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Design of a Deep Neural Network-Based
Integral Sliding Mode Control for Nonlinear
Systems Under Fully Unknown Dynamics

Edoardo Vacchini, Nikolas Sacchi , Gian Paolo Incremona , Senior Member, IEEE ,
and Antonella Ferrara , Fellow, IEEE

Abstract—In this letter a novel deep neural network
based integral sliding mode (DNN-ISM) control is proposed
for controlling perturbed systems with fully unknown
dynamics. In particular, two DNNs with an arbitrary number
of hidden layers are exploited to estimate the unknown drift
term and the control effectiveness matrix of the system,
which are instrumental to design the ISM controller. The
DNNs weights are adjusted according to adaptation laws
derived directly from Lyapunov stability analysis, and the
proposal is satisfactorily assessed in simulation relying on
benchmark examples.

Index Terms—Sliding mode control, deep neural
networks, uncertain systems.

I. INTRODUCTION

WHEN dealing with systems affected by external dis-
turbances and modeling mismatches, an effective tech-

nique is sliding mode control (SMC). In fact, it guarantees
robustness of the controlled system against matched uncer-
tainties thanks to the discontinuous nature of the control law,
which allows to drive the systems states towards the sliding
manifold in a finite time [1]. Classical SMC presents two
main drawbacks. The former is the so-called chattering phe-
nomenon, caused by the discontinuous nature of the control
signal and affected by its magnitude. The latter is that, in the
time period during which the states are approaching the sliding
manifold, the system is sensitive to the uncertainties. For chat-
tering reduction, methodologies like higher order SMC [2], [3],
adaptive strategies [4], [5] and internal model principle based
strategies [6] have been proposed.
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To improve the robustness of SMC, the ISM paradigm has
been introduced in [7]. The core idea of ISM is to rely on
an additional term called transient function to ensure that the
states lie on the sliding manifold from the initial time instant.
During the years, several improvements to ISM have been
made, see, e.g., [8] among others, while its efficacy has been
assessed in several works, such as [9], [10].

However, in order to design an ISM control scheme, the
knowledge of the nominal dynamics of the system is required.
In many practical implementations, such a knowledge is not
available and only conservative bounds are retrieved relying
on physical characteristics of the system or experimental data.

In the domain of the control theory, neural networks (NNs)
and deep neural networks (DNNs) have been employed,
e.g., [11], [12], among many others. However, in many works,
the efficacy of DNNs is assessed only empirically, without
theoretical guarantees. One of the first works in which such
guarantees are provided is [13], in which the weights of the
employed NN are adjusted with adaptation laws obtained
through Lyapunov stability analysis. Similar concepts have
been adopted in other works to approximate the optimal con-
trol law, see, e.g., [14], or to partially estimate the model of
the system [15]. In [16], [17], NNs have been applied also
in the domain of SMC, e.g., [18], [19]. Then, for what con-
cerns the ISM framework, [19] proposes a couple of two-layer
NNs to estimate the drift term and the control effectiveness of
a particular kind of system, instrumental to the design of the
sliding manifold. This last work gave rise to the so-called NN-
ISM control approach. Such an approach presents two main
limitations. The former is that only systems with scalar input
are considered, while the latter is that NNs with only two lay-
ers are used for the approximation of the dynamics. When
systems exhibit a highly nonlinear dynamics, better approx-
imation capabilities may be required. As shown for instance
in [20], [21], [22], NNs with a deep architecture represent an
efficient solution.

Motivated by the results obtained in [19], and with the aim
of overcoming the aforementioned limitations, in this letter we
propose a novel DNN-ISM control algorithm. Specifically, we
consider a generic nonlinear system with fully unknown nom-
inal dynamics. Then, we exploit two DNNs with an arbitrary
number of hidden layers to estimate the drift term and the
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control effectiveness matrix, instrumental to the design of the
integral sliding manifold. Despite a more complex architecture,
it allows to reduce the bound on the error between the approxi-
mated function and the real one, and to reduce also the control
gain with beneficial effects in terms of chattering. The weights
of the two DNNs are adjusted relying on adaptation laws
directly obtained from stability analysis. More precisely, in this
letter the considered control problem is addressed for two spe-
cific classes of systems. First, the multi-input case is taken into
account, analysing the tractable case of number of states being
equal to an integer multiple of the number of inputs. Then, as
particular case of the previous one, the class of single-input
systems is discussed. It is worth highlighting that these systems
categories are widely exploited for modeling in the literature
and practical applications. The proposed DNN-ISM control
scheme is finally assessed in simulation on two benchmark
examples.

Notation: Given A ∈ R
n×m, then vec(A) ∈ R

nm is the vec-
torization operation. Given a real square matrix A ∈ R

n×n,
then �λ(A) and λ(A) are the greatest and smallest singular
values of A. Given two matrices A ∈ R

m×n and B ∈ R
p×q,

their Kronecker product is denoted as A ⊗ B ∈ R
pm×qn. Given

a ∈ R
nm, the inverse of the vectorization operation is defined

as vec−1(a) = (vec(Im)
� ⊗ In)(Im ⊗ a) ∈ R

n×m. Given a
DNN ϒ(x) : Rp → R

q, characterized by kϒ ∈ N hidden lay-
ers, the number of neurons in the jth layer is Lϒj ∈ R>0,
for j = 1, . . . , kϒ + 1 with Lϒ0 = p and Lϒkϒ+1 = q. Given
the matrices Ai, i = 1, 2, . . . ,N, with compatible dimensions

one has that
�∏N
i=1Ai = ANAN−1 · · · A1, and

�

∏p−1
i=p = 1. Given

f (x) : Rn → R
m, then f ′ ∈ R

n×m is its Jacobian.

II. PRELIMINARIES ON ISM AND PROBLEM STATEMENT

In this section, the dynamical system considered in this let-
ter is introduced. Moreover, the main features of ISM control,
originally presented in [7], are recalled. Consider the nonlinear
system

ẋ = f (x(t))+ B(x(t))u(t)+ h(t), x(0) = x0, (1)

where x ∈ � is the system states, with � ⊂ R
n being a

compact set containing the origin, f : � → R
n represents the

drift dynamics, B : � → R
n×m is the control effectiveness

matrix, and both functions are bounded and belong to C0(�).
Then, u ∈ R

m is the control vector, while h : R≥0 → R
n

represents the perturbation vector. The following assumption,
common in the sliding mode control theory, is needed.
A1: The uncertainty h is such that h ∈ H, where H ⊂ R

n is a
compact set containing the origin, with �h := suph∈H‖h‖
known.

To counteract the effect of the external perturbation, an ISM
controller can be designed [7]. In particular, the control action
is defined as u = u0 + u1, with u0 ∈ R

m being a bounded
control law which makes the state x∗ ∈ R

n an asymptoti-
cally stable equilibrium point for the nominal dynamics, that
is (1) with h = 0, while u1 ∈ R

m is a discontinuous con-
trol signal whose aim is to make the system robust against
uncertainties. Since in the case of m > 1, system (1) is
multi-input-multi-output, possibly coupled, and nonlinear, the

discontinuous control law is defined according to the unit
vector approach [1], i.e.,

u1 = −ρ σ(x)

‖σ(x)‖ , (2)

where ρ ∈ R>0 is a constant gain chosen so that the worst real-
ization of the perturbation is dominated, while σ(x) : Rn →
R

m is the integral sliding variable, defined as

σ(x) = σ0(x)+ z(x), σ (x0) = 0. (3)

The term σ0 : Rn → R
m is chosen by the designer, for instance

as a linear combination of states. The term z(x) : Rn → R
m

appearing in (3) is instead the so-called transient function, and
its dynamics is defined as

ż = −∂σ0(x)

∂x
(f (x)+ B(x)u0), z(x0) = −σ0(x0), (4)

with ∂σ0(x)
∂x ∈ R

m×n. Then, suitably defining the stabilizing
control law u0 and the discontinuous control gain ρ, a sliding
mode is enforced. As a result, the robustness of the controlled
system against matched disturbances h can be proved [7].

III. DEEP NEURAL NETWORK-BASED

DYNAMICS APPROXIMATORS

As described in [7] and highlighted in (4), the knowledge
of the drift term f and the control effectiveness matrix B is
required to design an ISM control. In this letter, the nomi-
nal model of the system is considered fully unknown [19].
Therefore, the aim of this section is to introduce two DNNs
which estimate the unknown terms.

Let xh = [
x� 1

]� ∈ R
n+1, since both f and B are

continuous, then, by virtue of the so-called universal approx-
imation property [23], there exist two ideal DNNs, namely
�(xh) : Rn+1 → R

n and 	(xh) : Rn+1 → R
nm, characterized

by k�, k	 > 2 hidden layers, which approximate the nominal
dynamics of (1) as

f (x) = �(xh)+ ε�(x), (5)

vec(B(x)) = 	(xh)+ ε	(x), (6)

where ε�(x) : � → R
n and ε	(x) : � → R

nm are the so-
called approximation errors. More in depth, the DNNs can be
written as

�(xh) = V�
k�φk� ◦ · · · ◦ V�

1 φ1 ◦ V�
0 xh (7)

	(xh) = U�
k	ψk	 ◦ · · · ◦ U�

1 ψ1 ◦ U�
0 xh, (8)

where Vj ∈ R
L�j×L�j+1 , with j = 0, 1, . . . , k�, and Uj ∈

R
L	j×L	j+1 , with j = 0, 1, . . . , k	 , are the ideal weights of

DNNs. Finally, φj(·), with j = 1, 2, . . . , k�, and ψj(·), with
j = 1, 2, . . . , k	 , are the activation functions of �(x) and
	(x), respectively, both being C1 and Lipschitz continuous.

Since vec−1(	(xh)+ ε	) = B(x), let vec−1(	(xh))
(i) ∈ R

n

be the ith column of vec−1(	(xh)), with i = 1, 2, . . . ,m.
Consider the matrix Uk	 ∈ R

Lk	×nm written as the concate-
nation of different sub-matrices U(i)

k	
∈ R

Lk	×n, horizontally

stacked as Uk	 =
[
U(1)

k	
U(2)

k	
· · · U(m)

k	

]
. Then, the expression

of vec−1(	(xh))
(i) is given by

vec−1(	(xh))
(i) = (U(i)

k	
)�ψk	 ◦ · · · ◦ U�

1 ψ1 ◦ U�
0 xh. (9)
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In order to design the proposed approach, it is convenient
to express the DNNs in a recursive way, defining the output
of the generic jth layer. For �(xh), one has

�j =
{

V�
j φj(�j−1) if j = 1, 2, . . . , k�,

V�
0 xh if j = 0,

(10)

where �j ∈ R
L�j+1 . Meanwhile, the output of the jth layer of

	(xh) is given by

	j =
{

U�
j ψj(	j−1) if j = 1, 2, . . . , k	,

U�
0 xh if j = 0,

(11)

with 	j ∈ R
L	j+1 . Note that, recursively substituting values

of �j−1 and 	j−1 in (10) and (11), respectively, one has that
�(xh) ≡ �k� and 	(xh) ≡ 	k	 .

Let vec−1(	k	 )
(i) = (U(i)

k	
)�ψk	 (	k	−1) ∈ R

n be the ith
column deriving from vec−1(	k	 ), corresponding to the out-
put of the last layer of 	(xh). By virtue of the boundedness of
f (x) and B(x), the following assumption about the ideal DNNs
holds.
A2: There exist known constants �V,�U,�ε�,�ε	 ∈ R>0 such

that,

sup
xh∈�

‖Vj‖ ≤ �V, sup
xh∈�

‖Up‖ ≤ �U,

sup
xh∈�

‖ε�‖ ≤ �ε�, sup
xh∈�

‖vec−1(ε	)‖ ≤�ε	
with j = 0, 1, . . . , k�, p = 0, 1, . . . , k	 , and i =
1, 2, . . . ,m.

Since the ideal DNNs (7) and (8) are not known, their
approximation is used to estimate the model (1), i.e.,

f̂ (x) = �̂(xh), vec(̂B(x)) = 	̂(xh). (12)

In particular, �̂(xh) : Rn+1 → R
n and 	̂(xh) : Rn+1 → R

nm

are defined as

�̂(xh) = V̂�
k�φk� ◦ · · · ◦ V̂�

1 φ1 ◦ V̂�
0 xh (13)

	̂(xh) = Û�
k	ψk	 ◦ · · · ◦ Û�

1 ψ1 ◦ Û�
0 xh, (14)

where V̂j ∈ R
L�j×L�j+1 , with j = 0, 1, . . . , k�, and Ûj ∈

R
L	j×L	j+1 , with j = 0, 1, . . . , k	 , are the estimates of the

ideal weights of DNNs.
As it occurs for the ideal DNNs, it is possible to express

the output of the jth layer of (13) and (14), i.e., �̂j and 	̂j,
as reported in (10) and (11), respectively. The only change is
that the estimates of the ideal weights, i.e., V̂j and Ûj, must
be used. Note that, for sake of readability, the activation func-
tions φj(�j−1) and ψj(	j−1) will be referred as φj and ψj,
respectively. Moreover, we will indicate φ̂j = φj(�̂j−1) and
ψ̂j = ψj(	̂j−1).

In the following, the difference between the output of the
ideal DNNs and the ones with estimated weights is defined
for each layer j. For what concerns �j, adding and subtracting
V�

j φ̂j one has

�̃j = �j − �̂j = Ṽ�
j φ̂j + V�

j

(
φj − φ̂j

)
, (15)

with j = 1, 2, . . . , k�, Ṽj = Vj − V̂j and �̃0 = Ṽ�
0 xh. Since

φj(�j−1) is not known, φj can be approximated using first
order Taylor approximation around �̂j−1, obtaining

φj(�j−1) = φj(�̂j−1)+ φ̂′
j�̃j−1 + O2(�̃j−1), (16)

where φ̂′
j = φ′

j(�̂j−1) ∈ R
L�j×L�j , while O2(z) denotes

term of order two [13]. Note that, such an approximation is
instrumental only to derive the weight update laws, without
interfering with the nonlinear approximation capabilities of
the adopted DNNs. Exploiting the fact that Vj = Ṽj + V̂j and
substituting (16), one can reformulate (15) as

�̃j = Ṽ�
j φ̂j + V̂�

j φ̂
′
j�̃j−1 +�j , (17)

where �j = Ṽ�
j φ̂

′
j�̃j−1 + V�

j O2(�̃j−1). Moreover, since
Ṽ�

j φ̂j = vec(Ṽ�
j φ̂j) = vec(φ̂�

j ṼjIL�j+1
), it is true that Ṽ�

j φ̂j =
(IL�j+1

⊗φ̂�
j )vec(Ṽj) [24]. Hence, the error associated with the

jth layer can be then reformulated as

�̃j =
(

IL�j+1
⊗ φ̂�

j

)
vec(Ṽj)+ V̂�

j φ̂
′
j�̃j−1 +�j , (18)

with �̃0 = (IL�1
⊗ x�

h )vec(Ṽ0). By iteration (see [15,
Lemma 1]), one can write

�̃k� =
k�∑

j=0

��jvec(Ṽj)+
k�∑

j=1

��j�j , (19)

where ��j ∈ R
n×L�j+1 and ��j ∈ R

n×(L�j L�j+1 ) are given by

��j =
�

k�∏

p=j+1

V̂�
p φ̂

′
p, ��j = ��j

(
IL�j+1

⊗ φ̂�
j

)
, (20)

with ��0 = ��0(IL�1
⊗ xh).

As for 	, the error at the jth layer, up to the penultimate one,
can be computed following the same reasoning made for �.
In particular, for j = 0, 1, . . . , k	 − 1, it is possible to express
the errors as

	̃j =
(

IL	j+1
⊗ ψ̂�

j

)
vec(Ũj)+ Û�

j ψ̂
′
j 	̃j−1 +	j , (21)

with 	̃0 = (IL	1
⊗ x�

h )vec(Ũ0) and 	j ∈ R
L	j+1 defined as

	j = Ũ�
j ψ̂

′
j 	̃j−1 + U�

j O2(	̃j−1).
As for the error associated with the last layer, i.e., j = k	 ,

it can be computed column-wise as

vec−1(	̃k	 )
(i) =

(
In ⊗ ψ̂�

k	

)
vec(Ũ(i)

k	
)

+ (Û(i)
k	
)�ψ̂ ′

k	 	̃k	−1 + vec−1(	k	
)(i). (22)

Exploiting its recursive nature, it can be written as

vec−1(	̃k	 )
(i) = �

(i)
	k	

vec(Ũ(i)
k	
)+ vec−1(	k	

)(i)

+
k	−1∑

j=0

�
(i)
	j

vec(Ũj)+
k	−1∑

j=1

�
(i)
	j
	j , (23)

where �
(i)
	j

= (Û(i)
k	
)�ψ̂ ′

k	

�∏k	−1
l=j+1Û�

l ψ̂
′
l ∈ R

n×L	j+1 , while

�
(i)
	j

= �
(i)
	j
(IL	j+1

⊗ ψ̂�
L	j
) ∈ R

n×L	j L	j+1 , with �
(i)
	0

=
�
(i)
	0
(IL	1

⊗ x�
h ) and �(i)	k	

= (In ⊗ ψ̂�
k	
).
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Fig. 1. The proposed DNN-ISM control scheme.

IV. DNN-ISM CONTROL SCHEME

The aim of this section is to introduce the proposed DNN-
ISM control scheme, illustrated in Fig. 1.

Relying on the estimation introduced in (12), it is possible
to approximate the dynamics of the transient function (4) as

ż = −∂σ0

∂x

(
�̂(xh)+ vec−1(	̂(xh))u0

)
, (24)

with z(x0) = −σ0(x0).
The adaptation laws for the weights of the DNNs are

directly derived from the stability analysis. As for �̂, the
weights of the layers j = 0, 1, . . . , k� are adapted with

vec
( ˙̂Vj

)
= proj

(

��j�
�
�j

∂σ0

∂x

�
σ

)

, (25)

where ��j ∈ R
L�j L�j+1×L�j L�j+1 is a diagonal gain matrix. For

what concerns 	̂, its weights are updated as

vec
( ˙̂Uj

)
= proj

(

�	j

(
m∑

i=1

u0,i(�
(i)
	j
)�

)
∂σ0

∂x

�
σ

)

(26)

for the layers j = 0, 1, . . . , k	−1, where u0,i is the ith element
of the vector u0, while for the last layer one has

vec

(
˙̂U(i)

k	

)

= proj

(

�	k	
u0,i(�

(i)
	k	

)� ∂σ0

∂x

�
σ

)

, (27)

where �	j ∈ R
L	j L	j+1×L	j L	j+1 , for j = 0, 1, . . . , k	 . The

operator proj(·) is the projection operator defined as in [25]
and it ensures that vec(V̂j) ∈ B�j and vec(Ûj) ∈ B	j , with

B�j := {θV ∈ R
L�j L�j+1 : ‖θV‖ ≤ �V} and B	j := {θU ∈

R
L	j L	j+1 : ‖θU‖ ≤ �U}.
The presence of the projection operator, along with

A2, allows to determine bounds for the residual terms
in (19) and (23), i.e.,

∑k�
j=1��j�j , and vec−1(	k	

)(i) +
∑k	−1

j=1 �
(i)
	j
	j . In particular, since proj(·) bounds the esti-

mated weights, and the activation functions are chosen with
bounded gradients, the norms of both ��j and �

(i)
	j

are
bounded. Moreover, due to the fact that the terms of order
two in the Taylor expansions are bounded as detailed in [13],
there exist known constants c�, c	 ∈ R>0 such that the
inequalities ‖∑k�

j=1��j�j‖ ≤ c�, and ‖vec−1(	k	
)(i) +

∑k	−1
j=1 �

(i)
	j
	j‖ ≤ c	 hold.

Using (1), (5), (6), (12), and (24), and since �̃k� = �k� −
�̂k� and 	̃k	 = 	k	 − 	̂k	 , one has

σ̇ = ∂σ0

∂x

[
�̃k� + ε� + vec−1(	̃k	 + ε	)u0

+ B(x)u1 + h
]
. (28)

In the following, two main results are introduced for the
specific cases of multi-input and single-input systems, respec-
tively, which are however often used for modeling in many
practical application domains.

A. The Multi-Input Case (κm = n)

Now the stability analysis in the specific multi-input case
κm = n, with κ ∈ N>0 is discussed. For the considered kind
of systems, let σ0 such that

∂σ0

∂x
= [

G1 G2 · · · Gκ
] ∈ R

m×κm, (29)

with Gp = G�
p ∈ R

m×m being positive definite, while the
following assumption holds.
A3: The control effectiveness term B(x) ∈ R

κm×m can be
written as B(x) = [

B1(x) B2(x) · · · Bκ(x)
]�, with

Bp(x) = B�
p (x) ∈ R

m×m being positive semi-definite.
Moreover, at least one Bp is positive definite and there
exists a known constant γ ∈ R>0 such that λ(Bp) > γ .

The following theorem, instrumental for the choice of the
control gain ρ, is now introduced.

Theorem 1: Consider the nonlinear system (1) in the case
of κm = n, with κ ∈ N>0, control law u, sliding variable
as in (3) and (24), and the weight adaptation laws (25), (26),
and (27). If A1, A2, A3, and (29) hold, and

ρ >

∥
∥
∥
∂σ0
∂x

∥
∥
∥
[
c� + m(c	 +�ε	)‖u0‖ +�ε� +�h

]
+ η̄

minp λ(Gp)γ
(30)

with η̄ > 0, then, a sliding mode σ(t) = 0 is enforced for
t ≥ t̄ ≥ 0.

Proof: Consider a Lyapunov-like candidate function
v(x) : Rn → R selected as

v(x) = 1

2
σ�σ + 1

2

k�∑

j=0

vec(Ṽj)
��−1

�j
vec(Ṽj)

+ 1

2

k	∑

j=0

vec(Ũj)
��−1

	j
vec(Ũj), (31)

with time derivative equal to v̇(x) = σ�σ̇ −
∑k�

j=0 vec(Ṽj)
��−1

�j
vec( ˙̂Vj) − ∑k	

j=0 vec(Ũj)
��−1

	j
vec( ˙̂Uj).

Substituting (19), (23), (28), and expanding the last term of
the above equation, this can be rewritten as

v̇(x) = σ� ∂σ0

∂x

{ k�∑

j=0

��jvec(Ṽj)+
k�∑

j=1

��j�j

+
m∑

i=1

[
�
(i)
	k	

vec(Ũ(i)
k	
)+ vec−1(	k	

)(i) +
k	−1∑

j=1

�
(i)
	j
	j

+
k	−1∑

j=0

�
(i)
	j

vec(Ũj)
]
u0,i + ε� + vec−1(ε	)u0 + B(x)u1

+ h(t)

}

−
m∑

i=1

vec(Ũ(i)
k	
)��−1

	k	
vec( ˙̂U(i)

k	 )

±
k�∑

j=0

vec(Ṽj)
��−1

�j
vec( ˙̂Vj)−

k	−1∑

j=0

vec(Ũj)
��−1

	j
vec( ˙̂Uj).
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Then, since from [25] it holds that −θ��−1proj(z) ≤
−θ��−1z, if one applies the adaptation laws (25), (26),
and (27), and substitutes (2), the above equation can be upper
bounded as

v̇(x) ≤ σ� ∂σ0

∂x

{ k�∑

j=1

��j�j +
m∑

i=1

[
vec−1(	k	

)(i)

+
k	−1∑

j=1

�
(i)
	j
	j

]
u0i + ε� + vec−1(ε	)u0 + h(t)

}

± ρσ� ∂σ0

∂x
B(x)

σ

‖σ‖ . (32)

Moreover, if A1, A2, A3, and (29) hold, equation (32) can
be further bounded as

v̇(x) ≤ ‖σ‖
∥
∥
∥
∥
∂σ0

∂x

∥
∥
∥
∥

{
c� + m(c	 +�ε	)‖u0‖ +�ε� +�h

}

± ‖σ‖ρ
κ∑

p=1

λ(Gp)λ(Bp).

Hence, one obtains v̇(x) ≤ ‖σ‖‖ ∂σ0
∂x ‖{c�+m(c	 +�ε	)‖u0‖+

�ε� + �h} − ‖σ‖ρminp λ(Gp)γ ≤ −η‖σ‖, with η =
ρminp λ(Gp)γ −‖ ∂σ0

∂x ‖[c�+m(c	+�ε	)‖u0‖+�ε�+�h]. If one
designs ρ as in (30), then v̇(x) ≤ −η‖σ‖ < 0. Exploiting the
boundedness property guaranteed by the projection operator,
the choice of a control gain as in (30) guarantees σ = 0 in a
finite time t̄ ≥ 0.

Note that the previous theorem also implies the boundedness
of the weights of the DNNs. The convergence of such weights
to their ideal values is beyond the scope of this letter, but we
refer to classical paper as [26] for further discussion.

B. The Single-Input Case m = 1

In this section, stability analysis in the case of scalar input,
i.e., m = 1, is performed. The following assumption about the
effectiveness control term can be introduced.
A4: Given B(x) = [

b1 b2 · · · bn
]� ∈ R

n, then bp ≥ 0, for
p = 1, 2, . . . , n. Moreover, there exists b ∈ R>0 so that
‖B(x)‖ ≥ b, ∀x ∈ �.

The following theorem can be now introduced.
Theorem 2: Consider the nonlinear system (1) in the case

of m = 1, control law u, sliding variable as in (3) and (24),
and the weight adaptation laws (25), (26), and (27). If A1,
A2, A4, and (29) hold, and

ρ >
c� + (c	 +�ε	)|u0| +�ε� +�h + η̄

b
(33)

with η̄ > 0, then, a sliding mode σ(t) = 0 is enforced for
t ≥ t̄ ≥ 0.

Proof: Consider the Lyapunov-like candidate function as
in (31). Then, performing the same steps as in the previous
section with m = 1 and κ = n, its derivative can be upper
bounded as in (32). Then, if A1, A2, A4, and (29) hold, v̇(x)

Fig. 2. Water level in the tanks.

Fig. 3. Sliding variable in the double-tank simulation.

can be bounded as

v̇(x) ≤ |σ |
∥
∥
∥
∥
∂σ0

∂x

∥
∥
∥
∥

{
c� + (c	 +�ε	)|u0| +�ε� +�h

}

± ρ

∥
∥
∥
∥
∂σ0

∂x

∥
∥
∥
∥b|σ | ≤ −η|σ |,

where η = ‖ ∂σ0
∂x ‖[ρ b − c� + (c	 + �ε	)|u0| + �ε� + �h]. If

one selects ρ so that condition (33) is satisfied, then v̇(x) ≤
−η|σ | < 0, which guarantees σ = 0 in a finite time t̄ ≥ 0.

V. NUMERICAL EXAMPLES

Simulations results on two systems with m = n (i.e., κ = 1)
and m = 1, respectively, are hereafter shown.

A. Multi-Input Case: The Double Tank System

To test the proposal in the case m = n, a double-tank system,
inspired by [27], is considered, whose dynamics is

{
ẋ1 = − a1

A1

√
2gx1 + a2

A2

√
2gx2 + 1

A1
u1 + h1

ẋ2 = − a2
A2

√
2gx2 + 1

A2
u2 + h2,

(34)

where x1, x2, A1 = 0.28 m2, A2 = 0.32 m2, a1 = 0.007 m2

and a2 = 0.005 m2, represent the water levels, the cross-
section of the tanks, and the cross-section of the output valves,
respectively, and g = 9.8 m/s2. The disturbance terms are
h1 = 0.4 cos(4t) and h2 = 0.25 sin(0.5t) + 0.125 cos(t). The
DNNs are characterized by, k� = 3, with L�0 = 3, L�1 = 10,
L�2 = 50, L�3 = 20, L�4 = 2, while k	 = 3, with L	0 = 3,
L	1 = 10, L	2 = 100, L	3 = 20, L	4 = 4. Moreover,
��j = 100 · IL�j

and �	j = 100 · IL	j
. The stabilizing control

law has been chosen as u0 = (vec−1(	̂))+[ − �̂− K(x − x∗)],
with K = 2 · I2, and x∗ = [

0.75 0.4
]�. The sliding variable is

chosen so that σ0 = (x − x∗). Finally, given h̄ = 0.6, finding
c�+ε̄�+h̄ = 3.6 and c	+ε̄	 = 0.15, and η̄ = 0.3, the control
gain is selected as ρ = 1.3 + 0.05|u0|, which satisfies (30).
The system has been simulated for 20 s with a time-step of
0.005 s and x0 = [

0.5 0.5
]�. The results of the simulation are

presented in Fig. 2 and Fig. 3, in which it is possible to see
that condition σ = 0 is lost for a transient due to the adapta-
tion of the weights, and then it is again enforced, as expected



1794 IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

Fig. 4. Outcome of the Duffing oscillator simulation in terms of state
phase portrait and sliding variable, with xid being the state in the case
of fully known dynamics and ρ = 1.

from Theorem 1. Moreover, the system is correctly controlled
towards the desired set-point.

B. Scalar Case: The Duffing Oscillator

To test the proposed algorithm in the single-input case, i.e.,
m = 1, the model of the Duffing oscillator [1, Ch. 1], has been
used. The dynamics are given by

{
ẋ1 = x2

ẋ2 = x1(1 − x2
1)− x2 + u + h2,

(35)

with x1 and x2 being the position and the velocity of the mass,
respectively, while h2 = 0.5 sin(0.5t)+0.25 cos(t). The DNNs
are structured so that k� = k	 = 5, with L�0 = L	0 = 3,
L�1 = L	1 = 20, L�2 = L	2 = 50, L�3 = L	3 = 50, L�4 =
L	4 = 50, L�5 = L	5 = 20, L�6 = L	6 = 2. Moreover,
��j = 550 · IL�j

and �	j = 550 · IL	j
. The stabilizing control

law has been chosen as u0 = 	̂+[−�̂ − K(x − x∗)], with
K = [

3 3
]

and x∗ = [−1.25 0
]�. The initial condition is

x0 = [
3 −1

]�. The sliding variable is chosen so that σ0 =[
1 1

]
(x−x∗). Moreover, given h̄ = 0.75, finding c�+ε̄�+h̄ =

1.9 and c	 + ε̄	 = 0.5, η̄ = 0.1, the control gain is selected
as ρ = 2 + 0.5|u0|, which satisfies (33). The system has been
simulated for 5 s, with a time-step of 0.0001 s. The results of
the simulation are presented in Fig. 4(b), where it is possible
to see that condition σ = 0 is lost for a very short transient due
to the adaptation of the weights, and then it is again enforced,
as expected from Theorem 2.

VI. CONCLUSION

In this letter, we propose a DNN-ISM control algorithm for
nonlinear systems in presence of external disturbances and in
the case of fully unknown dynamics. In particular, the nominal
model of the system is estimated relying on two DNNs with
an arbitrary number of hidden layers, and whose weights are
adjusted according to adaptive laws derived from the stability
analysis, relying on two different classes of systems. Finally,
the proposal has been satisfactorily assessed in simulation on
a double-tank system and on the classic Duffing oscillator.
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