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An Adaptive Distributed Protocol for Finite-Time
Infimum or Supremum Dynamic Consensus
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Abstract—In this letter, the problem of distributively
tracking the minimum infimum (or maximum supremum)
of a set of time-varying signals in finite-time is addressed.
More specifically, each agent has access to a local time-
varying exogenous signal, and all the agents are required to
follow the minimum infimum (or the maximum supremum)
of these signals in a distributed fashion. No assumption is
made on the network size nor on the bounds of the exoge-
nous signal derivatives. An adaptive protocol is provided
which can provably solve the above problem in finite-
time for multi-agent systems with undirected connected
network topologies. Numerical simulations are provided to
corroborate the theoretical findings.

Index Terms—Distributed control, adaptive control,
dynamic consensus, multi-agent systems.

I. INTRODUCTION

REACHING an agreement by resorting only to local inter-
actions is one of the most widely investigated problem in

the context of networked multi-agent systems. Over the years,
a great attention has been devoted to the consensus problem
in all its variations [1]–[10]. Historically speaking, the static
average consensus formulation, i.e., the problem of requiring
the states of all the agents to agree to the average of their ini-
tial values, has been the first one to be addressed, e.g., [1], [2].
Successively, the dynamic average consensus or average con-
sensus tracking formulation, i.e., the problem of tracking the
average of time-varying exogenous signals, has been also
extensively investigated in the literature, e.g., [3], [4].

Another important class of consensus problems is the
min/max formulation, for which both a static and a dynamic
version can be identified. In the static version, the objective is
to achieve a consensus within the network towards the min (or
max) of the agents initial conditions, see for example [5]–[8],
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while on the dynamic formulation the objective is to track the
min (or max) over a set of exogenous signals, each owned by
one agent, see for example [9].

In this letter, a novel consensus formulation is proposed
where the multi-agent system aims to reach an agreement
towards the minimum (or maximum) among the infimum (or
the supremum) of a set of exogenous signals, each of which
is locally available only to one agent of the network. In the
following we will refer to these problem formulations as infi-
mum and supremum consensus, respectively. Notably, as for
the previous consensus problems, also for these variations both
static and dynamic formulations can be considered.

Interestingly, while the static infimum (or supremum) for-
mulation coincides with the static min (or max) consensus
problem, the dynamic infimum (or supremum) formulation
differs from the dynamic min (or max) consensus problem
since in the proposed formulation the agents are not required
to “track up” (or “track down”) the minimum (or maximum)
signal when it increases (or decreases) as it is required instead
for the dynamic min (or max) consensus, respectively.

In this letter, for the reasons mentioned above, we will
focus our attention only on the infimum (or supremum)
dynamic consensus problem. In this regard, to the best of
the authors’ knowledge, the only relevant reference is [9],
where the authors address the dynamic min/max consen-
sus by proposing a discrete-time protocol with convergence
error bounds guarantees by assuming exogenous signals with
known bounded derivatives. On the contrary, in our setting,
each agent is assumed to have an exogenous time-varying
signal with unknown bounded derivative. In particular, an
adaptive protocol is proposed which can solve the dynamic
supremum or infimum consensus problem in finite-time for
a multi-agent system with an undirected connected network
topology. Numerical simulations are provided in a precision
farming setting to corroborate the theoretical findings. In par-
ticular, inspired by the needs of the H2020 European project
CANOPIES, a scenario where multiple robots needs to mon-
itor upper bounds of signals associated with the execution of
tasks is considered. Indeed, this is relevant to ensure timely
collaboration to effectively perform agronomic operations.

II. PRELIMINARIES

A. Network Modeling

Let us consider an undirected network of n agents.
We model the underlying communication topology via an
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undirected graph G = {V, E} with set of nodes V = {1, . . . , n}
and set of edges E = {(i, j) : i ∈ V, j ∈ V, i �= j}. Each
node i ∈ V represents an agent of the network and each
edge (i, j) ∈ E describes the possibility of communication
between pairs of agents. Since G is undirected, for each edge
(i, j) ∈ E there exists the edge (j, i) ∈ E . We denote with
Ni = {j ∈ V:(i, j) ∈ E} the neighborhood of agent i, i.e., the
subset of agents which agent i can communicate to, and with
N i = Ni ∪ {i} the augmented neighborhood of agent i, com-
prising the neighbors of the agent and the agent i itself. A
graph is called connected if for every pair of nodes i, j ∈ V
there exists a path connecting them.

Assumption 1: The undirected graph G = {V, E} encoding
the multi-agent network topology is connected at any time.

B. Nonsmooth Analysis

We review some fundamental notions for nonsmooth anal-
ysis. For a comprehensive overview of the topic the reader is
referred to [11], [12] and references therein.

Consider the (possibly discontinuous) dynamical system

ẋ(t) = f (x(t), t), x(0) = x0, (1)

with x ∈ R
n and f :Rn×[t0,∞) → R

n a measurable and essen-
tially locally bounded function. If the differential equation (1)
has discontinuous right-hand side, then, following [13], the
solution of (1) is defined in the Filippov sense.

Definition 1 (Filippov Solution): A vector function x(·) is
a solution of (1) on a time interval [t0, ti] if x(·) is absolutely
continuous on [t0, ti] and for almost all t ∈ [t0, ti] it holds
ẋ ∈ K[f ](x(t), t), where the set-valued map K : Rn → 2R

n
,

with 2R
n

the set of all subsets of Rn, is defined as

K[f ](x(t), t) =
⋂

δ>0

⋂

μ{H}=0

co{f (B(x(t), δ) \ H, t)}, (2)

with
⋂
μ{H}=0 denoting the intersection over all sets H of

Lebesgue measure zero, B(x(t), δ) the ball of radius δ centered
at x(t), and co the convex closure.

We review the notion of Clarke’s generalized gradient.
Definition 2 (Clarke’s Generalized Gradient) [14]: Let

V : R
n × [t0,∞) → R be a locally Lipschitz continuous

function. Its Clarke’s generalized gradient at (x, t) is

∂V(x, t) � co{ lim
i→∞ ∇V(xi, ti) : (xi, ti) → (x, t), (xi, ti) /∈ �V }, (3)

with ∇V the gradient function, xi ∈ R
n a point of an infinite

succession converging to x, �V a set of Lebesgue measure
zero containing all points where ∇V(x) does not exist.

Based on the above, we report the chain rule to differentiate
Lipschitz regular functions along Filippov’s solutions.

Theorem 1 (Chain Rule) [11]: Let x(·) be a Filippov solu-
tion to (1) on an interval containing t and V : Rn×[t0,∞) → R

be a Lipschitz and regular function. Then, V(x(t), t) is abso-
lutely continuous, d

dt (V(x(t), t)) exists almost everywhere and
d
dt (V(x(t), t)) ∈a.e. ˙̃V(x(t), t) with ˙̃V(x(t), t) defined as

˙̃V(x(t), t) =
⋂

ξ∈∂V(x(t),t)

ξT
(

K[f ](x(t), t)
1

)
. (4)

We additionally report a revised version of the generalized
Lyapunov theorem as in [15].

Theorem 2 (Finite-Time Stability Theorem): Let
x : [t0,∞) → R

n be a Filippov solution to (1) and
V : R

n × [t0,∞) → R, be a time dependent regu-
lar function such that V(x(t), t) = 0 ∀x(t) ∈ C(t) and
V(x(t), t) > 0 ∀x(t) �∈ C(t), with C(t) ⊂ R

n a compact set.
Furthermore, let x(t) and V(x(t), t) be absolutely continuous
on [t0,∞) with d

dt (V(x(t), t)) ≤ −ε < 0 almost everywhere
on {t : x(t) �∈ C(t)}. Then, V(x(t), t) converges to 0 in
finite-time and x(t) reaches the compact set C(t) in finite-time
as well.

Finally, we define the discontinuous sign function of a
variable y ∈ R and the respective set-valued function SIGN:

sign(y) =
⎧
⎨

⎩

1 if y > 0,
0 if y = 0,
−1 if y < 0,

SIGN(y) ∈
⎧
⎨

⎩

1 if y > 0,
[ − 1, 1] if y = 0,
−1 if y < 0.

(5)

For vector input, we apply the sign functions element-wise. In
addition, we use the notation SIGN(y) ≤ 0 (≥ 0) to compactly
denote that φ ≤ 0 (≥ 0), ∀φ ∈ SIGN(y).

C. Problem Setting

Let us introduce the definitions of supremum and infimum.
Definition 3: Let g : [t0,∞) → R be a continuous function.

The supremum (infimum) of g(τ ) in [t0, t] is defined as

g(t0, t) := sup
τ∈[t0,t]

g(τ ),

(
g(t0, t) := inf

τ∈[t0,t]
g(τ )

)
.

From here on, we drop the dependency on the initial time
instant t0, i.e., g(t) = g(t0, t) and g(t) = g(t0, t).

Let us consider a multi-agent system composed of n
interconnected agents, in which each agent i holds a state vari-
able xi(t) ∈ R evolving according to the first-order dynamics
ẋi(t) = ui(t), where ui(t) ∈ R is the update law. In addition,
let us assume that each agent can sense a scalar exogenous
signal ri(t), for which the following assumption holds.

Assumption 2: The time-varying signals ri(t) are absolutely
continuous, and with locally essentially bounded derivatives.
Moreover, there exists an unknown constant κr ≥ 0 such that
for all t ≥ t0 and all ψ ∈ K[ṙi](t), ∀i, it holds |ψ | < κr.

The above assumption simply states that the absolute value
of the derivative ψ of the exogenous signal i, taking values
in K[ṙi](t), ∀i, as per Definition 1, is always upper bounded
with unknown upperbound.

The distributed finite-time supremum and infimum dynamic
consensus problems are defined as follows.

Problem 1: Consider a multi-agent system with n agents
under Assumption 1. We define the finite-time supremum (infi-
mum) dynamic consensus problem as the problem of finding
control input ui(t) such that there exists a finite T̄ ≥ 0 for
which the following holds ∀i ∈ V

|xi(t)− r(t)| = 0,
(|xi(t)− r(t)| = 0

)
, ∀t ≥ T̄, (6)

where r(t) := maxi∈V {ri(t)} (r(t) := mini∈V {ri(t)}).

III. ADAPTIVE DISTRIBUTED PROTOCOL

In the following, we provide a general distributed protocol
for solving Problem 1. In order to tackle exogenous signals
with unknown bounds on the derivatives (see Assumption 2),
we define an adaptive distributed protocol with time-varying
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gains. In the case of supremum consensus, we propose that
each agent i runs the following update law

ui(t) = −
∑

j∈I+i (t)

αij(t)sign
(
xi(t)− xj(t)

)

− βi(t)sign
(
xi(t)− z+

i (t)
)
, (7)

with αij(t0), βi(t0) > 0, for j ∈ Ni and where I+
i (t) ⊂ V is

the set of neighbors of agent i with maximum state in the
augmented neighborhood, i.e.,

I+
i (t) = {j ∈ Ni|xj(t) = max

k∈N i

xk(t)}, (8)

and z+
i (t) is the maximum between the agent’s state and its

local supremum value r̄i(t), i.e.,

z+
i (t) = max{xi(t), ri(t)}. (9)

The update law in (7) is thus composed of i) a consensus
term to achieve agreement on the maximum state among the
agents, and ii) a supremum tracking term to track the maxi-
mum supremum reference signal among the agents. Regarding
the adaptive gains αij(t) and βi(t), ∀i, j ∈ V , the basic idea is
to have them grow until local consensus and tracking of the
signal z+

i (t) are achieved, respectively. To this aim, we define
the auxiliary variables hc

i (t), hz
i (t) ∈ R

+, ∀i ∈ V as

hc
i (t) =

∑

j∈I+i (t)

∣∣xi(t)− xj(t)
∣∣,

hz
i (t) = ∣∣xi(t)− z+

i (t)
∣∣, (10)

and the auxiliary variables γij(t), ∀i, j ∈ V, with γij(t0) = 0
for (i, j) /∈ E and γij(t0) > 0 for (i, j) ∈ E , such that

αij(t) = γij(t)+ γji(t). (11)

The following dynamics are selected for γij(t) and βi(t)

γ̇ij(t) =
{
κ1 if hc

i (t) > 0 and j ∈ I+
i (t),

0 otherwise,
(12)

β̇i(t) =
{
κ2 if hz

i (t) > 0
0 otherwise, (13)

where κ1, κ2 ∈ R represent the constant growth rates of the
adaptive gains, γij and βi, that are applied whenever the func-
tions hc

i and hz
i , respectively, are greater than zero. Note that,

according to the above definition, it holds αij(t) = αji(t) for
(i, j) ∈ E and αij(t0) = 0 for (i, j) /∈ E .

In order for the agents to implement the proposed protocol
in (7)-(13), each agent i at time t needs to communicate both
the state variable xi(t) and the auxiliary variable γij(t) to its
neighbors in j ∈ Ni.

Similarly to the above, in case of infimum consensus, we
define the set I−

i (t) and the variable z−
i (t) as

I−
i (t) = {j ∈ Ni|xj = min

k∈N i

xk},
z−

i (t) = min
{
xi(t), ri(t)

}
. (14)

Then, each agent i runs the distributed protocol in (7)-(13) by
using I−

i (t) in place of I+
i (t) and z−

i (t) in place of z+
i (t).

To prove the results, we introduce the stacked vec-
tors x = [x1, . . . , xn]T ∈ R

n, r = [r1, . . . , rn]T ∈ R
n,

α = [α11, α21, . . . , αnn]T ∈ R
n2

, β = [β1, . . . , βn]T ∈ R
n as

well as the following sets:

I+(t) = {j ∈ V | xj = max
i∈V

xi(t)}, (15)

I−(t) = {j ∈ V | xj = min
i∈V

xi(t)}, (16)

which correspond to the sets of agents holding the maximum
and minimum state values, respectively. In addition, we define
the signal r̄+(t) = maxi∈I+(t) r̄i(t). In the following, we omit
the time-dependence if not necessary and denote with ¯(·) the
upperbound of the respective quantity (·). For the sake of
space, we only conduct the analysis for the supremum dynamic
consensus problem; the analysis for the infimum problem fol-
lows a similar reasoning. To demonstrate the result, let us now
introduce the following technical result.

Lemma 1: Consider the sign function in (5), and let
g(y) = sign(y), with y ≥ 0 (y ≤ 0). Then, it holds:

K[g](y) ∈
{ {1} y > 0

[0, 1] y = 0 ,

(
K[g](y) ∈

{ {−1} y < 0
[ − 1, 0] y = 0

)
.

Proof: The result directly follows by considering that g(y)
is such that g : R → [0, 1] (g : R → [−1, 0]) and by applying
the definition in (2).

The proof is organized as follows: i) we first show that the
agents in I+(t) track r̄+(t) in finite-time; ii) we then prove
that a consensus is reached within the multi-agent system in
finite-time; and iii) we finally prove that by combining these
results the proposed protocol solves Problem 1.

Lemma 2: Consider a multi-agent system with n agents.
Let Assumptions 1 and 2 hold, and assume xi(t0) ≤ r̄i(t0).
Consider that each agent runs the protocol in (7) with gains
evolving according to (10)-(13). Then, for any set of initial
conditions, {x(t0), r(t0), β(t0)}, there exists a finite time T ′ for
which the tracking of the signal r̄+(t) is achieved by the agents
in I+(t) with finite upper-bounds β̄i on the gains βi(t), ∀i ∈ V ,
∀ t ≥ T ′.

Proof: To prove this lemma, let us introduce the following
variable r̃(t) defined as

r̃(t) = r̄+(t)− 1

|I+(t)|
∑

i∈I+(t)
xi(t). (17)

We consider the following Lyapunov candidate

V1(x(t), β(t), t) = |̃r(t)| + 1

ω

∑

i∈I+(t)
|β̄i − βi(t)|, (18)

with ω a positive constant and β̄i a finite upperbound of
βi, ∀i ∈ V , to be defined later. To compact the notation, we
refer to V1(x(t), β(t), t) simply as V1 in the following. Note
that, by definition, it holds

1

|I+|
∑

i∈I+(t)
xi(t) = xi(t), ∀i ∈ I+(t).

Moreover, the cardinality of the set I+(t) is a piecewise con-
stant function having instants of discontinuity that belong to a
set of measure zero [16]. This implies that these instants can be
disregarded in the nonsmooth analysis and I+(t) can be studied
as a set with constant cardinality. To compute the generalized
derivative ˙̃V1 as defined in (4), we need to define its Clarke’s
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generalized gradient ∂V1 as defined in (3) as well as the set val-
ued maps K[ẋ](x, β) and K[β̇](x). Regarding the generalized
gradient, it can be expressed as ∂V1 ⊆ [

∂xVT
1 , ∂βVT

1 , ∂tV1
]T
,

where

∂xV1 ⊆ −SIGN(̃r(t))
1

|I+| s+,

∂βV1 ⊆ − 1

ω
diag(s+)SIGN(β̄ − β(t)),

∂tV1 ⊆ SIGN(̃r(t))K[˙̄r+], (19)

with s+ ∈ R
n a selection vector with component i equal to 1

if i ∈ I+, 0 otherwise, diag(·) a diagonal matrix with val-
ues (·) along the main diagonal and β̄ = [β̄1, . . . , β̄n]T ∈ R

n.
Regarding the set-valued maps, they can be computed as [12]

K[ẋ](x, β) ⊆ [K[ẋ1](x, β), K[ẋ2](x, β), . . . ,K[ẋn](x, β)]T ,

K[β̇](x) ⊆ [K[β̇1](x, β), K[β̇2](x, β), . . . ,K[β̇n](x, β)]T , (20)

where the set-valued map K[ẋi](x, β) is defined as follows

K[ẋi](x, β) ⊆ −
∑

j∈I+i (t)

αij(t)SIGN(xi(t)− xj(t))

− βi(t)SIGN(xi(t)− z+
i (t)), (21)

while the set-valued map K[β̇i](x) is defined as

K[β̇i](x) = κ2SIGN(hz
i (x(t))). (22)

By applying Theorem 1, the generalized derivative ˙̃V1 can be
computed as

˙̃V1(x(t), β(t), t) =
⋂

[ξT
x ξ

T
β ξt]T∈∂V1

ξT
x K[ẋ](x)+ ξT

β K[β̇](x, β)+ ξt.

(23)

Let us analyze a generic element of this set-valued derivative
which has the following form

ξT
x K[ẋ](x, β)+ ξT

β K[β̇](x)+ ξt ⊆ SIGN(̃r)

×
⎛

⎝− 1

|I+|
∑

i∈I+
K[ẋi] + K[˙̄r+

]

⎞

⎠ − 1

ω

∑

i∈I+
SIGN(β̄i − βi)K[β̇i],

(24)

where the term
∑

i∈I+ K[ẋi] can be simplified as
∑

i∈I+
K[ẋi] ⊆ −

∑

i∈I+
βiSIGN(xi − z+

i ), (25)

due to the symmetric nature of the contributions, i.e., that
by construction it holds

∑
i∈I+

∑
j∈I+i

αijSIGN(xi − xj) = 0. In
view of (22) and (25), the generic element in (24) can be
rewritten as

SIGN(̃r)

⎛

⎝ 1

|I+|
∑

i∈I+
βiSIGN(xi − z+

i )+ K[˙̄r+]

⎞

⎠

− 1

ω
κ2

∑

i∈I+
SIGN(β̄i − βi)SIGN(hz

i ). (26)

By virtue of Lemma 1, it holds SIGN(hz
i ) ≥ 0, since hz

i ≥ 0
in (10), and SIGN(xi − z+

i ) ≤ 0, since xi ≤ z+
i accord-

ing to the definition of z+
i in (9) for the supremum tracking

problem. Let us analyze the case in which r̃ > 0, i.e., the
maximum signal r̄+ is not tracked by the agents in I+. By
the definition of r̃, it holds xi < r̄+, ∀i ∈ I+. This implies
that there must exist at least one agent k ∈ I+ for which it
holds r̄k > xk. Therefore, for this agent it holds hz

k(t) > 0
according to the definition in (10), leading to βk(t) < β̄k.
In view on the above considerations, the set-valued function
SIGN(̃r(t)) assumes the following value SIGN(̃r(t)) ⊆ {1},
while for the set-valued functions SIGN(β̄i − βi(t)), ∀i ∈ I+

i
it holds SIGN(β̄k − βk(t)) ⊆ {1}, for k ∈ I+ : r̄k > xk, and
SIGN(β̄i − βi(t)) ⊆ [0, 1], for i �= k, i ∈ I+. To derive an
upperbound to the generalized time-derivative d

dt V1 ∈a.e. ˙̃V1,
we assume that the agent k is the one having lowest gain
βi in the network, denoted as βm. Moreover, in view of
Assumption 2, it holds |ψ | ≤ κr, ∀ψ ∈ K[˙̄r+]. Based on
the above and considering the form in (26), the generalized
time-derivative of V1 can be upper bounded as

V̇1(t) ≤ − 1

|I+|β
m(t)+ κr − 1

ω
κ2 ≤ −1

n
βm(t)+ κr − 1

ω
κ2. (27)

At this point, we show that the gains βi are bounded, ∀i ∈ V .
Let us assume by contradiction that hz

i for some i in (10) is
different than zero for an unlimited time interval; then, it is
straightforward to show that βm would increase with rate κ2,
leading in finite-time to V̇1 ≤ −ε′, with ε′ > 0. This shows
that V1 and, then, hz

i can be different than zero only for a
finite-time interval, implying that βi, ∀ i, are upperbounded by
β̄i. By selecting ω = κ2/κr and by considering that the gains
βi are non-decreasing, ∀i, (27) can be rewritten as

V̇1 ≤ −βm(t)/n ≤ −βm(t0)/n. (28)

This inequality shows that, starting from xi(t0) ≤ r̄i(t0),
∀i ∈ V , as long as r̃(t) > 0, the Lyapunov candidate decreases
with a constant rate ensuring that the condition r̃(t) = 0 is
reached in a finite-time T ′, for which it holds

V1(t) ≤ V1(t0)−
∫ t

t0

βm(t0)

n
dτ, ⇒ T ′ ≤ n V1(t0)

βm(t0)
+ t0. (29)

Lemma 3: Consider a multi-agent system with n agents
under Assumption 1. Consider that each agent runs the proto-
col in (7) with gains evolving as in (10)-(13). Then, for any
set of initial conditions, {x(t0), α(t0)}, there exists a finite-time
T for which consensus is reached with finite upper-bounds ᾱij
on the gains αij(t), ∀(i, j) ∈ E , ∀ t ≥ T .

Proof: To prove this lemma, we follow a similar reasoning
as in [16], [17] which is extended to the case of adaptive gains.
Let us consider the following Lyapunov candidate

V2(x(t), α(t)) = 1

|I+(t)|
∑

i∈I+(t)
xi(t)− 1

|I−(t)|
∑

i∈I−(t)
xi(t)

+ 1

σ

∑

i∈I−(t)
|ᾱij − αij(t)|, (30)

with σ a positive constant. As in the previous lemma, we
can disregard the instants where the cardinalities I+(t) and
I−(t) are discontinuous in the nonsmooth analysis. We denote
V2(x(t), α(t)) simply as V2 in the following. The Clarke’s
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generalized gradient ∂V2 given in (3) can be expressed as
∂V2 ⊆ [∂xVT

2 , ∂αVT
2 ]T with

∂xV2 = 1

|I+| s+ − 1

|I−| s−,

∂αV2 ⊆ − 1

σ

[
diag

(
s−) ⊗ In

]
SIGN(ᾱ − α). (31)

where s+ is defined as in (19), s− ∈ R
n is a selection vector

with i th component equal to 1 if i ∈ I−, 0 otherwise, and ᾱ
is the stacked vector of the gains upperbounds ᾱij, ∀i, j ∈ V .
The set-valued map K[α̇](x) can be computed as [12]

K[α̇](x) ⊆ [K[α̇11](x), K[α̇21](x), . . . ,K[α̇nn](x)]T ,

with K[α̇ij](x) defined as [12]

K[α̇ij](x) ⊆ K[γ̇ij](x)+ K[γ̇ji](x), (32)

with

K[γ̇ij](x) =
{
κ1SIGN(hc

i (x)) if j ∈ I+
i ,

0 if j /∈ I+
i .

(33)

Therefore, the generalized derivative ˙̃V2 can be computed
according to Theorem 1 as

˙̃V2(x(t), α(t)) =
⋂

[ξT
x ξ

T
α ]T∈∂V2

ξT
x K[ẋ](x, α)+ ξT

α K[α̇](x).

In view of the form of the generalized gradient in (31), we
can analyze the term ξT

x K[ẋ](x, α)+ ξT
α K[α̇](x) as follows

ξT
x K[ẋ](x, α)+ ξT

α K[α̇](x) ⊆ 1

|I+|
∑

i∈I+
K[ẋi]

︸ ︷︷ ︸
V̇+

x

− 1

|I−|
∑

i∈I−
K[ẋi]

︸ ︷︷ ︸
V̇−

x

− 1

σ

∑

i∈I−

∑

j∈I+i

SIGN(ᾱij − αij)K[α̇ij]

︸ ︷︷ ︸
V̇α

.

In light of (21) and the symmetry condition, the term V̇+
x can

be rewritten as

V̇+
x = − 1

|I+|
∑

i∈I+
βiSIGN(xi − z+

i ). (34)

Regarding the term V̇−
x , this can be formulated as

V̇−
x = − 1

|I−|
∑

i∈I−

⎛

⎜⎝
∑

j∈I+i

αijSIGN(xi − xj)+ βiSIGN(xi − z+
i )

⎞

⎟⎠. (35)

For the term V̇α , we obtain the following from (32)

V̇α ≤ − 1

σ

∑

i∈I−

∑

j∈I+i

κ1SIGN(hc
i ), (36)

where we exploited the fact that φ ≤ ψ with φ ∈ K[α̇ij],
ψ ∈ K[γ̇ij] according to the definition in (11). At this point,
we want to show that as long as I+ ∩ I− = ∅, i.e., agents are
not at consensus, the Lyapunov candidate is decreasing with a
constant rate. To this aim, we analyze the worst case scenario
for the function to decrease. Regarding the terms related to the
set I+, recalling that SIGN(xi−z+

i ) ≤ 0, we observe that in the

worst case for all the agents in I+ it holds xi < z+
i . Regarding

the terms related to the set I−, the condition I+ ∩ I− = ∅
implies that there exists at least one agent i ∈ I− with a
neighbor j /∈ I− with xj > xi, for which it holds hc

i > 0 and
αij < ᾱij, i.e., the set S(t) = {i ∈ I−(t)|Ni ∩ (V\I−(t)) �= ∅} is
non-empty. Let αSm(t) be the minimum gain αij(t) such that
i ∈ S(t), ∀j ∈ Ni. Based on these considerations and on the
expressions in (34), (35) and (36), we obtain that as long as
I+ ∩ I− = ∅, the following inequalities hold true

V̇2(t) ≤ βM − αSm(t)

|I−| − 1

σ
κ1 ≤ β̄M − αm(t0)

n
− 1

σ
κ1, (37)

where the subscripts M and m denote the maximum and
minimum value of the respective quantity in the network,
respectively, and αij(t) ≥ αm(t0) follows by construction,
∀(i, j) ∈ E,∀t ≥ t0. Similarly to the previous lemma, we
now show that the gains αij are bounded, ∀(i, j) ∈ E . Let us
assume by contradiction that hc

i in (10) for some i is differ-
ent than zero for an unlimited time interval; therefore, αSm

is piece-wise increasing with rate κ1, leading in finite-time to
V̇2 ≤ −ε, with ε > 0. This shows that V2 and, then, hc

i can
be different than zero only for a finite-time interval, imply-
ing that αij, ∀ i, j, are upperbounded by ᾱij. Finally, let us set
σ = κ1/β̄

M . Then, (37) can be rewritten as

V̇2 ≤ −αm(t0)/n, (38)

which shows that V2 converges to zero in finite-time T , that is

V2(t) ≤ V2(t0)−
∫ t

t0

αm(t0)

n
dτ, ⇒ T ≤ n V2(t0)

αm(t0)
+ t0. (39)

We can now state our main result.
Theorem 3: Consider a multi-agent system composed of n

agents running the protocol in (7) with gains evolving accord-
ing to (10)-(13). Assume that the conditions of Lemmas 2
and 3 hold. Then, all the agents track the maximum supremum
r̄ in finite-time T̄ = max(T ′,T), with T ′ and T upperbounded
as in (29) and (39), respectively.

Proof: The proof can be derived by combining Lemmas 2
and 3. More specifically, Lemma 3 states that all the agents
reach consensus, leading in finite-time to I+ ≡ V . However,
by virtue of Lemma 2, the maximum signal r̄+ is tracked
by the maximum agents in I+ in finite-time, implying that the
maximum supremum signal r̄ will be tracked by all the agents.
Finally, the convergence time is given by the slowest between
T ′ and T in Lemmas 2 and 3, respectively.

IV. SIMULATION RESULTS

As mentioned in Section I, for the numerical validation of
the proposed protocol, motivated by the needs of the H2020
European project CANOPIES, we consider a heterogeneous
multi-robot team for a precision farming setting in which
robots need to monitor the maximum supremum of signals
to plan their intervention. The development of distributed pro-
tocols for this kind of setting is crucial to achieve scalability
over large-scale fields. In particular, according to CANOPIES
project view, we consider two kinds of robotic platforms:
farming and logistic. Farming robots carry out agronomic
operations, like harvesting, filling on-board boxes with col-
lected items. Logistic robots are responsible to empty these
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Fig. 1. Evolution of states x(t) (solid lines), filling signals ri (t) (fine
dotted lines) and signal r̄ (t) (thick dotted red line).

Fig. 2. Evolution of the adaptive gains α(t) (dotted lines) and β(t) (solid
lines).

boxes to enable the first robots to proceed with farming oper-
ations. We consider a system composed of n = 10 agents
(with connected undirected communication graph) where each
agent has access to a filling signal ri(t) modeling the per-
centage of filled box (with maximum value 1). The boxes
can be partially or totally emptied at any time, i.e., the fill-
ing signals can decrease over time. Our distributed algorithm
allows to track the maximum supremum r̄(t) of these filling
signals, which can activate in a timely manner the interven-
tion of logistic robots to empty the boxes. The filling signals
ri are modelled as piecewise linear functions, depicted as fine
dotted lines in Figure 1. We consider the following initial states
x(0) = [0.2 0.1 0.16 0.15 0.13 0.12 0.1 0.1 0.05 0]T ,

while the adaptive gains γij(0) and βi(0) are initialized
with uniform distribution in the interval [0, 1], for all
∀i ∈ V, j ∈ Ni. Also, we set κ1 = κ2 = 0.5 in (12) and (13).
Figure 1 depicts the state’s trajectories (solid lines), the fill-
ing signals ri(t),∀i ∈ V (fine dotted lines) and the maximum
supremum signal r̄ (thick red dotted line). The figure shows
the network reaching consensus in T ≈ 12 s and tracking the
maximum supremum in T ′ ≈ 22 s. Moreover, the figure shows
that the network keeps tracking the maximum supremum sig-
nal in response to variations of the maximum supremum value.
An example of this behaviour arises at approximately 60 s
when the filling signal r2 (dotted green line) increases, lead-
ing to transition from r̄ = r1 (dotted purple line) to r̄ = r2.
Furthermore, the agents are able to track the maximum supre-
mum signal also when it is greater than all the filling signals.
Such case occurs, for instance, in the time intervals [20, 70] s
and [90, 170] s. Finally, Figure 2 shows the adaptive gains
α(t) (dotted lines) and β(t) (solid lines). We can observe that

the gains keep increasing as long as the conditions hc
i and

hz
i in (10) are greater than 0, ∀i ∈ V , and then reach con-

stant values at about t ≈ 22 s, allowing to track the maximum
supremum signal.

V. CONCLUSION

In this letter, the finite-time infimum (supremum) dynamic
consensus has been proposed. A system composed of n
agents interacting over a connected undirected network topol-
ogy is considered. Each agent has access to a local time-
varying exogenous signal with unknown bounded derivative.
An adaptive finite-time distributed protocol has been designed.
Numerical simulations on a precision farming setting have
been considered to corroborate the theoretical findings. Future
work will focus on considering directed communication graphs
and on ensuring robustness to perturbations or attacks.
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