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On the Relation Between Discrete and
Continuous-Time Refined Instrumental
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Abstract—The Refined Instrumental Variable method for
discrete-time systems (RIV) and its variant for continuous-
time systems (RIVC) are popular methods for the identifica-
tion of linear systems in open-loop. The continuous-time
equivalent of the transfer function estimate given by the
RIV method is commonly used as an initialization point for
the RIVC estimator. In this letter, we prove that these esti-
mators share the same converging points for finite sample
size when the continuous-time model has relative degree
zero or one. This relation does not hold for higher rela-
tive degrees. Then, we propose a modification of the RIV
method whose continuous-time equivalent is equal to the
RIVC estimator for any non-negative relative degree. The
implications of the theoretical results are illustrated via a
simulation example.

Index Terms—Identification, refined instrumental vari-
ables, parsimony.

I. INTRODUCTION

SYSTEM identification deals with the problem of obtain-
ing mathematical models of dynamical systems from

data [1]. A distinction is made between discrete-time (DT)
and continuous-time (CT) models. In DT system identifica-
tion, it is assumed that a complete description of the system
can be made by only observing its behavior at specific time
instants. On the contrary, CT system identification seeks mod-
els that reflect the properties of the system for any moment in
time.
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There are two main approaches to CT system identifica-
tion: indirect and direct [2]. The indirect approach consists
in estimating a DT model with the data, and then converting
this model into continuous-time. On the other hand, the direct
approach does not use intermediate DT models. It is known
that the standard indirect approach leads to models with rela-
tive degree one, independent of that of the strictly proper CT
system [3]; such issue does not arise in the direct approach,
since any number of zeros can be accommodated without the
need of an additional optimization step.

For either the direct or indirect approach, refined instrumen-
tal variable methods can be applied. The Refined Instrumental
Variable (RIV) method for DT systems and its simplified
embodiment (SRIV, [4]) are used for estimating Box-Jenkins
and output error models, and the CT equivalents of their esti-
mated models are commonly used for initializing the direct
approach [5], [6]. Some of the most celebrated direct meth-
ods are the CT variants of these estimators, called RIVC
and SRIVC [7]. The RIVC and SRIVC algorithms compute
iterative instrumental variable steps by prefiltering the data
through CT filters, and are initialized by the CT equivalent
of the RIV or SRIV estimators in the MATLAB Contsid
Toolbox [8].

The RIV methods have been used for modeling climate
dynamics [9] as well as mechanical systems [10], and exten-
sions of these estimators have been proposed for LPV [11],
Hammerstein-Wiener [12] and unstable systems [13]. A com-
prehensive overview of these methods can be found in [14];
however, such work overlooks a relation between the converg-
ing points of the DT and CT RIV variants.

In this letter, we show that the indirect approach with the
RIV estimator provides the same estimate as RIVC at conver-
gence of its iterations (considering finite sample size) for CT
systems with relative degree one or zero. Although this result
no longer holds for higher relative degrees due to parsimony
issues, we propose a modification to the RIV estimator, termed
Adapted RIV (ARIV), that is shown to extend this equiva-
lence for any non-negative relative degree. As a byproduct,
we show that the ARIV estimator can impose relative degree
constraints in its CT equivalent without additional optimization
steps. The theoretical results include the relationship between
the simplified versions of these estimators (SRIV and SRIVC)
as a special case.
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The remainder of this letter is organized as follows. In
Section II, we describe the system and model. Section III
presents the notation of the unified RIV estimator; this esti-
mator is later analyzed in Section IV, which contains the main
contributions. In Section V we provide a simulation example,
and we conclude this letter in Section VI.

II. SYSTEM AND MODEL SETUP

Consider the single-input single-output, linear and time-
invariant (LTI), asymptotically stable, CT system

x(t) = B∗
c(p)

A∗
c(p)

u(t),

where p is the Heaviside operator (i.e., pu(t) = du(t)/dt), and
u(t) is the input. The numerator and denominator polynomials
B∗

c(p) and A∗
c(p) are coprime and given by

A∗
c(p) = a∗

npn + a∗
n−1pn−1 + · · · + a∗

1p + 1,

B∗
c(p) = b∗

mpm + b∗
m−1pm−1 + · · · + b∗

1p + b∗
0,

with a∗
n �= 0, and n ≥ m. These polynomials are jointly

described by the parameter vector

θ∗
c = [

a∗
1, a∗

2, . . . , a∗
n, b∗

0, b∗
1, . . . , b∗

m

]�
. (1)

A noisy output measurement is retrieved every h[s], i.e.,

y(kh) = x(kh) + C∗(q)

D∗(q)
e(kh),

where q denotes the forward shift operator, e(kh) describes
a zero-mean white noise stochastic process of finite variance
that is uncorrelated with the input sequence u(kh), and

C∗(q) = 1 + c∗
1q−1 + c∗

2q−2 + · · · + c∗
mc

q−mc ,

D∗(q) = 1 + d∗
1q−1 + d∗

2q−2 + · · · + d∗
nd

q−nd ,

with the polynomial degrees satisfying nd ≥ mc. The
coefficients c∗

i and d∗
j are combined in a parameter vector

η∗ of the same form as θ∗
c in (1).

Based on N input and output data samples,
{u(kh), y(kh)}N

k=1, the goal is to determine a model for
G∗

c(p) := B∗
c(p)/A∗

c(p) in the CT or DT domain, and possibly
of the noise filter H∗(q) := C∗(q)/D∗(q) also.

A. Discrete-Time Equivalent and Inverse of Sampling

Throughout this letter we assume that the input signal
is constant between samples, i.e., it has a zero-order hold
(ZOH) intersample behavior. Therefore, the system we intend
to model can be exactly described at the sampling instants by
its DT ZOH equivalent, which has the form

y(kh) = G∗
d(q)u(kh) + H∗(q)e(kh), (2)

with G∗
d(q) = B∗

d(q)/A∗
d(q), where

A∗
d(q) = α∗

nqn + α∗
n−1qn−1 + · · · + α∗

1q + 1,

B∗
d(q) = β∗

n qn + β∗
n−1qn−1 + · · · + β∗

1 q + β∗
0 .

The parameter vector associated with G∗
d(q) is denoted as

θ∗
d and has the same structure as θ∗

c but is formed by the
DT system parameters instead of the CT parameters. If the
CT system is strictly proper, then β∗

n = 0 and the last ele-
ment of θ∗

d is omitted. Note that, however, almost any strictly

proper CT system leads to β∗
n−1 �= 0. Although this fact is

well known [15], explicit results on the resulting DT relative
degree are difficult to find in the literature. For completeness,
the formal statement with its proof is presented next.

Proposition 1: Consider a strictly proper, LTI, CT system
G∗

c(p). The relative degree of the DT ZOH equivalent of G∗
c(p)

is r ≥ 1 if and only if y∗
c(h) = y∗

c(2h) = · · · = y∗
c([r−1]h) = 0

and y∗
c(rh) �= 0, where y∗

c(t) is the step response of G∗
c(p) and

h is the sampling period.
Proof: The DT ZOH equivalent of G∗

c(p) is computed by

G∗
d(z) = (1 − z−1)Z{y∗

c(kh)
}

= y∗
c(h)

z
+ y∗

c(2h) − y∗
c(h)

z2
+ y∗

c(3h) − y∗
c(2h)

z3
+ · · · .

Therefore, the transfer function G∗
d(z) has relative degree r if

and only if y∗
c(rh) − y∗

c([r − 1]h) �= 0 and

y∗
c(h) = y∗

c(2h) − y∗
c(h) = · · · = y∗

c([r − 1]h) − y∗
c([r − 2]h) = 0,

from which the statement follows.
The indirect approach to CT system identification requires a

link between the DT parameter vector θd and its CT equivalent
θc. This link is presented in Definition 1, which is used for
analyzing the relationship between discrete and continuous-
time refined instrumental variable methods.

Definition 1 (Inverse ZOH Transformation): Given any DT
transfer function described by θd, we define the inverse ZOH
transformation by f : R2n+1 → R

2n+1; θd �→ θc = f(θd). The
vector f(θd) is of the form (1) with m = n that describes the
transfer function Cc(pI − Ac)

−1Bc + Dc, where Cc = [β0 −
βn
αn

, β1 − βnα1
αn

, . . . , βn−1 − βnαn−1
αn

], Dc = βn/αn, and where
Ac ∈ R

n×n with Bc ∈ R
n×1 are computed by

[
Ac Bc
0 0

]
= 1

h
log

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0
−1
αn

−α1
αn

−α2
αn

. . .
−αn−1

αn

1
αn

0 0 0 . . . 0 1

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

.

In case βn = 0 (i.e., the DT model is strictly proper), we know
that bn = 0 and we thus consider f to be the mapping between
the strictly proper models only.

The function f is known to be well-defined and bijective
when 1) there is no negative real pole in the DT transfer func-
tion associated with θd, and 2) the sampling radian frequency
π/h is larger than twice the largest imaginary part of the
poles related to f(θd) [16]. The functions f and f−1 are well-
defined and differentiable in the domain where these two
conditions hold, thus leading to its Jacobian matrix ∂f/∂θd
being non-singular at any point of that domain [17].

III. REFINED INSTRUMENTAL VARIABLES:
A UNIFIED NOTATION

The motivation behind refined instrumental variables is to
solve the non-convex optimization problem of maximum like-
lihood estimation by iterations stemming from a pseudo-linear
regression. For brevity, similar to [14], here we jointly intro-
duce the RIV (for DT identification) and RIVC (for CT
identification) estimators via a unified notation.

We define ξ as the unified operator (i.e., q for the RIV
estimator and p for RIVC), and the unified subscript (·)ν ,
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where ν ∈ {d, c} depending on whether the RIV or RIVC
estimator is considered. Assuming that the jth iteration of the
system parameters estimate, θν,j (with model Bν,j(ξ)/Aν,j(ξ)),
is given, the jth noise model iteration of the RIV and RIVC
estimators is obtained by fitting an ARMA model to the esti-
mated noise sequence {y(kh)−[Bν,j(ξ)/Aν,j(ξ)]u(kh)}N

k=1. This
procedure gives the noise model Cj+1(q)/Dj+1(q), represented
by the noise model parameter vector ηj+1.

There are several ways to fit an ARMA model to obtain
ηj+1. In this letter we consider the prediction error method [1].
Formally, we define the function that links θν,j and ηj+1 as
gν : Rn+m+1 → R

mc+nd ; θν,j �→ ηj+1 = gν(θν,j), where

gν(θν,j) = arg min
η

N∑

k=1

[
D(q, η)

C(q, η)

(
y(kh) − Bν,j(ξ)

Aν,j(ξ)
u(kh)

)]2

.

Remark 1: The notation C(q, η) and D(q, η) is used to
stress the dependence of these polynomials on the parame-
ter vector η. Similarly, in the sequel we use Aν(ξ, θν,j) and
Bν(ξ, θν,j) interchangeably for Aν,j(ξ) and Bν,j(ξ).

After the noise model iteration is computed, an RIV step is
proposed for minimizing gν(θν,j) upon convergence [14]. The
jth system model iteration is given by

θν,j+1 =
[

1

N

N∑

k=1

ϕ̂ν,f (kh, θν,j)ϕ
�
ν,f (kh, θν,j)

]−1

×
[

1

N

N∑

k=1

ϕ̂ν,f (kh, θν,j)yν,f (kh, θν,j)

]
, (3)

where the matrix being inverted is called the modified normal
matrix. The filtered regressor ϕν,f (kh, θν,j), filtered instrument
ϕ̂ν,f (kh, θν,j) and filtered output yν,f (kh, θν,j) are respectively1

given by

ϕν,f (kh, θν,j) = Dj+1(q)

Cj+1(q)

[ −ξ

Aν,j(ξ)
y(kh), . . . ,

−ξn

Aν,j(ξ)
y(kh),

1

Aν,j(ξ)
u(kh), . . . ,

ξm

Aν,j(ξ)
u(kh)

]�
,

ϕ̂ν,f (kh, θν,j) = Dj+1(q)

Cj+1(q)

[−ξBν,j(ξ)

A2
ν,j(ξ)

u(kh), . . . ,
−ξnBν,j(ξ)

A2
ν,j(ξ)

u(kh),

1

Aν,j(ξ)
u(kh), . . . ,

ξm

Aν,j(ξ)
u(kh)

]�
,

yν,f (kh, θν,j) = Dj+1(q)

Cj+1(q)

1

Aν,j(ξ)
y(kh). (4)

In case the noise model is not estimated and thus set to unity
(i.e., Cj(q) = Dj(q) = 1) the iterations in (3) describe the
SRIV and SRIVC estimators [4], [7].

Remark 2: In the expressions above we have introduced a
mixed notation of CT filters with sampled signals for the case
ν = c, ξ = p (i.e., for the RIVC and SRIVC estimators).
If G(p) is a CT filter and x(kh) is a sampled signal, then
G(p)x(kh) implies that the signal x(kh) is being interpolated
using a ZOH, and the resulting output of the filter is sampled
at t = kh.

1Note that ϕν,f , ϕ̂ν,f and yν,f have a subscript f to stress the prefiltering
process that must be performed. Also, note that for simplicity we have not
written the dependence of these signals on the noise model.

Given the parameter estimate vector θ̄d obtained from the
RIV iterations (3) at convergence as j tends to infinity for a
fixed N, the associated CT parameter vector (i.e., the indirect
approach estimate) is simply given by f(θ̄d).

IV. RELATION BETWEEN DISCRETE-TIME AND

CONTINUOUS-TIME REFINED INSTRUMENTAL

VARIABLE METHODS

Before stating the main theoretical results of this letter, we
present two assumptions.

Assumption 1: The system G∗
c(p) is proper (n ≥ m) and

asymptotically stable, with A∗
c(p) and B∗

c(p) being coprime.
Assumption 2: For all j sufficiently large, Ad,j(q) has no

negative real zero in the RIV algorithm, and the sampling
frequency π/h is larger than twice the largest imaginary part
of the zeros of Ac,j(p) in the RIVC algorithm.

While both assumptions are standard in the analysis of
RIV algorithms (see, e.g., [18], [19]), the asymptotic stabil-
ity of G∗

c(p) may not be needed in case the identification
is performed in closed-loop, although a more involved fil-
tering technique must be implemented [13]. Furthermore,
Assumption 2 is equivalent to requiring the inverse ZOH trans-
formation f to be well defined along the iterative process. This
will typically be the case if the sampling period is chosen
adequately and the model iterations do not diverge.

Theorem 1 shows that for models with relative degree zero
or one, the RIV method with inverse ZOH transformation f
provides the same model as the RIVC method upon conver-
gence as the number of iterations j tends to infinity for a fixed
and finite sample size N.

Theorem 1: Consider the RIV and RIVC estimators
described in Section III, and assume that upon convergence
in iterations (j → ∞) for a fixed sample size, their modi-
fied normal matrices are non-singular. Furthermore, assume
that Assumptions 1 and 2 are satisfied, and that m = n − 1
or m = n. Then, the RIVC and RIV methods have the same
number of limiting points and they are linked by θ̄c = f(θ̄d),
where θ̄c and θ̄d are the limiting point(s) of the RIVC and
RIV methods, respectively.

Proof: Any limiting point θ̄d = limj→∞ θd,j of the RIV
iterations must satisfy

θ̄d =
[

1

N

N∑

k=1

ϕ̂d,f (kh, θ̄d)ϕ
�
d,f (kh, θ̄d)

]−1

×
[

1

N

N∑

k=1

ϕ̂d,f (kh, θ̄d)yd,f (kh, θ̄d)

]
.

Provided the modified normal matrix is non-singular, the
condition above reduces to

N∑

k=1

ϕ̂d,f (kh, θ̄d)
[
yd,f (kh, θ̄d) − ϕ�

d,f (kh, θ̄d)θ̄d

]
= 0. (5)

After some algebraic manipulations, we can see that

ϕ̂d,f (kh, θ̄d) = D(q, gd(θ̄d))

C(q, gd(θ̄d))

∂

∂θd

Bd(q, θd)

Ad(q, θd)
u(kh)

∣∣∣
∣
θd=θ̄d

, (6)

and

yd,f (kh, θ̄d) − ϕ�
d,f (kh, θ̄d)θ̄d
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= D(q, gd(θ̄d))

C(q, gd(θ̄d))

(

y(kh) − Bd(q, θ̄d)

Ad(q, θ̄d)
u(kh)

)

. (7)

Replacing (6) and (7) in (5) leads to
N∑

k=1

D(q, gd(θ̄d))

C(q, gd(θ̄d))

∂

∂θd

Bd(q, θd)

Ad(q, θd)
u(kh)

∣∣∣∣
θd=θ̄d

× D(q, gd(θ̄d))

C(q, gd(θ̄d))

(

y(kh) − Bd(q, θ̄d)

Ad(q, θ̄d)
u(kh)

)

= 0. (8)

The existence of the inverse ZOH transformation for θ̄d
is ensured by Assumption 2. Since the ZOH equivalence
relation is exact at the sampling instants [20], the equality
[Bd(q, θ̄d)/Ad(q, θ̄d)]u(kh) = [Bc(p, f(θ̄d))/Ac(p, f(θ̄d))]u(kh)

holds for all k ∈ N. By the same argument, we find that
gd(θ̄d) = gc(f(θ̄d)). Moreover, the chain rule for gradients
yields

∂

∂θd

Bd(q, θd)

Ad(q, θd)
u(kh)

∣∣∣∣
θd=θ̄d

= ∂

∂θd

Bc(p, f(θd))

Ac(p, f(θd))
u(kh)

∣∣∣∣
θd=θ̄d

= ∂f
∂θd

∣∣∣∣
θd=θ̄d

∂

∂θc

Bc(p, θc)

Ac(p, θc)
u(kh)

∣∣∣∣
θc=f(θ̄d)

. (9)

Note that ∂f/∂θd is non-singular thanks to f and f−1 being
continuous and differentiable in the domain of interest due
to Assumption 2. Such matrix does not depend on N and
can therefore be factored out of the sum in (8) thanks to the
linearity of the transfer functions. Thus, (8) is equivalent to

N∑

k=1

D(q, gc(f(θ̄d)))

C(q, gc(f(θ̄d)))

∂

∂θc

Bc(p, θc)

Ac(p, θc)
u(kh)

∣∣∣∣
θc=f(θ̄d)

× D(q, gc(f(θ̄d)))

C(q, gc(f(θ̄d)))

(

y(kh) − Bc(p, f(θ̄d))

Ac(p, f(θ̄d))
u(kh)

)

= 0.

On the other hand, by following the same arguments to
derive (8) but for the RIVC method, any limiting point θ̄c
satisfies

N∑

k=1

D(q, gc(θ̄c))

C(q, gc(θ̄c))

∂

∂θc

Bc(p, θc)

Ac(p, θc)
u(kh)

∣∣∣∣
θc=θ̄c

× D(q, gc(θ̄c))

C(q, gc(θ̄c))

(

y(kh) − Bc(p, θ̄c)

Ac(p, θ̄c)
u(kh)

)

= 0.

By comparing the characterizations of θ̄d and θ̄c, we conclude
that the limiting points of the RIV and RIVC estimators are
linked by θ̄c = f(θ̄d).

Corollary 1: Under the same assumptions as in Theorem 1,
the SRIVC and SRIV methods have the same number of lim-
iting points and they are linked by θ̄c = f(θ̄d), where θ̄c and
θ̄d are the limiting point(s) of the SRIVC and SRIV methods,
respectively.

Proof: Direct by fixing Cj(q) = Dj(q) = 1 in the proof for
Theorem 1.

Remark 3: The non-singularity of the modified normal
matrices of the refined instrumental variable methods depends
on the persistence of excitation order of the input, as well as
the amount of over-parametrization, if any [19]. General con-
ditions for the non-singularity of this matrix have not been

addressed in the literature, although sufficient conditions for
the generic non-singularity of such matrix for the SRIVC
method can be found in [18]. Similar conditions can be derived
for the SRIV estimator, although they are outside the scope of
this letter.

Theorem 1 shows that, under similar initialization condi-
tions, the indirect and direct approaches with refined instru-
mental variables approach the same estimate at convergence
in iterations when m = n − 1 or m = n. This theorem only
applies for such values of m since only in these two cases
there is a bijection between the CT and DT models (corre-
sponding to f or its reduced version). In such scenarios, one
could argue that it is useless to perform the RIVC iterations
with the RIV estimate as an initialization point, as it is done
in some applications of the RIVC method [6]. However, it has
been noted in [21] that the CT equivalent of the RIV estimator
can fail to deliver reliable models, usually in the presence of
fast sampling or stiff systems. Possible discrepancies between
both methods when m ∈ {n − 1, n} can be explained by

• Ill-conditioning of the Jacobian ∂f/∂θd: for stiff systems
this matrix can be severely ill-conditioned, which can
affect the convergence of the iterative procedure of the
RIV estimator. Also, instability of the estimates can
arise more frequently within the iterations, thus requiring
ad-hoc stabilization steps [13].

• Misspecification of the intersample behavior in the RIVC
method: If the intersample behavior used for prefiltering
the input in the RIVC method does not match with the
nature of the DT equivalents in the RIV estimator, then
both methods will deliver different results in general.

• Choice of initialization: Convergence is not guaranteed
for finite samples, and the estimators may converge to
(different) local minima if poorly initialized.

A. The Adapted RIV Estimator

The indirect and direct approaches no longer produce the
same estimates for m < n − 1, since they propose different
model structures. It has been noted in [6] that the indirect
approach will typically lead to worse results when m < n − 1.
However, it is possible to establish a link between the indirect
and direct procedures if the filtered instrument and regressor
vectors of the RIV method are appropriately modified. In the
sequel, we consider the system parametrization

G∗
d(q) =

∑m
i=0 N∗

d,i(q)γ ∗
i

A∗
d(q)

with parameter vector ρ∗
d = [α∗

1 , . . . , α∗
n , γ ∗

0 , . . . , γ ∗
m]�, and

where N∗
d,i(q) are the numerator polynomials of the DT equiv-

alents of pi/A∗
c(p). This novel parametrization is such that its

numerator coefficients γ ∗
i correspond exactly to those of the

numerator polynomial of its CT equivalent. By leveraging the
state-space description of pi/A∗

c(p), it is possible to show that

N∗
d,i(q) = α∗

ne�
i+1adj(qI − eA∗

c h)(I − eA∗
c h)e1,

where adj(·) denotes the adjugate matrix, ej is the jth column
of the identity matrix of appropriate size, and A∗

c is the state
matrix of the CT equivalent of G∗

d(q), written as
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A∗
c =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−1
a∗

n

−a∗
1

a∗
n

−a∗
2

a∗
n

. . .
−a∗

n−1
a∗

n

⎤

⎥⎥⎥⎥⎥
⎦

.

Note that the N∗
d,i(q) polynomials are in general of order n−1

due to Proposition 1, and they satisfy N∗
d,i(1) = 0 for i > 0.

The vector ρ∗
d is related to θ∗

c via f for the denominator
coefficients, and via the identity map for the numerator
coefficients. This transformation will be denoted as f̃ and it
is bijective in the same domain as f in Definition 1.

Definition 2 (Adapted RIV and SRIV Estimators): We
define the Adapted RIV (ARIV) estimator with noise model
iterations given by ηj+1 = g̃d(ρd,j), with

g̃d(ρd,j) = arg min
η

N∑

k=1

[
D(q, η)

C(q, η)

×
(

y(kh) −
∑m

i=0 Nd,i(q, ρd,j)γi,j

Ad(q, ρd,j)
u(kh)

)]2

, (10)

and system model iterations (3) with filtered output (4),
but where the filtered regressor and instrument vectors are,
respectively, given by

ϕd,f (kh, ρd,j) = Dj+1(q)

Cj+1(q)

[ −q

Ad,j(q)
y(kh), . . . ,

−qn

Ad,j(q)
y(kh),

Nd,0,j(q)

Ad,j(q)
u(kh), . . . ,

Nd,m,j(q)

Ad,j(q)
u(kh)

]�
, (11)

ϕ̂d,f (kh, ρd,j) = Dj+1(q)

Cj+1(q)

[−Md,1,j(q)

A2
d,j(q)

u(kh), . . . ,
−Md,n,j(q)

A2
d,j(q)

u(kh),

Nd,0,j(q)

Ad,j(q)
u(kh), . . . ,

Nd,m,j(q)

Ad,j(q)
u(kh)

]�
, (12)

with Nd,l,j(q) and Md,r,j(q) (l = 0, . . . , m, r = 1, . . . , n) being,
respectively, the numerator polynomials of the DT equivalents
of pl/Ac(p, f̃(ρd,j)) and

[p, . . . , pn, 0, . . . , 0]
∂ f̃(ρd)

∂αr

∣∣∣∣
ρd=ρd,j

Bc(p, f̃(ρd,j))

A2
c(p, f̃(ρd,j))

.

Upon convergence in iterations, the resulting DT model
is given by (

∑m
i=0 Nd,i(q, ρ̄d)γ̄i)/Ad(q, ρ̄d), where ρ̄d =

limj→∞ ρd,j and γ̄i = limj→∞ γi,j. The Adapted SRIV
(ASRIV) estimator is defined as the ARIV estimator but with
a fixed noise model Cj(q) = Dj(q) = 1.

Theorem 2: Consider the ARIV algorithm in Definition 2
and the RIVC estimator in Section III, and assume that upon
convergence in iterations for a fixed sample size, their modified
normal matrices are non-singular. If Assumptions 1 and 2 are
satisfied, then the ARIV and RIVC estimators have the same
number of limiting points and they are linked by θ̄c = f̃(ρ̄d),
where θ̄c and ρ̄d are the limiting point(s) of the RIVC and
ARIV methods, respectively.

Proof: At convergence, a limiting point ρ̄d of the ARIV
iterations must satisfy (5), however now

yd,f (kh, ρ̄d) − ϕ�
d,f (kh, ρ̄d)ρ̄d

= D(q, g̃d(ρ̄d))

C(q, g̃d(ρ̄d))

(
y(kh) −

∑m
i=0 Nd,i(q, ρ̄d)γ̄i

Ad(q, ρ̄d)
u(kh)

)

= D(q, gc(f̃(ρ̄d)))

C(q, gc(f̃(ρ̄d)))

(

y(kh) − Bc(p, f̃(ρ̄d))

Ac(p, f̃(ρ̄d))
u(kh)

)

.

After some algebraic manipulations, it can be noted that the
entries of ϕ̂d,f (kh, ρ̄d) satisfy

−Md,r(q, ρ̄d)

A2
d(q, ρ̄d)

u(kh) = ∂

∂αr

Bc(p, f̃(ρd))

Ac(p, f̃(ρd))

∣∣∣∣
ρd=ρ̄d

for r = 1, . . . , n, and

Nd,l(q, ρ̄d)

Ad(q, ρ̄d)
u(kh) = ∂

∂γl

∑m
i=0 Nd,i(q, ρd)γi

Ad(q, ρd)
u(kh)

∣∣∣∣
ρd=ρ̄d

= ∂

∂γl

Bc(p, f̃(ρd))

Ac(p, f̃(ρd))

∣∣∣∣
ρd=ρ̄d

for l = 1, . . . , m. Therefore, by the chain rule for gradients
(cf. (9)),

ϕ̂d,f (kh, ρ̄d)

= D(q, gc(f̃(ρ̄d)))

C(q, gc(f̃(ρ̄d)))

∂ f̃
∂ρd

∣∣
∣∣
ρd=ρ̄d

∂

∂θc

Bc(p, θc)

Ac(p, θc)
u(kh)

∣∣
∣∣
θc=f̃(ρ̄d)

.

The rest of the proof follows the same lines as the proof of
Theorem 1 after (9) and is therefore omitted.

Corollary 2: Under the same assumptions as in Theorem 2,
the ASRIV and the SRIVC estimators have the same number
of limiting points, and they are linked by θ̄c = f̃(ρ̄d), where
θ̄c and ρ̄d are the limiting point(s) of the SRIVC and ASRIV
methods, respectively.

Proof: Direct from fixing Cj(q) = Dj(q) = 1 in the proof
for Theorem 2.

In summary, the ARIV method in Definition 2 provides a
DT estimator whose CT equivalent model has a fixed relative
degree n−m. This implementation has the advantage of enforc-
ing smoothness properties of the CT system directly into the
DT estimate, without the need of additional optimization steps
such as in [3]. The proposed method closes the gap between
DT and CT refined instrumental variable methods, since the
CT equivalent of the ARIV estimator corresponds exactly to
the RIVC estimator for a finite sample size.

B. The Adapted RIVC Estimator

The analog problem of the previous subsection for CT
system identification consists of directly identifying a CT
system whose DT equivalent has relative degree n − m > 1.
This problem arises if the system is known to have a fixed
number of sample time-delays. Instead of computing a time-
delayed CT system, which typically requires iterative non-
convex optimization steps, a computationally-cheap approach
that directly imposes sample time-delays in the estimated
transfer function can be obtained by an adapted form of the
RIVC estimator, similar to Definition 2. In this case, we must
parameterize the CT system as

G∗
c(p) =

∑m
i=0 N∗

c,i(p)ν∗
i

A∗
c(p)

with parameter vector ρ∗
c = [a∗

1, . . . , a∗
n, ν

∗
0 , . . . , ν∗

m]�, and
where N∗

c,i(p) are the numerator polynomials of the CT equiva-
lent of qi/A∗

d(q). The noise model is computed from an ARMA
estimation step similar to (10), while the system parameter
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TABLE I
MEAN SQUARE ERRORS OF THE PARAMETERS FOR THE METHODS SRIV AND RIV, AND THEIR ADAPTED COUNTERPARTS ASRIV AND ARIV

vector ρ∗
c can be estimated from a refined instrumental variable

procedure with filtered regressor and instrument vectors given
by CT variants of (11) and (12). We omit the full expressions
due to space constraints.

V. SIMULATION EXAMPLE

To provide an example of the theoretical results, we consider
the Rao-Garnier benchmark system [22]

G∗
c(p) = −4p + 1

0.000625p4 + 0.003125p3 + 0.255p2 + 0.26p + 1
,

with noise model H∗(q) = (1 + 0.4q−1)/(1 − 0.7q−1).
Considering a sampling period h = 0.05[s], the DT
equivalent of G∗

c(p) has a parameter vector given by
θ∗

d = [−1.069, 0.546,−1.979, 1.65, 0.991, 2.665,−2.241,

−1.268]�. The input is a ZOH-interpolated multisine with
angular frequencies ω = 1, 1.9, 2.1, 18, 22 [rad/s], and the
white noise e(kh) filtered by H∗(q) has variance equal
to 6, which gives a signal-to-noise ratio of approximately
26 [dB]. If a DT model is sought, then one can use
the RIV and SRIV estimators described in Section III.
However, DT identification methods that offer more flex-
ibility than these two are the ASRIV and ARIV meth-
ods, since these algorithms can adjust for the smooth-
ness of the CT step response via the relative degree
enforcement of the CT equivalent transfer function esti-
mate.

Table I shows the mean square error (MSE) of each param-
eter when performing 500 Monte Carlo runs of N = 104

samples each, with varying noise realizations. While being
competitive or marginally better in terms of the MSE of the
denominator parameters, the ASRIV and ARIV methods can
identify the numerator parameters with at least one order of
magnitude less of MSE compared to their non-adapted coun-
terparts. We note that this improvement has been achieved
using only discrete-time tools; the ASRIV and ARIV meth-
ods are in fact equal at convergence to the DT equivalents of
the estimates obtained from the SRIVC and RIVC methods,
respectively.

VI. CONCLUSION

In this letter, we proved that the CT equivalent of the RIV
estimator shares the same limiting points with the RIVC esti-
mator for relative degrees one and zero. Such relation fails
for m < n − 1 since the indirect approach generally does not
produce an estimate with the desired model structure. We also
introduced the Adapted RIV estimator, which provides the cor-
rect relative degree in its CT equivalent. Under a similar logic,
it is shown that it is also possible to adapt the RIVC estimator
such that its DT equivalent has relative degree greater than one
by construction. These adapted estimators provide the missing
link between the refined instrumental variable methods in the
DT and CT domain.
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