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A Hybrid Redesign for Robust Stabilization
Without Unit Input
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Abstract—We propose a redesign strategy to avoid an
arbitrary value of the input signal. With a hybrid architec-
ture based on a switching logic with two modes we obtain
robust global asymptotic stability and ensure that the input
never takes the unwanted value, while preserving the nomi-
nal closed-loop behaviour in a neighbourhood of the origin.
In the case where the minimization problem is too com-
putationally expensive, we provide a simpler, albeit more
conservative, way to determine the scaling factor. We then
present a nonlinear generalization to a fairly general class
of input-affine nonlinear systems. Numerical examples are
used to illustrate the theoretical results.

Index Terms—Hybrid systems, aerospace, Lyapunov
methods.

I. INTRODUCTION

CONTROLLING linear systems in the presence of input
saturation has been extensively studied in the literature

(see, e.g., [10], [13] and references therein). Less attention has
been devoted to the robust stabilization problem with reverse
input saturation constraints, such as avoiding a specific input
value. Among the few existing works, [1] addresses the case
of avoiding an unwanted value of an m-dimensional control
input. Recently, [2], [14] considered reverse polytopic input
constraints for linear systems based on hybrid switching.

A relevant case study where unwanted input values should
be avoided is the stabilization problem for underactuated UAVs
where the attitude dynamics is fully actuated but the position
dynamics is not, and the control force can be applied only
along certain directions of the airframe. Changing the attitude
of the platform to align the delivered force along the direction
needed for position control requires specifying a reference atti-
tude that becomes singular in free-falling conditions [6], [7],
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when the commanded thrust is zero. Existing designs either
impose conservative saturation bounds on the control force [6]
or modify the reference attitude in the neighborhood of the
singularity [9]. The former solution imposes performance lim-
itations since aggressive maneuvers, such as flips to push
the UAV downward with a large thrust, are discarded by
design. Instead, the latter solution precludes achieving a global
stability result. Another potential application example is space-
craft stabilization by means of control moment gyros, where
the gimbal-locking condition is problematic. Avoiding cer-
tain input values could resolve the associated singularity issue
instead of modifying the gimbal rates allocation algorithm
when passing through singularities, which locally perturbs the
torque commanded by the attitude controller [12].

An important challenge is to obtain robust stabilization,
despite the inevitably discontinuous action associated with this
goal. In this letter we focus on single input control systems
that we hybridly redesign preserving robust closed-loop stabil-
ity. A more general problem is solved with hybrid tools in [2],
[14], which deal with multivariable linear systems and where
the set of input values to be avoided is given by the union of a
finite number of closed polytopes. While we address the sim-
pler problem considered in [1] for single input systems, our
redesign allows for a natural extension covering a large class
of input-affine nonlinear systems. The proposed schemes guar-
antee uniform semiglobal dwell-time of the switching instants
and robustness to small perturbations.

This letter is organized as follows. In Section II we solve
the problem for the linear case, and Section III applies our
solution to a class of input-affine nonlinear systems.

Notation: R (R>0,R≥0) denotes the set of (positive,
nonnegative) real numbers, R

n denotes the n-dimensional
Euclidean space and R

m×n the set of m × n real matrices. I
denotes the identity matrix. Given A ∈ R

m×n, ||A|| : Rm×n →
R is the matrix norm induced by the vector norm | · |.
He(S) = S� + S, and λM(S) denotes the maximum eigen-
value of S. Given a set A ⊂ R

n, |x|A = inf{|x − y| : y ∈ A}
is the distance of a point x from a set A.

II. LINEAR REDESIGN

A. Problem Formulation

Consider the strictly proper linear plant{
ẋp = Apxp + Bpun
y = Cpxp,

(1)
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with xp ∈ R
np , un ∈ R, y ∈ R

mp , in feedback interconnection
with a linear dynamic controller{

ẋc = Acxc + Bcy
un = Ccxc + Dcy,

(2)

with xc ∈ R
nc . Defining the full state x := [x�

p x�
c ]� ∈ R

n,
with n = np + nc, the output un can be written as

un = DcCpxp + Ccxc = K

[
xp
xc

]
(3)

and the linear feedback interconnection becomes

ẋ = Ax + Bun = (A + BK)x, (4)

with A =
[

Ap 0
BcCp Ac

]
,B =

[
Bp
0

]
,K = [

DcCp Cc
]
.

Any linear stabilizing control design (such as H∞ or lin-
ear quadratic control) yields a controller of the form (2), thus
making our redesign technique broadly applicable.

Problem 1: Under the assumption that A + BK is Hurwitz,
define a hybrid controller modifying the closed-loop (1)-(2)
such that the following properties hold:

(i) GAS: the origin is robustly globally asymptotically
stable.

(ii) Unit input avoidance: the redesigned input u never takes
the value 1 along solutions.

(iii) Local preservation: the redesigned controller preserves
the nominal linear closed-loop dynamics (4) in a neigh-
borhood of the origin.

(iv) Output feedback: the redesigned controller only uses the
knowledge of xc and y, namely, only quantities available
to the linear controller.

Remark 1: Item (ii) of Problem 1 can be generalized to any
nonzero value by properly rescaling un and Bp.

In item (i) and the rest of this letter, we characterize robust-
ness of asymptotic stability in the sense of [5, Definition 7.15].

B. Redesigned Controller Architecture

We propose an architecture based on the hybrid dynamical
systems formalism in [5]. A logic variable q ∈ {−1, 1} is
introduced to model a switch between the nominal feedback
interconnection (1)-(2) (q = 1), and a modified feedback
interconnection obtained by rescaling the output of the control
system (q = −1). The redesigned output selection induced by
q is given by

u = 1 − 2qε

1 − 2ε
un =

⎧⎨
⎩

un, if q = 1
1 + 2ε

1 − 2ε
un, if q = −1

, (5)

where ε ∈ (0, 1
2 ) is a tuning parameter determining the

trade-off between robustness to measurement noise and preser-
vation of the nominal closed-loop performance. The resulting
feedback interconnection is shown in Figure 1. The logic
defining the value of q is implemented using the function

φ(u, q) = (q + 2ε)u − q − ε, (6)

which induces the flow and jump sets

C := {(x, q) ∈ R
n × {−1, 1}|φ(u, q) ≤ 0}

D := {(x, q) ∈ R
n × {−1, 1}|φ(u, q) ≥ 0}. (7)

Fig. 1. Redesigned plant/controller feedback interconnection.

Fig. 2. Example of input evolution generated by the hybrid architecture
with jump sets generated by the function φ(u, q).

The jump set D generated by the inequality φ(u, q) ≥ 0,
shown in Figure 2, can be expressed as

φ(u, q) ≥ 0 ⇔

⎧⎪⎨
⎪⎩

u ≥ 1 − ε

1 + 2ε
for q = 1,

u ≤ 1 + ε

1 − 2ε
for q = −1.

(8)

Defining the augmented state z = (x, q) ∈ R
n ×{−1, 1} and

the jump map toggling the value of q and leaving x unchanged,
the hybrid system describing the dynamics of z can be written
as ⎧⎪⎪⎨

⎪⎪⎩
ż =

[
ẋ
q̇

]
=

[
Ax + Bu

0

]
, z ∈ C

z+ =
[

x+
q+

]
=

[
x

−q

]
, z ∈ D.

(9)

The closed-loop hybrid dynamical system is then given
by (5), (6), (7), (9). Exploiting expression (8), Figure 2 illus-
trates a possible trajectory of the input and how the switching
logic ensures that it never crosses the line u = 1.

C. Main Results and Tuning Method

In accordance with Figure 2, to ensure ε
1−2ε > 0 and

ε
1+2ε̄ > 0, we constrain ε ∈ (0, 1

2 ), which also guarantees that
u = 0, q = 1 is not in the jump set and that the scaling factor
in equation (5) is not unbounded. More specifically, we show
next that ∃ε∗ ∈ (0, 1

2 ) such that, for any ε ∈ (0, ε∗), hybrid
system (5), (6), (7), (9) solves Problem 1. We also provide a
computationally attractive way to estimate ε∗.

First note that A + BK being Hurwitz implies that there
exists α > 0 and P = P� > 0 such that

He(P(A + BK)) ≤ −2αP, (10)

where α is any value less than or equal to the spectral abscissa
of A+BK. To simplify the notation in the following equations,
we introduce the additional variable η = 1−2ε̄

2ε̄ > 0, which
maps (0, 1

2 ) to (0,∞) with ε = (2(1+η))−1. It is then possible
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to select ε∗ = (2(1 + η∗))−1, where η∗ ∈ [0,+∞) is any
number satisfying

He(PBK) ≤ η∗αP. (11)

We emphasize that a large enough η∗ solving (11) always
exists, which will lead to a small enough ε∗ = (2(1 + η∗))−1.
We observe that the smaller the value of ε∗, the closer the
nominal controller will get to the unit value before jumping
(see Figure 2), which reduces the margin around the value
u = 1. For this reason, it is of interest to solve the following
quasi-convex generalized eigenvalue problem:

η∗ = min
η,P

η subject to (10), (11). (12)

Remark 2: Given the relations η = 1−2ε
2ε ∈ (0,+∞), since

ε ∈ (0, 1
2 ), and ε = 1

2(1+η) , we have that maximizing ε is
equivalent to minimizing η. Thus the best selection for η is
the solution of the optimization problem in (12).

Theorem 1: For any plant-controller interconnection (1)-(2)
such that A + BK is Hurwitz, pick any α in (10) smaller than
or equal to the spectral abscissa of A + BK, and select η∗ as
in (12) and ε∗ = (2(1 + η∗))−1. For any ε ∈ (0, ε∗), hybrid
system (5), (6), (7), (9) solves Problem 1.

Remark 3: Following the steps of [2, Th. 2] it is possible
to prove uniform global exponential stability in the t-direction
for (5), (6), (7), (9), thus showing a guaranteed t-exponential
decrease induced by the redesign law.

The following corollary gives an alternative way to com-
pute a suitable matrix P for the tuning of ε, which is more
conservative than the solution of (12) but can be used when
the minimization problem is too computationally expensive.

Corollary 1: Consider an arbitrary plant-controller
interconnection (1)-(2) such that A + BK is Hurwitz.
Given the matrix P = P� > 0 resulting from solving
the Lyapunov equation He(P(A + BK)) = −I, select
η∗ = 2λM(PBK + (PBK)�) and ε∗ = (2(1 + η∗))−1. Then,
the hybrid system (5), (6), (7), (9) solves Problem 1 for any
ε ∈ (0, ε∗).

Under mild controllability conditions, the next corollary
shows that using linear quadratic control to tune the gain
matrix K guarantees that the hybrid system (5), (6), (7), (9)
solves Problem 1 for any ε in the admissible range.

Corollary 2: Given any R = R� > 0 and Q = Q� ≥ 0 and
assuming (A,B) stabilizable and (A,Q1/2) detectable, when
selecting K = −R−1B�P with P = P� > 0 being the
unique solution to the algebraic Riccati equation He(PA) +
Q − PBR−1B�P = 0, then the hybrid system (5), (6), (7), (9)
solves Problem 1 for any ε ∈ (0, 1

2 ).
The proof follows immediately by noting that linear

quadratic control guarantees a gain margin in the range
[ − 6dB,+∞), which implies that the corresponding closed-
loop system is robustly GAS for any ε ∈ (0, 1

2 ) such that
1+2ε
1−2ε ≥ 1

2 , which holds ∀ε ∈ (0, 1
2 ).

Remark 4: The control scheme in Figure 1 can be inter-
preted as a feedback interconnection of an open loop plant with
input u and output un connected to a memoryless time-varying
gain in the sector [1, 1+2ε̄

1−2ε̄ ]. Input-Output stability arguments
based on the circle criterion can then be exploited to develop
generalized dynamical output feedback schemes.

To rule out rapid repeated jumps, we also prove uniform
semiglobal dwell-time, namely for each r > 0 there exists

Fig. 3. Closed-loop solution of (13)-(14). Altitude error time evolution
(Top). PID output with zoom around u = 1, showing the boundary of D
with dashed lines (Bottom).

τ > 0 such that, for any solution z satisfying |z(0, 0)| ≤ r,
tj+1 − tj ≥ τ for all consecutive jump times tj, tj+1 with j ≥ 1,
and (t, j) ∈ dom z.

Proposition 1: System (5), (6), (7), (9) enjoys a uniform
semiglobal dwell-time property.

D. Linear Example Study

Consider the linearized vertical dynamics of a quadrotor
UAV with mass m

ż = v, mv̇ = mg − Tc + d (13)

for which we consider the goal of asymptotically stabilizing a
desired altitude setpoint zd in the presence of an unknown con-
stant disturbance d and with the input constraint Tc = 0, which
is needed in hierarchical control strategies to avoid singular-
ity conditions [7]. To solve this task, select Tc = mg(1 − u),
where u is the output of the following PID control law with
feedforward gravity compensation

ẋi = e, ẋd = − 1
τd
(xd + e)

u = −k̄pe − k̄dxd − kixi (14)

In (14) e := z − zd represents the stabilization error and k̄p =
kp + k̄d and k̄d = kd

τd
. Defining xp := [e v]�, xc := [xi −

d
mgki

xd]�, the closed-loop error system associated with (13)-

(14) has the same form as (4) with Ap =
[

0 1
0 0

]
, Bp = [0 g]�,

Cp = [1 0] and Dc = −k̄p, with the constraint u = 1.
We consider a quadcopter with mass m = 0.5 kg that has

to reach a desired altitude of zd = −0.1 m and is subject
to a constant disturbance force d = −2.8 N (which pushes
the drone upwards against the gravity). Assigning the gains
kp = 1.05, kd = 0.75 and ki = 0.45 and the time constant as
τd = kd

10kp
, we get the successful simulation results in Figure 3.

To tune the value of ε we used the approach of Theorem 1,
which results in ε = 0.0439.

E. Proofs

We begin with some preliminary results. The following
Lemma, which will be used in the proofs of Theorem 1 and
Proposition 1, ensures that after a jump from D solutions can
not immediately jump again but must first flow.
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Lemma 1: Across jumps of (6)-(9) we have φ(u+, q+) −
φ(u, q) ≤ −2ε.

Proof: Assume z ∈ D, which implies φ(u, q) ≥ 0. From (7)
we have φ(u, q) = (q + 2ε)u − q − ε ≥ 0, namely

q + ε ≤ (q + 2ε)u. (15)

Substituting (15) in the expression of φ(u+, q+) gives

φ(u+, q+)
= (−q + 2ε)u+ + q − ε = (−q + 2ε)u+ + q − 2ε + ε

≤ (−q + 2ε)u+ + (q + 2ε)u − 2ε

= (−q + 2ε)
1 + 2qε

1 − 2ε
un + (q + 2ε)

1 − 2qε

1 − 2ε
un − 2ε

= −2ε,

which concludes the proof.
Let us now proceed with the proof of Theorem 1.
Proof of Theorem 1: To show GAS in item (i) of Problem 1,

accounting for the new logical state q, we prove asymptotic
stability of the compact set A0 = {x = 0, q = 1} for the
hybrid system (5), (6), (7), (9).

Consider the output signal defined in (5). For q = 1, the
control law returns the nominal state feedback u = Kx. Since
η∗ is selected according to (12), then the closed-loop flow
dynamics ẋ = (A + BK)x satisfies (10), (11) for a suitable
α > 0 and P = P� > 0. Consider now q = −1. The control
law (5) reads

u = 1 + 2ε

1 − 2ε
Kx = 1 − 2ε + 4ε

1 − 2ε
Kx = Kx + 4ε

1 − 2ε
Kx, (16)

and the resulting closed-loop flow dynamics reads

ẋ =
(

A + BK + 4ε

1 − 2ε
BK

)
x. (17)

Given P = P� > 0 and η∗ solving (12), consider an arbi-
trary ε ∈ (0, ε∗) and define η = 1−2ε

2ε . For dynamics (17) we
obtain, using the bounds (10), (11)

He(P(A + BK + 4ε

1 − 2ε
BK))

= He(P(A + BK))+ 2

η
He(PBK)

≤ He(P(A + BK))+ 2

η
η∗αP

≤ −2αP + 2
η∗

η
αP = 2αP(

η∗

η
− 1) < 0 (18)

where we use the fact that, for ε ∈ (0, ε∗), we have η∗ =
1−2ε∗

2ε∗ < 1−2ε
2ε = η, which implies η∗

η
< 1. Thus, we have

that P defines a common quadratic Lyapunov function for the
nominal and modified closed-loop dynamics.

Consider now the candidate Lyapunov function V = 1
2 x�Px,

which is positive definite with respect to A = A0 ∪A1 = {x =
0, q = 1} ∪ {x = 0, q = −1}. Due to (10) and (18), via (17)
we have that the Lyapunov function decreases when the solu-
tion flows, i.e., V̇(z) < 0, ∀z ∈ C\A. It is immediate to see
from (9) that V is also constant across jumps, since x+ = x.
Moreover, Lemma 1 ensures that after any jump the solu-
tion must flow so that V must decrease, which implies global
asymptotic stability of A by the Invariance Principle for hybrid

dynamical systems. More specifically, since (5), (6), (7), (9)
satisfies the Hybrid Basic Conditions in [5, Assumption 6.5.],
then we can apply the result in [4, Th. S13].

Since A is the union of the two points A0,A1, then solu-
tions either converge to A0 or to A1. Assume now that there
exists a solution z(t, j) that asymptotically converges to A1.
Uniform global attractivity of A implies that for any δ > 0
there exist T > 0 such that |z(t, j)|A1 ≤ δ, ∀(t, j) ∈ dom z
s.t. t + j ≥ T . Pick a small enough δ such that |z|A1 ≤ δ

implies |u| ≤ | 1+2ε
1−2εKx| < 1 − ε

1+2ε . Such a δ always exists

since u = 1−2qε
1−2ε Kx = 0 for x = 0 and |x| ≤ |z|A1 . Then,

|u| < 1 − ε
1+2ε ∀(t, j) ∈ dom z such that t + j ≥ T . From

the expression of D in (8) it follows that the solution must,
at some point, jump to q+ = 1 and can never jump again,
which means that no solution can asymptotically converge
to {x = 0, q = −1}. This, together with the fact that solu-
tions from A1 = {x = 0, q = −1} ∈ D jump to A0, proves
global attractivity of A0. Lyapunov stability of A0 follows
from Lyapunov stability of A and the fact that A0,A1 are
two disjoint points. Finally, robust global asymptotic stability
of A0 follows from global attractivity and Lyapunov stabil-
ity of A0 and the fact that system (9) satisfies the Hybrid
Basic Conditions [5, Assumption 6.5], which allows using
[5, Th. 7.21].

Let us now continue with the proof that item (ii) of
Problem 1 is also satisfied. Consider a generic solution (t, j) →
z(t, j) to system (9) and assume that z(0, 0) is such that
u(0, 0) = 1. Observe from the definition of C that the solution
can only flow for φ(u, q) ≤ 0. This implies that z(t, j) can not
flow with the value u = 1 while z ∈ C, due to the definition
of D in (8). What is left to check is that, after a jump of z,
u is guaranteed to be not unitary. With a slight abuse of nota-
tion, we will express the jump in the control law generated
by the jump map as u+ = 1+2q+ε

1−2q+εu. For q = 1 we have u+ =
1+2ε
1−2εu ≥ 1+2ε

1−2ε (1 − ε
1+2ε ) = 1+ε

1−2ε > 1. For q = −1 instead
we have u+ = 1−2ε

1+2εu ≤ 1−2ε
1+2ε (1 + ε

1−2ε ) = 1−ε
1+2ε < 1. Thus,

u is guaranteed not to land on the value u = 1 after a jump
from D.

To prove item (iii) of Problem 1, it is enough to show
that the controller never switches to q = −1 when u = 0.
Substituting u = 0, q = 1 in (8) and recalling that ε̄ > 0 gives
0 ≥ 1− ε

1+2ε ⇔ ε ≥ 1+2ε, which is never true for ε ∈ (0, 1
2 ),

thus leading to a contradiction. Then, the hybrid controller
never switches to the modified control law in a neighbourhood
of the origin. Additionally, the jump dynamics only depends
on the knowledge of u and q, and does not require knowledge
of the plant state, which proves item (iv) of Problem 1.

Proof of Corollary 1: Select P = P� > 0 satisfying the
Lyapunov equation He(P(A+BK)) = −I and η > 2λM(PBK+
(PBK)�). The same steps as those in the proof of Theorem 1
can be followed, with (18) replaced by

He(P(A + BK))+ 4ε

1 − 2ε
He(PBK)

= −I + 2

η
He(PBK) < −I + 1

λM(He(PBK))
He(PBK),

where the last term is negative semi-definite. Following the
proof of Theorem 1, the four items of Problem 1 follow.
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We now prove a uniform dwell-time result, which is of
independent interest and is only based on a Uniform Global
Boundedness (UGB) assumption (also known as Lagrange sta-
bility), namely for each r > 0, ∃Mr > 0 such that all solutions
z with |z(0, 0)| ≤ r satisfy |z(t, j)| ≤ Mr for all (t, j) ∈ domz.
Its proof is inspired by [3, Sec. 2].

Lemma 2: For a nominally well-posed hybrid system with
hybrid data (F,G, C,D), if D ∩ G(D) = ∅ and solutions are
uniformly globally bounded, then solutions enjoy a uniform
semiglobal dwell-time property.

Proof: Due to UGB, all solutions satisfying |φ(0, 0)| ≤ r
are uniformly bounded. Then, applying [11, Lemma 2.7],
we obtain1 that each solution enjoys a dwell-time property.
From the stated assumptions, to prove uniformity we pro-
ceed by contradiction. Suppose that for some r > 0 there
exist solutions φk, k ∈ N and indices ik ≥ 1 with jump
times tik and tik+1 satisfying tik+1 − tik = τk and τk → 0
as k → ∞. Similar to [3, Lemma 1], define shifted solutions
φ̄k as φ̄k(t, j) = φk(tik−1 + t, ik + j − 1) (namely, φ̄k is the tail
of φk with the shrinking dwell-time between its jump times
t1 and t2). Due to nominal well-posedness [5, Definiton 6.2]
there exists a converging subsequence of φ̄k whose limit is
a solution φ̄∞. By construction, the domain of φ̄∞ satisfies
t2 − t1 = limk→∞ τk = 0. However, this solution contradicts
the dwell-time property established by [11, Lemma 2.7].

Proof of Proposition 1: First observe that system
(5), (6), (7), (9) satisfies the hybrid basic conditions of [5,
Assumption 6.5] and due to [5, Th. 6.8] it is nominally well-
posed. Moreover, the UGS property proven in Theorem 1
implies uniform global boundedness, and D ∩ G(D) = ∅ fol-
lows from Lemma 1. Then the result follows from Lemma 2.

III. NONLINEAR REDESIGN

A. Main Results

We now extend the proposed hybrid architecture to a class
of input-affine nonlinear systems

ẋ = f (x)+ g(x)u, (19)

where x ∈ R
n is the state and u ∈ R is the control input. For a

compact set A ⊂ R
n, assume that f and g are continuous func-

tions of x and that there exists a continuous selection u = un(x)
and a continuously differentiable Lyapunov function V on R

n,
positive definite with respect to A and radially unbounded,
such that, for the closed-loop system ẋ = f (x)+ g(x)un(x), it
holds that

V̇(x) = ∇V(x)�f (x)+ ∇V(x)�g(x)un(x)

=: −ψ(x) < 0, ∀x ∈ R
n\A. (20)

Paralleling the reasoning in Figure 2, assume the following.
Assumption 1: There exists ε ∈ (0, 1

2 ] such that u(x) <
1 − ε

1+2ε for all x ∈ A.
Following the redesign presented for the linear case, we

introduce a logic state q ∈ {−1, 1} and define the full state
z = (x, q) ∈ R

n × {−1, 1} and a modified control law

u = 1 − 2qε(x)

1 − 2ε(x)
un(x), (21)

1Note that precompactness (which requires completeness) is required in [11,
Lemma 2.7], but only uniform global boundedness is used in its proof.

where the constant ε used for the linear case in (5) is replaced
by a globally bounded function x �→ ε(x) : Rn → [0, ε), to be
defined, satisfying |ε(x)| < ε for all x ∈ R

n, where ε comes
from Assumption 1. Mimicking the linear redesign, the flow
set C and jump set D are induced by the function

φ(x, q) = (q + 2ε(x))u − q − ε(x), (22)

as in (6), (7). The redesigned system is given by (21) with

ż =
[

ẋ
q̇

]
=

[
f (x)+ g(x)u

0

]
, z ∈ C

z+ =
[

x+
q+

]
=

[
x

−q

]
, z ∈ D, (23)

where the function x �→ ε(x) is selected as

ε(x) = με
ψ(x)

2|∇V(x)�g(x)un(x)| + ψ(x)
, (24)

and μ ∈ (0, 1) is a parameter determining the trade-off
between avoidance robustness and preservation of the nom-
inal controller. Observe that (24) implies 0 ≤ ε(x) < ε ≤ 1

2 ,
and that continuous differentiability of V and continuity of f
and g imply that ε is a continuous function of x.

The following theorem is a nonlinear extension of the linear
results in Theorem 1 and Proposition 1.

Theorem 2: Under Assumption 1, the set A×{1} is robustly
globally asymptotically stable for (7), (21)–(24). Additionally,
system (7), (21)–(24) satisfies items (ii) and (iii) of Problem 1
and enjoys uniform semiglobal dwell-time.

B. Example

Consider the plant from [8, Sec. 3.3][
ẋ1
ẋ2

]
= f (x)+ g(x)u =

[
x2 + x2

1
x2

1

]
+

[
0
1

]
u, (25)

where x = [x1 x2]� ∈ R
2 is the state and u ∈ R is the control

input. For the selection

u = un = −2x1 − 2x2 − 3x2
1 − 2x1(x2 + x2

1), (26)

it is shown in [8] that V(x) = 1
2 x2

1+ 1
2 (x2+x1+x2

1)
2 is a strong

Lyapunov function with respect to the origin, as its negative
definite time derivative is

V̇(x) = −x4
1 − 2x3

1 − 2x2
1x2 − 2x2

1 − 2x1x2 − x2
2 =: −ψ(x).

Since (26) is zero at the origin, we may select ε =
1
2 for (25). Additionally, it is immediate to verify that
∇V(x)�g(x) = x2 + x1 + x2

1.
Applying the redesign to (25), Theorem 2 holds. Choosing

μ = 0.1 and initial conditions x1(0) = −0.5, x2(0) = −3
leads to the desirable simulations shown in Figure 4.

C. Proof of Theorem 2

We first show that the modified input (21), (24) ensures
Lyapunov decrease along flowing solutions.

Lemma 3: Given plant (19), a stabilizer un and a func-
tion V satisfying (20), along the solutions of the hybrid
system (7), (21), (22), (23), (24) it holds that V̇(z) < 0, ∀z ∈
(C ∪ D)\(A × {−1, 1}).
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Fig. 4. Closed-loop solution of the hybrid redesigned feedback (7), (21),
(22), (23), (24) applied to (25), (26).

Proof: For q = 1, and any z = (x, q) with x /∈ A, we have
u = un(x) and (20) implies V̇(z) = −ψ(x) < 0. For the non-
trivial case q = −1, and z = (x, q) with x /∈ A, first note that
μ < 1 and ε ≤ 1

2 , together with (24) and the fact that με < 1
2 ,

imply that 4ε(x)|V(x)�g(x)un(x)| < ψ(x)− 2ε(x)ψ(x), which
can be rearranged to get

4ε(x)

1 − 2ε(x)
|∇V(x)�g(x)un(x)| < ψ(x).

Then, proceeding as in (16), we obtain

V̇(z) = ∇V(x)�f (x)+ ∇V(x)�g(x)u = ∇V(x)�f (x)

+ ∇V(x)�g(x)un(x)+ 4ε(x)

1 − 2ε(x)
∇V(x)�g(x)un(x)

= −ψ(x)+ 4ε(x)

1 − 2ε(x)
∇V(x)�g(x)un(x) < 0,

as to be proven.
The following Lemma ensures that after a jump the solution

must flow, unless it jumps from A×{−1}. Its proof is the same
as the one presented for Lemma 1, so it is omitted.

Lemma 4: Let z be a solution of (7), (21), (22), (23), (24).
Then, φ(x+, q+)− φ(x, q) ≤ −2ε(x) < 0 for all z ∈ D.

Proof of Theorem 2: Mimicking the proof of Theorem 1,
we start by showing that A × {−1, 1} is robustly glob-
ally asymptotically stable for (7), (21), (22), (23), (24).
For z ∈ C, Lemma 3 guarantees the decrease
of V .

Consider now z ∈ D. Since the jump map in (23)
toggles the value of q and V only depends on x, we
have that the Lyapunov function remains constant across
jumps. Additionally, Lemma 4 ensures that after a jump
the solution must flow. Since the Hybrid Basic Conditions
hold, then global asymptotic stability of A × {−1, 1} fol-
lows from the Invariance Principle for hybrid dynamical
systems [4, Th. S13]. Following the remaining steps of the
proof of Theorem 1 we may prove robust global asymptotic
stability of A × {1}.

Items (ii) and (iii) of Problem 1 can be proven exploiting
at the structure of C and D. Substituting ε = ε(x) into (8)

and using the fact that ε(x) is a continuous function of x, only
zero for x ∈ A, we conclude that there exists a neighbour-
hood of A × {1} where the nominal controller is preserved.
Furthermore, u = 1 being in the interior of D implies that
solutions never flow with u = 1. Finally, u+ = 1 can be
proven by following the bounds on u+ derived at the end of
Theorem 1 with ε replaced by ε(x).

The semiglobal dwell-time property can be proven by fol-
lowing exactly the same steps as those in the proof of
Proposition 1, by exploiting Lemma 2.

IV. CONCLUSION

Motivated by the nonzero input assumptions required in the
controller design for underactuated UAVs [7], we proposed a
hybrid redesign, based on a switching logic with two modes,
avoiding unitary inputs in linear systems and in a class of
input-affine nonlinear systems. Future work includes nonlin-
ear extensions to UAV control and exploiting the degrees of
freedom highlighted in Remark 4 for developing generalized
dynamic schemes.

REFERENCES

[1] P. Casau, R. G. Sanfelice, and C. Silvestre, “A hybrid controller for
global uniform exponential stabilization of linear systems with singu-
lar input constraints,” in Proc. IEEE 53rd Annu. Conf. Decis. Control
(CDC), 2014, pp. 741–746.

[2] P. Casau, R. G. Sanfelice, and C. Silvestre, “Hybrid stabiliza-
tion of linear systems with reverse polytopic input constraints,”
IEEE Trans. Autom. Control, vol. 62, no. 12, pp. 6473–6480,
Dec. 2017.

[3] P. Casau, R. G. Sanfelice, and C. Silvestre, “On the robustness of nom-
inally well-posed event-triggered controllers,” IEEE Control Syst. Lett.,
vol. 6, pp. 415–420, 2022.

[4] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,”
IEEE Control Syst., vol. 29, no. 2, pp. 28–93, Apr. 2009.

[5] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton, NJ, USA, Princeton
Univ. Press, 2012.

[6] M. D. Hua, T. Hamel, P. Morin, and C. Samson, “Introduction to feed-
back control of underactuated VTOLvehicles: A review of basic control
design ideas and principles,” IEEE Control Syst. Mag., vol. 33, no. 1,
pp. 61–75, Feb. 2013.

[7] D. Invernizzi, M. Lovera, and L. Zaccarian, “Dynamic attitude planning
for trajectory tracking in thrust-vectoring UAVs,” IEEE Trans. Autom.
Control, vol. 65, no. 1, pp. 453–460, Jan. 2020.

[8] C Prieur, I. Queinnec, S. Tarbouriech, and L. Zaccarian, “Analysis and
synthesis of reset control systems,” Found. Trends Syst. Control., vol. 6,
pp. 117–338, Dec. 2018.

[9] D. Pucci, T. Hamel, P. Morin, and C. Samson, “Nonlinear feedback
control of axisymmetric aerial vehicles,” Automatica, vol. 53, pp. 72–78,
Mar. 2015.

[10] A. Saberi, A. A. Stoorvogel, and P. Sannuti, Internal and External
Stabilization of Linear Systems with Constraints. Boston, MA, USA,
Birkhäuser, 2012.

[11] R. G. Sanfelice, R. Goebel, and A. R. Teel, “Invariance principles for
hybrid systems with connections to detectability and asymptotic sta-
bility,” IEEE Trans. Autom. Control, vol. 52, no. 12, pp. 2282–2297,
Dec. 2007.

[12] B. Wie, “Singularity escape/avoidance steering logic for control moment
gyro systems,” J. Guid. Control Dyn., vol. 28, no. 5, pp. 948–956, 2005.

[13] L. Zaccarian and A. R. Teel, Modern Anti-windup Synthesis: Control
Augmentation for Actuator Saturation. Princeton, NJ, USA, Princeton
Univ. Press, 2011.

[14] X. Zhang, X. Lou, and Z. Jiang, “Stabilization of a class of hybrid
systems by switching controllers with input constraints,” Circuits Syst.
Signal Process., vol. 39, pp. 1649–1664, Mar. 2020.

Open Access funding provided by ‘Università degli Studi di Trento’ within the CRUI CARE Agreement



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


