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Improving Primal Decomposition for Multistage
MPC Using an Extended Newton Method

Simen Bjorvand and Johannes Jäschke

Abstract—Multistage model predictive control is a robust
MPC formulation that takes into account parametric uncer-
tainty by constructing a finite set of coupled scenarios. As
the amount of scenarios increase so does computational
cost and real-time implementation might not be possible.
Scenario decomposition has been proposed to distribute
computations and make real-time implementation possible,
however, typically the subproblems are coordinated using
the steepest descent method with slow convergence prop-
erties. In this letter a primal decomposition algorithm is
improved by the use of a nonsmooth Newtons method for
continuous nonsmooth equations. The proposed algorithm
is applied to a gas-lift optimization system and compared to
the standard primal decomposition method using steepest
descent.

Index Terms—Nonlinear optimal control of uncertain
systems, distributed optimization, nonsmooth Newton
method.

I. INTRODUCTION

IN MODEL predictive control (MPC) an optimal control
problem is formulated and solved minimizing some cost

while obeying the model equations of the system. An optimal
control trajectory is calculated and the current control action
is acted upon the system. Uncertainties in the model are han-
dled through feedback, but if the uncertainties are too large a
robust MPC scheme is necessary. One of these schemes which
accounts for uncertainties is the multistage MPC (msMPC)
also called the scenario MPC [14].

The drawback of the msMPC is that the problem becomes
very large as it handles more uncertainty and computational
cost increase exponentially. Several methodologies have been
proposed to address this challenge. In [22] and [19] paramet-
ric sensitivity based approaches were proposed while in [6]
and [8] parallelizable linear algebra approaches exploiting the
structure of the problem were proposed.

Another approach much studied in literature is to employ
decomposition algorithms to the msMPC. In these methods
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the msMPC problem is decomposed into smaller subproblems
with a coordination algorithm on top ensuring that the sub-
problems converge to the optimal solution of the centralized
problem. Each subproblem can be solved fast but must be
resolved a repeated number of times to coordinate. While these
approaches do not necessarily reduce the overall computational
time to compute a control action, the computations can be per-
formed in parallel such that the overall computational delay
is reduced. The msMPC is usually decomposed per scenario.
A dual decomposition approach was proposed by [15] where
a progressive hedging approach was used. This method was
further improved in [16]. The drawback of dual decomposi-
tion approaches is that they do not provide a single feasible
control action until the algorithm converges.

This was addressed in [10] where a primal decomposition
scheme was used instead, which could supply a feasible but
suboptimal control action even if terminated early. As early
termination is not desirable, speeding up the algorithm is
desirable. Solving the distributed subproblems is the com-
putational bottleneck of the algorithm. Two ways to speed
up the algorithm are to reduce the computational time of
solving the subproblems and reduce the number of necessary
resolves in the coordination algorithm. In [12] a sensitivity-
based path-following algorithm was employed to speed up the
computations of the subproblems. In this letter, we propose
to speed up the coordination step of the primal decomposi-
tion algorithm by employing a nonsmooth Extended Newton
Method.

Using a Newton method for speeding up dual decomposi-
tion of a linear msMPC was done in [5] and for nonlinear
msMPC using dual decomposition was done [16]. A real-time
iterations approach to msMPC combined with dual decompo-
sition employed a nonsmooth Newtons Method in [13]. This
letter differs by employing a nonsmooth Newton method to a
primal decomposition algorithm and showing local quadratic
convergence for the proposed algorithm.

II. PRELIMINARIES

A. Multistage MPC

Here we present the concept and our notation for msMPC,
see [14] for details. Consider a discretized nonlinear system

xk+1 = f (xk, uk, pk) (1)

where xk ∈ R
nx are the states, uk ∈ R

nu are the control inputs
and pk ∈ R

np are uncertain model parameters at time iteration
k. The function f : R

nx × R
nu × R

np �→ R
nx represents the
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Fig. 1. Schematic diagram of msMPC with a robust horizon of Nr =
2, M = 3, where each set of connected nodes represent a scenario.
The colored dotted circles represents the NKn = 4 knots where the
nodes from the different scenarios are tied together.

nonlinear model of the system. A sequence of inputs uk for
k = 0, . . . , N−1, that minimizes an expected cost over a time
horizon of length N is calculated.

The parameters pk are sampled from a distribution. A set
of M points from this distribution is selected to represent the
possible realizations for the uncertain parameters. At each time
step the each possible realizations are considered, which leads
the msMPC to branch into M new branches. To reduce the size
of the msMPC problem a robust horizon Nr is used, which are
the number of steps where branching is considered. This lead
to a structure of Ns = MNr scenarios.

The scenarios are tied together at certain points in their
prediction horizon. The nodes where the scenarios are tied
together can be thought of as knots with the tree having NKn =∑Nr−1

k=0 Mk knots. In the nodes where the scenarios are tied
together they have to make the same control action uk. This
is known as the nonanticipativity constraints.

The msMPC problem is formulated as

min
x,u,l

Ns∑

s=1

ws
N−1∑

k=0

jsk(x
s
k, us

k, ps
k) (2a)

s.t. xs
k+1 = f (xs

k, us
k, ps

k) (2b)

c(xs
k, us

k) ≤ 0 , k = 0, . . . , N − 1 (2c)

Puus − Ps
l l = 0 , s = 1, . . . , Ns (2d)

where jsk : R
nx × R

nu × R
np �→ R are the stage costs,

ws the weight per scenario and c : R
nx × R

nu �→ R rep-
resents inequality constraints. Constraint (2d) represents the
nonanticipativity constraints, where Pu ∈ R

Nrnu×Nnu such that
Puus = [us

0, . . . , us
Nr

]T , the decision variables l ∈ R
Nl , Nl =

NKnnu are connecting variables representing the knots and
Ps

l∈ R
Nrnu×Nl are selection matrices enforcing the tree struc-

ture. For the scenario tree shown in Fig. 1 we have P1
l =

P2
l = P3

l =
[

Inu 0 0 0
0 Inu 0 0

]

, P4
l = P5

l = P6
l =

[
Inu 0 0 0
0 0 Inu 0

]

,

P7
l = P8

l = P9
l =

[
Inu 0 0 0
0 0 0 Inu

]

.

This optimization problem can be reformulated in a more
compact form which will be used in the rest of this letter,

min
ω,l

Ns∑

s=1

Js(ωs) (3a)

s.t. hs(ωs) = 0 (3b)

gs(ωs) ≤ 0 (3c)

Pωωs − Ps
l l = 0 s = 1, . . . , Ns, (3d)

where ωs = [xsT , usT ]T ∈ R
nωs , Js : R

nωs �→ R repre-
sents the cost, hs : R

nωs �→ R
nh the equality constraints,

gs : Rnωs �→ R
ng the inequality constraints and equation (3d)

represents the nonanticipativity constraints for scenario s with
Pω∈ R

Nrnu×nωs .

B. Primal Decomposition of msMPC

In decomposition methods the large optimization problem
is split into smaller subproblems dependent on some param-
eter variables, where a coordinator problem finds the optimal
parameter variables to make the subproblems converge to
a common solution. Many different decomposition meth-
ods have been proposed, and in this letter, we focus on
primal decomposition as was used in [10]. Here these
parameter variables are primal variables from the original
problem [1].

Using primal decomposition the large msMPC problem (3)
can be decomposed into smaller subproblems in the following
way,

�s(l) = min
ωs

Js(ωs) (4a)

s.t. hs(ωs) = 0 (λs) (4b)

gs(ωs) ≤ 0 (μs) (4c)

Pωωs − Ps
l l = 0 (γ s), (4d)

where the decision variables l in the centralized problem
become the parameters for the subproblems (4). The variables
λs, μs and γ s denote the dual variables related to the equality
constraints (4b), inequality constraints (4c), and nonanticipa-
tivity constraints (4d) respectively. The Ns subproblems (4) can
be solved independently of each other in parallel for a given
value of l. The centralized problem (3) is recovered by the
following problem, where the coordinator variables from (4)
become the decision variables

min
l

Ns∑

s=1

�s(l). (5)

C. Standard Approach (Steepest Descent)

From [1] we have that a subgradient of the subproblem (4)
with respect to the parameter l can be found as

∇l�
s(l) = −PsT

l γ s∗(l) (6)

where γ s∗ is the optimal dual variable related to (4d) given l. In
the standard approach to solving the coordinator problem (5)
as outlined in [10] the subgradient of (5) is calculated as

G(l) = −
Ns∑

s=1

PsT
l γ s∗(l) (7)

and a Steepest Descent (SD) method is applied to find the
vector l such that the subgradient G(l) is equal to zero. If lk
is the point given at iteration k the step to the next point is
calculated as

�lk = −αG(lk) (8)
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where �lk is the step in the variable l and α > 0 is the step
length.

The Steepest Descent method only has linear convergence
and is therefore slow to converge. This leads to resolving
the subproblems (4) a large number of times, which is the
computational bottleneck of the distributed msMPC algorithm.
We propose to speed up the algorithm by using a nonsmooth
Newton method with quadratic convergence.

D. Nonlinear Sensitivity Concepts

Before we procede we will introduce some concepts that
will be used later. Let zs = [ωsT , λsT , μsT , γ sT ]T be a primal-
dual pair for subproblem (4) and let

Ls(zs, l) = Js(ωs)+ hs(ωs)Tλs + gs(ωs)Tμs

+ (Pωωs − Ps
l l)

Tγ s (9)

denote the subproblem Lagrangian. The point zs∗(l) is called
a KKT point for (4) if it is the root of the following system
of nonsmooth equations, also known as the KKT conditions

∇ωsLs(zs∗; l) = 0 (10)

hs(ωs∗) = 0

min(−gs(ωs∗), μs∗) = 0

Pωωs − Ps
l l = 0.

The set of active constraints is defined as As(l) =
{i|gs

i (ω
s∗(l)) = 0, i = 1, . . . , ngs}, and inactive constraints

as As
0(l) = {1, . . . , ngs}\As(l). The active constraints can be

further subdivided into two sets. The set of strongly active con-
straints As+(l) = {i ∈ As(l)|μs∗

i > 0} and the weakly active
constraints As−(l) = As(l)\As+(l). Let |D| denote the size of
an integer set D.

A KKT point zs∗(l) is an optimal solution of (4) if a
constraint qualification holds as well as a second-order con-
dition of optimality. This letter will consider the Linear
Independence Constraint Qualification (LICQ) and the Strong
Second Order Sufficient Condition (SSOSC). In addition the
Strong Complementarity (SC) will be used below.

Definition: LICQ holds for a primal solution ωs∗(l) if the
gradients of the equality constraints ∇ωshs(ωs∗), the active
inequality constraints ∇ωsgs

i (ω
s∗), i ∈ A(l) and the rows in

Pω are linearly independent.
Definition: SSOSC holds for a primal-dual solution zs∗(l)

if dT∇2
ωs∗Ls(zs∗; l)d > 0 for d �= 0 ∈ {d|∇ωshs(ωs∗)Td =

0, Pωd = 0,∇ωs gs
i (ω

s∗)Td = 0 ∀i ∈ A+(l)}.
Definition: SC holds for a primal-dual solution zs∗(l) if its

weakly active set A−(l) is empty, |A−(l)| = 0.
The following theorem introduced and proved in [3] estab-

lishes the sensitivity of a primal-dual solution zs∗(l) of
problem (4).

Theorem 1 [3] (NLP Sensitivity For a Local Primal-Dual
Solution zs∗(l0) of Problem (4)): If the functions Js, hs and gs

are twice continuously differentiable in ωs in a neighborhood
of ωs∗(l0), LICQ, SSOSC and SC holds then:
• ωs∗(l0) is local unique optimum, and the dual variables

λs∗(l0), μs∗(l0) and γ s∗(l0) are unique.
• For an l in a neighborhood of l0 there exist a

continuously differentiable function zs(l) = [ωs∗(l)T ,

λs∗(l)T , μs∗(l)T , γ s∗(l)T ]T which is an optimal primal-
dual solution of (4) for l.

• SC holds for a l in the neighborhood of l0.
The following theorem from [4] expands on Theorem 1

when SC fails.
Theorem 2 [4](NLP Sensitivity For a Local Primal-Dual

Solution zs∗(l0) of Problem (4)): If the functions Js, hs and gs

are twice continuously differentiable in ωs in a neighborhood
of ωs∗(l0), LICQ and SSOSC holds then:
• ωs∗(l0) is local unique optimum, and the dual variables

λs∗(l0), μs∗(l0) and γ s∗(l0) are unique.
• For an l in a neighborhood of l0 there exist a continu-

ous function zs(l) = [ωs∗(l)T , λs∗(l)T , μs∗(l)T , γ s∗(l)T ]T

which is an optimal primal-dual solution of (4) for l.
• The value function of subproblem (4) �s(l) is differen-

tiable with respect to l at l0 with the derivative being
∇l�

s(l0) = −PsT
l γ s∗(l0).

III. PRIMAL DECOMPOSITION OF MSMPC USING

AN EXTENDED NEWTON METHOD

Let l∗ be an optimal solution of (5).
Assumption 1: The functions Js, hs and gs are all twice

continuously differentiable for all Ns subproblems.
Assumption 2: LICQ and SSOSC holds for the primal-dual

solutions zs∗(l∗) for all Ns subproblems (4).
From Theorem 1 and 2 if Assumption 1 and 2 hold there is

a neighborhood L ⊂ R
Nl of l∗ where the optimal primal-dual

solution zs∗(l) is given by a PC1 function for all subproblems
s ∈ {1, . . . , Ns}.

Note that even with smooth functions, the primal-dual solu-
tion of (4) can be nonsmooth because the active inequality
constraints change with the parameter l.

Definition: A function σ : V ⊆ R
n �→ R

m is PC1 if it
is continuous and if for all y0 ∈ V there is a neighborhood
W ⊂ V of y0 and finite number of C1 functions σ 1, . . . , σN

such that σ(y) ∈ {σ 1(y), . . . , σN(y)} ∀y ∈ W.
From Theorem 2 we have that the gradient of the subprob-

lems (4) was given by (6).The gradient G(l) of the coordinator
problem (5) is then given by (7) meaning it is a PC1 function
for l ∈ L. The optimal solution of (5) is given as the root of
the gradient G(l), so we propose to use the Extended Newton
(EN) method from [7].

A. Algorithm

The main contribution of this letter is algorithm 1. The algo-
rithm uses the Extended Newton method from [7] to solve
the coordinator problem (5). The Extended Newton method
extends the Newton method to PC1 functions and it retains
quadratic convergence for a starting point near the solution.

G(l) will be used as the PC1 function to explain the
Extended Newton method. Let L̄s ⊆ L be the set where
SC holds for the optimal solution of (4) for subproblem s.
From Theorem 1 we have that γ ∗s is continuously differen-
tiable for l ∈ L̄s. Then L̄ = ⋂Ns

s=1 L̄s is the set where G(l) is
continuously differentiable.

Let lk ∈ L be a point given at iteration k of the Extended
Newton Method. In an ordinary Newtons method the step �lk
would be calculated by solving the following equation
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Algorithm 1 Primal Decomposition of msMPC Using an
Extended Newtons Method
Require: tolerance ε > 0, step length α ∈ (0, 1], initial guess

lk ← l0, ||�l|| > ε

while ||�l|| > ε do
D = {}
for s in 1 : Ns do

ωs∗, λs∗, μs∗, γ s∗,As+,As− ← Solve (4) for l = lk
if |As−| = 0 then
∇lγ

s∗(lk)← solve (14)
else

D = D ∪ {s}
end if

end for
if

∑Ns
s=1 |As−| > 0 then

for s in D do
∇lγ

s∗(lk) ← JLγ s∗(lk, P) from Algorithm 1
from [18] with P = I

end for
end if
G(lk)←−∑Ns

s=1 PsT
l γ s∗(lk) (7)

H(lk)←−∑Ns
s=1 ∇lγ

s∗(lk)Ps
l

�l = −αH(lk)−1G(lk)
lk ← lk +�l

end while

H(lk)�lk = −αG(lk) (11)

where α ∈ (0, 1] is a step length and H(lk) = ∇lG(lk) is
the Jacobian of the gradient. Since the Jacobian only exist for
lk ∈ L̄ the Extended Newton Method for PC1 functions instead
uses H(lk) ∈ ∂BG(lk), where ∂BG(lk) is the B-subdifferential
(“Bouligand”) of the gradient G(lk) [20].

∂BG(lk) =
{
M ∈ R

Nl×Nl : ∃(l̄k)
∈ L̄ : l̄k → lk,∇lG(l̄k)→ M } (12)

Note that the B-subdifferential becomes a singleton when
the function is differentiable, i.e., ∂BG(lk) = ∇lG(lk) for
lk ∈ L̄.

The following theorem proved in [7] establishes quadratic
convergence of the Extended Newton method.

Theorem 3 [7]: Let l∗ be a solution for PC1 system of equa-
tions G(l) = 0. Given that all elements of the B-subdifferential
∂BG(l) are nonsingular and Lipschitz continuous for l ∈ L,
then there exists a positive number r such that if ||l0− l∗|| ≤ r
then the sequence of steps generated by the Extended Newton
method converge to l∗ quadratically, where l0 is the starting
point.

The main result of this letter is given by the following
theorem.

Theorem 4 (Main Result): Let l∗ be the optimal solution of
the coordinator problem (5). If assumption 1 and 2 hold and
all members of the B-subdifferential ∂BG(l) are nonsingular
and Lipschitz continuous, then there is a positive number r
such that if ||l0 − l∗|| ≤ r Algorithm 1 converge quadratically
to l∗.

Proof: Invoking Theorem 1 and 2, l∗ is found by solving
a PC1 system of equations G(l) = 0. Algorithm 1 ensures
a member of the B-subdifferential ∂BG(l) is used in the
Extended Newton method, the rest follows from Theorem 3.

B. Computing the Derivatives (Smooth Case)

For l ∈ L̄ the Jacobian can be calculated as

H(lk) = −
Ns∑

s=1

∇lγ
s∗(lk)Ps

l . (13)

When SC holds the sensitivity ∇lγ
s∗(l) can be found by

applying the implicit function theorem to the KKT condi-
tions (10) to obtain and solve the following linear system of
equations,

⎡

⎢
⎢
⎣

∇2
ωsL(zs∗(lk)) ∇ωshs(ωs∗) ∇ωsgs+(ωs∗) PT

ω

∇ωshsT(ωs∗, lk) 0 0 0
∇ωsgsT+ (ω∗s, lk) 0 0 0

Pω 0 0 0

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

∇lω
s∗T

∇lλ
s∗T

∇lμ
s∗T+

∇lγ
s∗T

⎤

⎥
⎥
⎦ = −

⎡

⎢
⎣

0
0
0
−Ps

l

⎤

⎥
⎦, (14)

where g+ and μ+ are the vectors of strongly active inequality
constraints and their related dual variables.

C. Computing the Derivatives (Nonsmooth Case)

When lk ∈ L\L̄ a member of the B-subdifferential of
G(lk) must be computed. This is not a trivial task as
B-subdifferentials do not obey strict calculus rules, e.g.,
if a member of the B-subdifferential sets ∇lγ

s∗(lk) ∈
∂Bγ s∗(lk) were found for each scenario s ∈ {1, . . . , Ns} then
−∑Ns

s=1 ∇lγ
s∗(lk)Ps

l would not necessarily be in ∂BG(lk).
To find a member of the B-subdifferential lexicograph-

ical derivatives will be used. A Lexicographical derivative
is found for some full rank direction matrix P ∈ R

Nl×Nl ,
and for PC1 functions is an element of the B-subdifferential
JLG(lk, P) ∈ ∂BG(lk) [18]. In addition, strict calculus rules
holds for lexicographical derivative meaning that

JLG(lk, P) = −
Ns∑

s=1

JLγ s∗(lk, P)Ps
l . (15)

The lexicographical derivatives of the optimal dual variables
JLγ s∗(lk, P) can be found by [18, Algorithm 1]. This means
that H(lk) = JLG(lk, P) from (15) is used in the extended
Newton method when lk ∈ L\L̄. Note that JLγ s∗(lk, P) =
∇lγ

s∗(lk) for l ∈ L̄s for s ∈ {1, . . . , Ns} meaning equation (14)
can be used for subproblems with no weakly active inequality
constraints.

IV. CASE STUDY

The proposed algorithm is demonstrated in an example
and compared to the algorithm used in [10] which used the
Steepest Descent method. The algorithm is applied to a uncer-
tain gas-lift well network. The system consists of two wells,
both with their own uncertain gas-oil-ratio GOR connected to
a common manifold. The manifold is connected to a riser. The
schematic figure of the system is seen in Fig. 2. The goal is
to produce as much oil wpo as possible while keeping the gas
production rate wpg below the max capacity of the topside
facility. This is done by injecting gas,wgl,1, wgl,2, into the two
wells. More details about the system as well as the dynamic
model of the system can be found in [9].
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Fig. 2. A schematic figure of the gas-lift system [10].

TABLE I
UNCERTAIN PARAMETERS BOUNDS

The uncertain parameters being the GOR in the two wells
are assumed to take on values in the bounds between a low
and high value given in Table I, as well as the nominal value
for the GOR.

A. MPC Setup

In the model predictive controller the following cost func-
tion is used per scenario,

N−1∑

k=0

−$owpo,k + γpg(wpg,k − ŵpg,max)
2 (16)

+ γr(wgl,1,k+1 − wgl,1,k)
2 + γr(wgl,2,k+1 − wgl,2,k)

2

where $o is the price of oil, γpg and ŵpg,max are a parameters
to track the maximum gas production rate to prevent it from
exceeding the max capacity, and γr is a parameter penalizing
large changes in the inputs.

To design the scenarios for the msMPC we considered the
cases where parameters take maximum and minimum values,
as well as the midpoint (nominal value) for 2 parameters, this
leads to M = 5 realizations. A robust horizon of Nr = 1 is
used leading to Ns = MNr = 5 scenarios in the msMPC.

A prediction horizon N = 24 is used in the msMPC with
a sampling time of 300 seconds. The dynamic model is dis-
cretized using a 3rd order Gauss-Radau collocation scheme.
The nonlinear programs are embedded using JuMP [2] and
solved using Ipopt [21].

In the primal decomposition algorithm the coordinator vari-
ables l are warm started using the solution of the previous
iteration. For the steepest decent algorithm α = 3× 10−5 was
used as the step length. For the Extended Newton method
α = 1 was used as the step length. Both the Steepest Decent
and Newton algorithms were terminated when the change in
the coordinator variables were ||�l||∞ < 10−4.

B. Simulation Setup

The gas-lift well network system was simulated for 5 hours.
In the first 50 minutes, the GOR for both wells remains con-
stant. In the next 200 minutes, the GOR for the two wells
changes, while they remain constant the last 50 minutes.
Both decentralized schemes are compared to the centralized
approach.

Fig. 3. Simulation results of the decomposed msMPC schemes.

Fig. 4. Comparison of decomposed msMPC schemes with centralized
approach.

Fig. 5. Comparison of number iterations to converge for the decentral-
ized msMPC schemes.

V. SIMULATION RESULTS AND DISCUSSION

The simulation results are shown in Fig. 3, where the total
produced oil rate is shown at the top. The gas-lift injection
rates for the two wells are plotted beneath. From the figure,
both the Steepest Descent and Extended Newton methods give
almost identical results. A comparison with the centralized
msMPC is plotted in Fig. 4. The absolute error between the
centralized and decentralized schemes is shown for both the
total produced oil rate and gas-lift injection rates. As can be
seen both the Steepest Decent and Extended Newton schemes
converges to the same solution as the centralized scheme, but
the Steepest Decent method introduces a small error.

In Fig. 5 the required amount of iterations to converge is
plotted for both the decentralized schemes. As can be seen the
proposed algorithm converges in much fewer iterations than
the SD algorithm. This holds especially true in the transient
region at the start where the amount of necessary iterations is
approximately reduced by a factor of 10. We chose to present
the computational performance results in terms of iterations
and not in terms of time, because the actual running time is
dependent on many other factors than the algorithm itself.

Both in terms of computational time and accuracy the
Extended Newton method outperforms the Steepest Descent
method which is expected as the Extended Newton method has
local quadratic convergence while Steepest Decent only has
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linear convergence. Since the coordinator algorithm is warm
started with the solution of the previous iteration the algorithm
might already start in the neighborhood of the solution leading
to fast convergence. Another benefit of the Extended Newton
method is the step is scaled meaning it is easy to find a stable
step size α = 1. This is not the case for the Steepest Descent
method where a step size that both makes fast progress as
well as being stable is difficult to find. In fact a better step
size could probably have been found for this simulation study.

VI. DISCUSSION AND CONCLUSION

The main computational load of the proposed algorithm is
to solve the distributed subproblems, however, an extra com-
putational load is introduced by the proposed algorithm. That
is computing the Jacobian matrix used in the Extended Newton
step. For nondegenerate, subproblems this involves solving
equation (14) which can potentially be a large linear system
of equations, which can be expensive. If the problems are
solved using Ipopt the matrix factorization of the KKT matrix
in equation (14) can be reused to calculate the Jacobian fast
with sIpopt [17]. This extra computational cost should be neg-
ligible compared to solving the subproblems. For degenerate
subproblems on the other hand a series of QPs has to be solved
as outlined in [18], which might be computationally expensive.

Note that for nonconvex problems the proposed decompo-
sition algorithm can converge to any stationary point of the
coordinator problem and not necessarily a minimum. This
is known property of primal decomposition. However it will
converge there faster (quadratically) than steepest descent (lin-
early) and in the simulations conducted in this letter it was
found to converse to same optimum as the centralized solution.

A related issue when applying primal decomposition to
solve the msMPC problem is that the continuity properties of
the subproblems only hold with respect to a local solution. The
subproblems are nonlinear programs meaning they are likely
non-convex. This means each subproblem might have several
local solutions. To avoid this problem we suggest adding reg-
ularization to the cost function to force one local solution to
be preferential to the others. We also suggest warm-starting
each subproblem with the previous iterations solution so they
start in a neighborhood of the same local solution.

Another potential challenge with using primal decomposi-
tion is that coordinator variables l might lead to the subprob-
lems (4) being infeasible. This was addressed in [11], where
it was proposed to use the worst case predicted control action
from the previous iteration to initialize the coordinator vari-
ables l and to use feasibility ensuring back-tracking algorithm
to make sure the updates are feasible.
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