the agents’ dynam-
ics (2)—(3) are integrated using the forward Euler method with
a fixed time step equal to 0.01s.

B. Numerical Results

To validate Theorem 2, in Fig. 4 we report the time evo-
lution of the error e(f) for 10 simulations where the swarm
starts from a perturbed rigid lattice configuration. Simulations
are presented for d € {2, 3} and for both interaction functions
f1 and f>. In all cases, infinitesimal rigidity is preserved and
e(t) converges to zero, denoting local stability of the lattice.

To estimate the basin of attraction of the set of rigid
lattice configurations, we performed extensive simulations
for various values of 4, and characterize the steady state
configurations in Fig. 5. Namely, for § smaller than 0.25
for d = 2 and 0.2 for d = 3 all simulations converge to
a rigid lattice configuration. Then, as § increases, fewer
simulations converge to rigid lattices, until none does. Note
that e(0) < 24, therefore 6 = 0.25 (resp. 6 = 0.2) corresponds
to a perturbation of up to 50% (resp. 40%) of the initial
link length, giving an estimation of the basin of attraction of 7.

4Simulations are performed using SwarmSim V2. The code is available at
https://github.com/diBernardoGroup/SwarmSimPublic.
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Fig. 5. Simulations for different values of § and interaction function f,.
(a), (b): Terminal values of e and p, respectively for d = 2 and d =
3. p is the fraction of simulations converging to an infinitesimally rigid
configuration. For e, the solid line is the mean; the shaded area is the
minimum and maximum. 20 simulations with random initial conditions
are performed for each value of §, and last 20 s. (c), (d): Initial and final
configurations of representative simulations for specific values of § in the
case that d = 2.

VI. CONCLUSION

We proved analytically local asymptotic stability of rigid
lattices for swarms under the action of a distributed control
law based on virtual attraction/repulsion forces. The theoretical
derivations were supported by exhaustive numerical simula-
tions, providing also an estimate of the basin of attraction. The
mild hypotheses required on the interaction function allow for
wide applicability of the theoretical results.

Future work will focus on an analytical characterization
of the basin of attraction of 7, the study of the effect of
measurement errors on the lattice configuration, anisotropic
virtual forces, interaction with the environment (e.g., obstacle
avoidance), and the extension of the results to other geometric
lattices, such as squares and hexagons.

APPENDIX

To confirm the effectiveness of our theoretical results, we
provide below further semi-analytical evidence that the set of
rigid lattice configurations 7 is locally asymptotically stable,
which also excludes the presence of other equilibria in an
arbitrarily small neighborhood of it. To do so, we linearize
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system (2) (3) around a rigid lattice configuration, say X*
obtaining X ~ J(X*) (X — X*), with J(¥*) € R¥>*4" derived as
follows.

Jacobian of (2)—(3): System (2)—(3) can be recast as
X=(BFG'BH®I)x = (BHB) @)%,  (14)

where F, G, H € R™*™ are diagonal matrices; [F;; := f(||r;|),
[Glii := |Iri|l, and H := FG~!. The Jacobian of (14) is

J= (BB @ L)%+ BHB) @ L= Ji + ], (15)

where % € Rmxmxdn js o tensor, and [ BT] =
[%];,;, kBT € R™" with notation [-]. . denotrng the matrix

obtained by fixing the third index of the tensor. From 1, for all
rigid lattice conﬁgurations we have J, = (BHBT) @ I; = 0.
Then, [J1].x = (B[ ]”kBT®Id)x From [25, p. 20] we have

"3”[1’ [ = 2[M]; x (see Definition 4), that is ‘)”r’ ” ”r i M]; &,

and thus
_ Alf eI/ Nl a e |l
Alr; |l O[Xlk

ax iaisk

[E} =0, ifi#j. (16b)
-

0x

Numerical analysis: We set R = 1 and generated
1520 random rigid lattice configurations (10 per each n €
{25,26,...,100}, and each d € {2, 3}). For each of these
configurations, assuming f (in (3)) is in the form (13), we
computed J using (15)—(16) and found that in all cases J
has d(d + 1)/2 zero eigenvalues with eigenvectors {w }is and
dn—d(d+1)/2 negative elgenvalues with eigenvectors {w }-
Moreover, Mw =0 and Mw # 0; thus, from Deﬁmtron 5,

the span of {w?} corresponds to roto-translations and is a
hyperplane locally tangent to I'(x*) (see Definition 11), while
{W]:-t} correspond to other motions. Therefore, the center
manifold theorem [27, Th. 5.1] yields that I'(x*) is a cen-
ter manifold of system (2)-(3). Moreover, as expected from
Theorem 2, the reduction principle [27, Th. 5.2] confirms that
the dynamics locally converge onto the equilibrium set I"(x*),
and excludes the presence of other equilibria in an arbitrarily
small neighborhood of it.

Proof of Proposition 1: When a collision occurs, at least one
r;y becomes zero and thus, from (5), Zkeé‘(i) P(|lrel) > PO.
Equations (6) and (10) yield the first statement. The second
statement is obtained by recalling that Q2 C B and that 2 is
forward invariant (see Step 4 of the proof of Theorem 2). H
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