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Parametrization of Linear Controllers for
p-Dominance
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Abstract—Recently, the concept of p-dominance has
been proposed as a unified framework to study rich behav-
iors of nonlinear systems. In this letter, we consider finding
a set of linear dynamic output feedback controllers render-
ing the closed-loop systems p-dominant. We first derive an
existence condition. Based on this condition, we then pro-
vide a parametrization of controllers. For Lure’s systems,
the proposed method can be applied only by solving a
finite family of linear matrix inequalities, which is illustrated
by achieving multi-stabilization and stabilization of a limit
cycle.

Index Terms—Nonlinear systems, p-dominance, contrac-
tion, parametrization of controllers.

I. INTRODUCTION

BEYOND mono-stability, various rich behaviors of non-
linear dynamical systems are interested in multiple disci-

plines such as bi-stability in bacteria [1] and stable limit cycles
in circadian rhythms [2]. Typically, these problems have been
studied independently, but there is a recent approach to develop
a unified framework with the notion of p-dominance [3]. In
this letter, our objective is to obtain a parametrization of linear
dynamic output feedback controllers for p-dominance.

Literature Review: The concept of p-dominance is intro-
duced via a differential Lyapunov matrix inequality (LMI)
for contraction (i.e., 0-dominance); see, e.g., [4], [5] for con-
traction analysis. Relaxing the positive definiteness from its
constant solution, it has been shown that if a solution has p
negative eigenvalues, the system has the p-dimensional domi-
nant behavior [3]. This unified framework for analysis and/or
design of rich behaviors is applied to their robustness anal-
ysis [6] and model reduction for preserving them [7]. State
feedback control design is studied in [3], [8], but a method
for output feedback control is not well developed yet except
for contraction [9], [10].
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For stabilizing control, the Youla-Kučera parametriza-
tion [11] is a well known approach to parametrize output
feedback controllers. Also, there is an alternative approach
based on LMIs [12]. However, these approaches are not
directly applicable to p-dominance. In particular, the latter
relies on the positive definiteness of solutions to Lyapunov
inequalities while the essence of p-dominance is to relax it.

Contribution: In this letter, we provide a parametrization
of linear dynamic output feedback controllers rendering the
closed-loop systems p-dominant by removing the requirement
for solutions being positive definite from the aforementioned
approach in [12]. First, we derive an existence condition for
an output feedback controller as a natural extension of sta-
bilizing control design for linear systems to the p-dominance
of nonlinear systems. The proposed condition is based on a
pair of control and filter Lyapunov type matrix inequalities.
In general, the p-dominant behavior of the closed-loop system
depends on this pair. However, under an additional condition,
this is determined by the number of negative eigenvalues of
the control inequality only.

Next, based on the derived existence condition, we present
a parametrization of linear output feedback controllers for
p-dominance. Utilizing the obtained parametrization, we fur-
ther study stable control design as an extension of strong
stabilization. Also, we study reduced-order control design. The
proposed method consists of an infinite family of LMIs due
to the state dependency, which can be relaxed into a finite
set of LMIs by taking a similar approach as in [3], [8], [10].
Moreover, for Lure’s systems, we can apply a different
relaxation based on the sector condition, which is also demon-
strated. That is, solving nonlinear partial differential equa-
tions/inequalities is not required for the proposed control
design method.

Notation: The set of real numbers is denoted by R. The set
of n×n symmetric matrices is denoted by Sn. The n×n identity
matrix is denoted by In. For P ∈ Sn, P � 0 (P � 0) means
that P is positive (semi) definite. For a matrix B ∈ R

n×m with
rank B = r ≤ m, B⊥ ∈ R

(n−r)×n denotes a matrix satisfying
B⊥B = 0 and B⊥(B⊥)� � 0. The vector 2-norm or the induced
matrix 2-norm is denoted by | · |.

II. PRELIMINARIES

In this letter, our objective is to parametrize the set of linear
controllers rendering the closed-loop systems p-dominant for
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nonlinear systems. First, we recall the notion of p-dominance
and properties of p-dominant systems. Then, we state the
considered problem.

A. p-Dominance

For a closed nonlinear system ẋ = f (x) with f : Rn → R
n of

class C1, the concept of dominance with rate λ ≥ 0 is defined
based on the following inequality with respect to ε > 0 and
P ∈ Sn:

∂�f (x)P+ P∂f (x) 
 −2λP− εIn, ∀x ∈ R
n, (1)

where ∂f (x) := ∂f (x)/∂x. Note that P ∈ Sn is not required
to be positive definite. If it has p negative eigenvalues and
n − p positive eigenvalues, P is said to have the inertia p.
Now, we are ready to mention the concept of p-dominance
and properties of p-dominant systems.

Definition 1 [3, Definition 2]: The closed nonlinear
system ẋ = f (x) is said to be strictly p-dominant with rate
λ ≥ 0 if there exist ε > 0 and P ∈ Sn with inertia p such
that (1) holds. �

Proposition 1 [3, Th. 1]: If a closed nonlinear system is
strictly p-dominant with rate λ ≥ 0, its flow on a compact
limit set is topologically equivalent to a flow on a compact
invariant set of a Lipshitz system in R

p. �

According to Proposition 1, realizing rich behavior can
be formulated in terms of p-dominance. For instance, multi-
stability and stable limit cycles are related to 1- and 2-
dominance, respectively.

B. Problem Formulation

Consider the following open nonlinear system:{
ẋ = f (x)+ Bu

y = Cx
(2)

where f is of class C1, B ∈ R
n×m, and C ∈ R

q×n.
Our objective is to design a controller making the

closed-loop system p-dominant. Since linear controllers are
easy-to-implement, investigating their limits and potentials
are important. Thus, we focus on linear output feedback
controllers: [

u
ẋc

]
=

[
Dc Cc

Bc Ac

]
︸ ︷︷ ︸

G

[
y
xc

]
, (3)

where Ac ∈ R
nc×nc (0 ≤ nc ≤ n), Bc ∈ R

nc×q, Cc ∈ R
m×nc ,

and Dc ∈ R
m×q. That is, we consider the following control

design problem.
Problem 1: For a system (2), find a set of linear dynamic

output feedback controllers (3) to render the closed-loop
systems p-dominant with rate λ ≥ 0. �

We are also interested in the computational tractability of
linear control design. For this reason, we consider constant B
and C, which allows us to formulate design problems in terms
of linear matrix inequalities (LMIs). Two different approaches
are explained after Theorem 1 and in Section IV below, the
latter of which focuses on Lure’s systems.

Let us define

x̂ =
[

x
xc

]
, f̂ (x̂) =

[
f (x)

0

]
, B̂ =

[
B 0
0 Inc

]
, Ĉ =

[
C 0
0 Inc

]
. (4)

Then, the closed-loop system can be described as

˙̂x = f̂ (x̂)+ B̂GĈx̂.

Thus, for given λ ≥ 0, Problem 1 reduces to finding ε > 0,
P ∈ Sn+nc with inertia p, and G ∈ R

(m+nc)×(q+nc) such that

(∂ f̂ (x̂)+ B̂GĈ)�P+ P(∂ f̂ (x̂)+ B̂GĈ)


 −2λP− εIn+nc , ∀x ∈ R
n (5)

holds. We design controllers based on (5).
A parametrization of stabilizing controllers is a well studied

problem as represented by the Youla-Kučera parametriza-
tion, e.g., [11]. In contrast, literature on control design for
p-dominance is still scarce. This letter is the first attempt
to study dynamic output feedback control design and further
their parametrization. As an advantages of parametrizing con-
trollers, one can design controllers having additional perfor-
mances, which is also investigated by finding stable controllers
as a generalization of strong stabilization.

III. MAIN RESULTS

In this section, we first investigate the existence of a lin-
ear dynamic output feedback controller achieving p-dominance
with rate λ ≥ 0 and then provide its parametrization. Also, we
discuss controller reduction and stable control design based on
the obtained parametrization.

A. Parametrization of Linear Controllers

We first derive a necessary condition for the existences of P
and G satisfying (5). This also becomes a sufficient condition
under a mild assumption, stated below.

Theorem 1: Given λ ≥ 0, suppose that there exist ε > 0,
non-singular P ∈ Sn+nc , and G ∈ R

(m+nc)×(q×nc) satisfying (5).
Then, there exist εX, εY > 0 and X, Y ∈ Sn such that

B⊥ (∂f (x)X + X∂�f (x)

+ 2λX + εXIn)(B
⊥)� 
 0, ∀x ∈ R

n (6a)

(C�)⊥ (Y∂f (x)+ ∂�f (x)Y

+ 2λY + εYIn)((C
�)⊥)� 
 0, ∀x ∈ R

n (6b)

hold. The converse is also true if X is non-singular.
Proof: The proof is in the Appendix-B.
Corollary 1: Given λ ≥ 0, suppose that (6) has solu-

tions εX, εY > 0 and X, Y ∈ Sn with non-singular X.
Utilizing P1,2 ∈ R

n×nc and non-singular P2,2 ∈ Snc satisfying
Y − X−1 = P1,2P−1

2,2P�1,2, define

P :=
[

Y P1,2

P�1,2 P2,2

]
. (7)

Then, P is non-singular for such arbitrary P1,2 and P2,2, and
there exist ε > 0 and G ∈ R

(m+nc)×(q×nc) such that (5) holds.
Moreover, if Y − X−1 � 0, the inertias of P and X are the
same.

Proof: The proof is in the Appendix-C.
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For fixed λ ≥ 0, (6) is an infinite family of LMIs with
respect to εX, εY > 0 and X, Y ∈ Sn. To make it feasible,
similar convex relaxations as in [3], [8], [10] can be applied.
Let Âi ∈ R

(n+nc)×(n+nc), i = 1, . . . , r be such that for each
x̂ ∈ R

n+nc , there exist θi(x̂) satisfying ∂ f̂ (x̂) =∑r
i=1 θi(x̂) Âi

and
∑r

i=1 θi(x̂) = 1. Then, (6) holds if

B⊥(AiX + XA�i + 2λX + εXIn)(B
⊥)� 
 0

(C�)⊥(YAi + A�i Y + 2λY + εYIn)((C
�)⊥)� 
 0

∀i = 1, . . . , r

are satisfied. This is a finite family of LMIs with respect to
εX, εY > 0 and X, Y ∈ Sn.

According to Corollary 1, achieving p-dominance reduces to
finding a suitable pair of X and Y (also εX and εY) such that P
in (7) has inertia p, which can require iteratively solving (6) for
different rates λ ≥ 0. This process can be simplified to finding
X with inertia p by imposing Y−X−1 � 0 when solving (6b).
In general, increasing λ ≥ 0 corresponds to making p larger.

In this letter, we are interested in not only finding a
stabilizing controller but also parametrizing a set of con-
trollers achieving p-dominance with rate λ ≥ 0. Such a
parametrization is presented as follows.

Theorem 2: Given λ ≥ 0, suppose that all conditions in
Corollary 1 hold, and consider P in (7). Then, for this P, all
G parametrized below satisfy (5) for some ε > 0:

G = − R−1B̂�PQ̂−1Ĉ�(ĈQ̂−1Ĉ�)−1

+ S1/2L(ĈQ̂−1Ĉ�)−1/2 (8)

S := R−1 − R−1B̂�PQ̂−1

(Q̂− Ĉ�(ĈQ̂−1Ĉ�)−1Ĉ)Q̂−1PB̂R−1,

where parameters L ∈ R
(nc+m) ×(q+nc), 0 ≺ R ∈ Snc+m, and

0 ≺ Q̂ ∈ Sn are arbitrary as long as |L| < 1 and

− ∂� f̂ (x̂)P− P∂ f̂ (x̂)− 2λP

− ε̂In+nc + PB̂R−1B̂�P � Q̂, ∀x ∈ R
n (9a)

(Ĉ�)⊥(Q̂− PB̂R−1B̂�P)((Ĉ�)⊥)� � 0 (9b)

hold for some ε̂ > 0.
Proof: The proof is in the Appendix-D.
Note that (9) is linear with respect to ε̂ > 0, R � 0, and

Q̂ � 0. Thus, a similar convex relaxation as for (6) can be
applied to (9) for deriving a finite family of LMIs.

If (6) and (9) hold for all x ∈ R
n, we obtain a parametriza-

tion of controllers rendering global p-dominance. If one is
interested in achieving local p-dominance on a convex D ⊂
R

n, one only has to consider these conditions on D.

B. Controller Reduction

From Corollary 1, the dimension nc of a designed controller
is equivalent to the rank of Y − X−1. Thus, given nc < n,
a reduced-order control design can be formulated as finding
X, Y ∈ Sn such that (6) and rank (XY−In) = rank (Y−X−1) =
nc hold. To make this problem computationally tractable, we
relax reducing rank (XY − In) into making trace(XY − In)

smaller. To this end, we alternatively update X and Y .

For the initial solution Xk, Yk ∈ Sn with k = 0, suppose that
rank (XkYk− In) > nc. Then, we first update X by solving the
following optimization problem:

min
εk≥0, εXk+1>0

Xk+1∈Sn

εk

s.t. − εk ≤ trace(Xk+1Yk − In) ≤ εk

(6a) holds for X = Xk+1 and εX = εXk+1

Xk+1 has inertia p. (10)

The last constrain is not convex. However, it is expected that
this holds if the update Xk+1−Xk is small, e.g., −cIn 
 Xk+1−
Xk 
 cIn with sufficiently small c > 0. Next, we update Y
based on the following optimization problem:

min
εk≥0, εYk+1 >0

Yk+1∈Sn

εk

s.t. −εk ≤ trace(Xk+1Yk+1 − In) ≤ εk

(6b) holds for Y = Yk+1 and εY = εYk+1

Yk+1 − X−1
k+1 � 0. (11)

The last constraint is to make the inertias of X and P are the
same; recall Corollary 1.

We repeat the updates of Xk and Yk until rank (XkYk − In)

≤ nc. The optimization problems (10) and (11) are always
feasible because they have trivial solutions εXk+1 = εXk ,
εYk+1 = εYk , Xk+1 = Xk, and Yk+1 = Yk. However, when
Xk+1 − Xk and Yk+1 − Yk are too marginal, we may need to
terminate the algorithm (fail).

C. Stable Control Design

In Theorem 2, we have obtained a parametrization (8)
of linear controllers G rendering the closed-loop systems
p-dominant, where G is linear with respect to L. We derive
an LMI condition for L such that a controller becomes stable.

Proposition 2: Given λ ≥ 0, suppose that all conditions in
Corollary 1 hold. Consider P in (7) and the corresponding
parametrization G in (8) for fixed ε̂ > 0, R � 0, and Q̂ � 0
satisfying (9). Define G2,2 := [

0 Inc

]
G

[
0 Inc

]�. If P2,2 � 0,
and the following set of LMIs:

G�2,2P2,2 + P2,2G2,2 ≺ 0 (12a)[
Inc+m L

L� Ip+nc

]
� 0 (12b)

has a solution L ∈ R
(nc+m) ×(q+nc), then Ac is Hurwitz while

P and G satisfy (5) for some ε > 0.
Proof: From (3), G2,2 = Ac. Thus, (12a) with P2,2 � 0

implies that Ac is Hurwitz. From Theorem 2, if L satisfies
|L| < 1, i.e., (12b), P and G satisfy (5) for some ε > 0.

From the construction (7) of P, Y − X−1 � 0 implies
P2,2 � 0. Noting this, we summarize an algorithm for reduced-
order stable linear control design achieving p-dominance with
rate λ ≥ 0 in Algorithm 1 below. The constructed G in
line 23 gives a parametrization of (non-necessarily stable) lin-
ear controllers rendering the closed-loop systems p-dominant.
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Algorithm 1 Control Design for p-Dominance With Rate
λ ≥ 0
Require: System (2), p, nc ≤ n
Ensure: n̂c-dimensional (n̂c ≤ nc) stable linear controller (3)

achieving p-dominance with rate λ ≥ 0 or Fail
1: λ = 0
2: while Inertia of X is equivalent to p do
3: Solve (6a) with respect to εX > 0 and X ∈ Sn
4: if Inertia of X is less than p then
5: Increase λ ≥ 0
6: end if
7: if Inertia of X is greater than p then
8: Return Fail
9: end if

10: end while
11: Solve (6b) and Y −X−1 � 0 with respect to εY > 0 and Y ∈ Sn
12: k← 0, X0 ← X, Y0 ← Y
13: while rank (XkYk − In) ≤ nc do
14: Solve (10) with respect to εXk+1 > 0 and Xk+1 ∈ Sn
15: Solve (11) with respect to εYk+1 > 0 and Yk+1 ∈ Sn
16: if Xk+1 − Xk and Yk+1 − Yk are marginal then
17: Return Fail
18: end if
19: k← k + 1
20: end while
21: n̂c ← rank (XkYk − In), X← Xk, Y ← Yk
22: Compute P in (7), and solve (9) with respect to ε̂ > 0, 0 ≺ R ∈

Sn̂c+m, and 0 ≺ Q̂ ∈ Sn
23: Construct G in (8) with a tuning parameter |L| < 1
24: if (12) does not have a solution L then
25: Return Fail
26: end if
27: Return G with a solution L to (12)

IV. FOR LURE’S SYSTEMS

To design a controller based on the proposed approach, we
need to solve an infinite family of LMIs (6), which can be
relaxed into a finite one as mentioned above. In this section,
focusing on Lure’s systems, we consider another relaxation.
In particular, we derive a sufficient LMI condition for (6) and
provide a parametrization of controllers.

Lure’s system is a system described by⎧⎨
⎩

ẋ = Ax+ Bu+ Bzg(z)
y = Cx
z = Czx,

(13)

where A ∈ R
n×n, Bz ∈ R

n×n2 , Cz ∈ R
n1×n, and g : Rn1 → R

n2

is of class C1 such that for some γ > 0,

|∂g(z)| ≤ γ, ∀z ∈ R
n1 (14)

holds. If there are parameter uncertainties, these can be
covered by selecting γ larger.

Utilizing the structure of Lure’s systems, we have the
following sufficient condition for (6).

Proposition 3: For Lure’s system (13), if given λ ≥ 0, there
exist εX, εY > 0 and X, Y ∈ Sn such that

B⊥ (AX + XA� + XC�z CzX

+ γ 2BzB
�
z + 2λX + εXIn)(B

⊥)� 
 0 (15a)

(C�)⊥ (YA+ A�Y + C�z Cz + γ 2YBzB
�
z Y

+ 2λY + εYIn)((C
�)⊥)� 
 0 (15b)

hold, then they satisfy (6).

Proof: For Lure’s system, (6a) becomes

B⊥(AX + XA� + Bz∂g(z)CzX

+ XC�z ∂�g(z)B�z + 2λX + εXIn)(B
⊥)� 
 0,

which can be rearranged as

B⊥
(

AX + XA� + 2λX + εXIn

+ [
Bz XC�z

][ 0 ∂g(z)
∂�g(z) 0

][
B�z
CzX

])
(B⊥)� 
 0.

By the Schur complement with (14), this holds if (15a) holds.
The proof for Y is similar.

Note that (15) is equivalent to the following set of LMIs
with respect to X, Y ∈ Sn:[

X̄1,1 B⊥XC�z
CzX(B⊥)� −In1

]

 0 (16a)

[
Ȳ1,1 γ (C�)⊥YBz

γ B�z Y((C�)⊥)� −In2

]

 0 (16b)

X̄1,1 := B⊥(AX + XA� + γ 2BzB
�
z + 2λX + εXIn)(B

⊥)�

Ȳ1,1 := (C�)⊥(YA+ A�Y + C�z Cz

+ 2λY + εYIn)((C
�)⊥)�.

Thus, for Lure’s systems, the construction of P in (7) can be
relaxed into solving a finite set of LMIs.

Also for a parametrization of linear controllers, we have the
following LMI condition.

Proposition 4: Given λ ≥ 0, suppose that all the condi-
tions in Proposition 3 hold, and consider P in (7). Then,
for this P, all G parametrized by (8) satisfy (5), where
L ∈ R

(nc+m) ×(q+nc) and 0 ≺ R ∈ Snc+m are arbitrary as long
as |L| < 1 and

Q̂ := −ÂP− PÂ− Ĉ�z Ĉz − γ 2PB̂zB̂
�
z P

− 2λP− ε̂In+nc + PB̂R−1B̂�P � 0 (17)

for some ε̂ > 0, where

Â :=
[

A 0
0 0

]
, B̂z :=

[
Bz

0

]
, Ĉz := [

Cz 0
]
.

Proof: The proof is in the Appendix-E.

V. EXAMPLES

Consider the following Lure’s system:⎧⎪⎪⎨
⎪⎪⎩

ẋ =
[

0 1
−3 −5

]
x+

[
0
2

]
sin(z)+

[
0
1

]
u

y = [
1 0

]
x

z = [
1 0

]
x

(18)

For this system, γ > 0 in (14) is 1. This system is 0-dominant
when u = 0.

We design two 1-dimensional controllers: one is for
1-dominance, and the other is for 2-dominance. First, we
consider 1-dominance. Applying a similar algorithm to
Algorithm 1 for the Lure’s system, a set of solutions to (16)
is obtained by λ = 1.1, εX = 0.01, εY = 0.01, and

X =
[−0.600 0

0 7.00

]
, Y =

[−0.667 0
0 0.143

]
.
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Note that the inertia of X is 1, and Y − X−1 � 0. From
Corollary 1, P in (7) has inertia 1 also. Since 1/7 ≈ 0.143,
the rank of Y − X−1 is viewed as 1, and P with inertial 1 is
constructed as follows:

P =
⎡
⎣−0.667 0 1

0 0.143 0
1 0 0.1000

⎤
⎦.

To obtain a parametrization of controllers, we compute 0 ≺
R ∈ S2 satisfying (17), which is

R =
[

0.0620 −0.190
−0.190 0.962

]
.

Then, a parametrization of controllers achieving 1-dominance
with rate λ = 1.1 is given by G in (8) with a tuning parameter
|L| < 1. From the obtained parametrization, we select a stable
controller. In this case, (12) has a trivial solution L = 0, and
the corresponding G in (8) is

G =
[−0.997 −7.58
−1.24 −2.54

]
.

From (3), Ac = −2.54 is Hurwitz. Figure 1 (left) shows
the closed-loop trajectories in the x-plane. As expected from
1-dominance with rate λ = 1.1, the closed-loop system is
multi-stable.

Next, we design a controller achieving 2-dominance. To
increase p, we select larger εX = 2.5 than the one for p = 1,
where λ = 1.1 is the same as p = 1. Then, a solution X ∈ S2
to the LMI (16a) is obtained by

X =
[−0.600 0

0 −0.500

]
.

The inertia of X is 2. Also, the set solutions to (16b) and
Y − X−1 � 0 is obtained by εY = 0.01 and

Y =
[ −1.62 −0.310
−0.310 −0.110

]
.

Based on X and Y , we construct P in (7) as

P =
⎡
⎣ −1.62 −0.310 0.162
−0.310 −0.110 −0.987
0.162 −0.987 0.515

⎤
⎦

whose inertia is 2. For this P, a matrix 0 ≺ R ∈ S2
satisfying (17) and a controller G with L = 0 are obtained by

R =
[

0.145 0.0772
0.0772 0.993

]
, G =

[
2.06 7.57
−1.38 −0.250

]
.

Note that Ac = −0.250 is Hurwitz. Figure 1 (right) shows
the closed-loop trajectories in the x-plane. As expected from
2-dominance with rate λ = 1.1, the closed-loop system has a
stable Limit cycle.

VI. CONCLUSION

In this letter, we have proposed a parametrization of linear
dynamic output feedback controllers rendering the closed-loop
systems p-dominant. Utilizing the proposed parametrization,
we have further discussed how to impose the stability for
controller dynamics. Also, we have mentioned reduced-order
control design. Based on the proposed method, we have

Fig. 1. Closed-loop trajectories (left) 1-dominance (right) 2-dominance
with rates λ = 1.1.

designed reduced-order stable controllers for Lure’s system,
which achieve 1- and 2-dominance. Future work includes
applying the proposed method to real-life systems by address-
ing problems caused in practical environment.

APPENDIX

A. Lemmas for Matrices

Before proving the theorems, we list existing results.
Lemma 1 [13, A.5.5, C.4.1]: Consider a symmetric block

matrix P in (7). If P2,2 is non-singular, it can be decomposed
into

P =
[

I P1,2P−1
2,2

0 I

][
Y − P1,2P−1

2,2P�1,2 0
0 P2,2

]

[
I P1,2P−1

2,2
0 I

]�
. (19)

Moreover, if P is non-singular, the first n × n block element
of P−1 is X := (Y − P1,2P−1

2,2P�1,2)
−1. �

Lemma 2 [12, Lemma 2.1]: Let matrices B and H = H�
with compatible dimensions be given. Then, the following two
statements are equivalent:

(i) there exists R � 0 satisfying H + BRB� � 0;
(ii) B⊥H(B⊥)� � 0 or BB� � 0. �

Lemma 3 [12, Lemma 2.2]: Let matrices K, C, Q = Q�,
and R � 0 with compatible dimensions be given. If CC� � 0,
the following two statements are equivalent:

(i) there exists G satisfying (K + GC)�R(K + GC) ≺ Q;
(ii) a) Q � 0 and b) (C�)⊥(Q − K�RK)((C�)⊥)� � 0 or

C�C � 0.
If (ii) holds, all G satisfying (i) are given by

G = − KQ−1C�(CQ−1C�)−1 + S1/2L(CQ−1C�)−1/2

S := R−1 − K(Q−1 − Q−1C�(CQ−1C�)−1CQ−1)K�

where |L| < 1. �

B. Proof of Theorem 1

As a preliminary step, we rearrange (5). Since (5) contains
ε > 0, (5) holds if and only if there exist ε̂ > 0 and 0 ≺ R ∈
Snc+m such that

(∂ f̂ (x̂)+ B̂GĈ)�P+ P(∂ f̂ (x̂)+ B̂GĈ)

+ (GĈ)�RGĈ ≺ −2λP− ε̂In+nc ,
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holds, where note that the inequality is strict. Completing the
square with respect to GĈ yields

(R−1B̂�P+ GĈ)�R(R−1B̂�P+ GĈ) ≺ Q(x̂), (20)

where

Q(x̂) := −∂� f̂ (x̂)P− P∂ f̂ (x̂)− 2λP− ε̂In+nc + PB̂R−1B̂�P.

(21)

Note that Q(x̂) depends on x only because f̂ (x̂) does so.
According to Lemma 3, (20) is equivalent to

Q(x̂) � 0 (22a)

(Ĉ�)⊥(Q(x̂)− PB̂R−1B̂�P)((Ĉ�)⊥)� � 0. (22b)

Note that every transformation is equivalent until here.
Namely, there exist P and G satisfying (5) if and only if there
exist P and R � 0 such that (22) holds for Q(x̂) in (21). Thus,
we show the statements based on (22).

First, we show that (22) implies (6). From (21), pre- and
post-multiplying P−1 to (22a) lead to

−P−1∂� f̂ (x̂)− ∂ f̂ (x̂)P−1

− 2λP−1 − ε̂P−2 + B̂R−1B̂� � 0. (23)

Since P is non-singular and symmetric, we have P−2 � 0.
Thus, (23) holds if and only if for some εX > 0,

−P−1∂� f̂ (x̂)− ∂ f̂ (x̂)P−1 − 2λP−1 − εXIn+nc + B̂R−1B̂� � 0.

According to Lemma 2, this is equivalent to

B̂⊥(−P−1∂� f̂ (x̂)− ∂ f̂ (x̂)P−1

− 2λP−1 − εXIn+nc)(B̂
⊥)� � 0. (24)

The definition of B̂ in (4) implies B̂⊥ = [
B⊥ 0

]
. Also from

the definition of f̂ (x̂) in (4), (24) holds if and only if

B⊥(−X∂�f (x)− ∂f (x)X − 2λX − εXIn)(B
⊥)� � 0,

holds, where X denotes the first n× n block diagonal element
of P−1. Since B⊥(B⊥)� � 0 and εX > 0, this is equivalent to
the non-strict inequality (6a).

Similarly, the definition of Ĉ in (4) implies (Ĉ�)⊥ =[
(C�)⊥ 0

]
. Then, from (21), (22b) is equivalent to

(C�)⊥(−∂�f (x)Y − Y∂f (x)− 2λY − ε̂In)((C
�)⊥)� � 0,

where Y = P1,1. Again, this is equivalent to the non-strict
inequality (6b).

Next, we prove the converse under the non-singularity of X.
Define nc = rank (Y − X−1). Then, there exist P1,2 ∈ R

n×nc

and non-singular P2,2 ∈ Snc such that Y−X−1 = P1,2P−1
2,2P�1,2

holds. Using these matrices, we construct P as in (7). Since
P2,2 is non-singular, P can be decomposed as in (19), where
P1,1−P1,2P−1

2,2P�1,2 = X−1. The non-singularity of X and P2,2

imply that of P; when nc = 0, P = Y = X−1 is non-singular.
From Lemma 1, the first n× n block element of P−1 is X.

Therefore, if X satisfies (6a), P−1 does (24). Namely, there
exists R � 0 satisfying (23), i.e., (22a). Similarly, if Y sat-
isfies (6b), P does (22b). In summary, for the constructed P,
there exists R � 0 satisfying (22).

C. Proof of Corollary 1

The first statement follows from the proof of Theorem 1
above. We show the second statement. From the constructions
of P1,2 and P2,2, Y−X−1 � 0 implies P2,2 � 0. Furthermore,
from the decomposition (19) of P, if P2,2 � 0 then the inertia
of P is equivalent to that of P1,1 − P1,2P−1

2,2P�1,2 = X−1. Note
that the inertias of X−1 and X are the same.

D. Proof of Theorem 2

From Lemma 3 with Q̂ � 0 and (9b), all G in (8) satisfy

(R−1B̂�P+ GĈ)�R(R−1B̂�P+ GĈ) ≺ Q̂. (25)

From (9a) and (21), we have Q̂ 
 Q(x) and thus (20). From
the proof of Theorem 1, all G satisfy (5).

E. Proof of Proposition 4

As in the proof of Theorem 1, it is possible to show that
the constructed P satisfies Q̂ � 0 and

(Ĉ�)⊥(Q̂− PB̂R−1B̂�P)((Ĉ�)⊥)� � 0.

for some R � 0, λ ≥ 0, and ε > 0, where Q̂ is defined in (17).
Also, similarly to the proof of Theorem 2, it is possible to show
that all G in (8) with Q̂ in (17) satisfy (25). Again from the
proof of Theorem 1, (25) implies

(Â+ B̂GĈ)�P− P(Â+ B̂GĈ)+ Ĉ�z Ĉz + γ 2PB̂zB̂
�
z P

+ 2λP+ ε̂In+nc 
 0

As in the proof of Proposition 3, one can show that this
implies (5) for the Lure’s system (13).
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