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Abstract—This letter deals with the design of a novel
neural network based integral sliding mode (NN-ISM) con-
trol for nonlinear systems with uncertain drift term and
control effectiveness matrix. Specifically, this letter extends
the classical integral sliding mode control law to the case of
unknown nominal model. The latter is indeed reconstructed
by two deep neural networks capable of approximating
the unknown terms, which are instrumental to design the
so-called integral sliding manifold. In this letter, the ulti-
mate boundedness of the system state is formally proved
by using Lyapunov stability arguments, thus providing the
conditions to enforce practical integral sliding modes. The
possible generation of ideal integral sliding modes is also
discussed. Moreover, the effectiveness of the proposed NN-
ISM control law is assessed in simulation relying on the
classical Duffing oscillator.

Index Terms—Sliding mode control, neural networks,
uncertain systems.

I. INTRODUCTION

SLIDING Mode Control (SMC) has a wide popularity due
to its ability to make the controlled system insensitive to

matched uncertainty terms whenever the system state lies on
a predefined sliding manifold [1]. This property is enabled
by the discontinuous nature of the control law, which, on one
hand, enables the finite time convergence of the so-called slid-
ing variable to the corresponding sliding manifold, while, on
the other hand, it may cause the notorious chattering phe-
nomenon [2]. The amplitude of chattering is considerably
affected by the size of the control gain, which, on the other
hand, must to be selected in order to dominate the uncertain
terms. As such, it is beneficial when non-excessively conser-
vative bounds on the uncertainties are available to the control
designer.
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Different solutions have been proposed to alleviate the chat-
tering effect while maintaining the robustness and finite time
convergence properties of SMC. Among these solutions, there
are for instance higher order sliding mode controllers [3]–[5],
adaptive control approaches [6]–[8], or internal model princi-
ple based strategies [9]. Instead, as for the improvement of the
robustness of SMC, a new paradigm was introduced in [10],
based on the concept of Integral Sliding Mode (ISM), which
enables to eliminate the so-called reaching phase, during which
the controlled system is still sensitive to the uncertainties,
thus enabling a sliding mode, with the associated robustness
property, from the initial time instant. Extensions of the basic
ISM control concept have been proposed in the literature. For
instance, the original setting with only matched disturbances
has been extended in [11], where also unmatched uncertain
terms are taken into account. Moreover, several works have
assessed the validity of the ISM control approach for different
applications (see e.g., [12]–[14]).

Given a nonlinear system affine in the control input, to
design an ISM control the nominal drift term and the matrix
multiplying the control input, i.e., the control effectiveness
matrix, must be known. This knowledge is not available
in many practical implementations, where only conservative
bounds can be retrieved from the physics of the process to
control or via experimental tests.

In the last twenty years, the so-called deep neural networks
(DNNs) and their universal approximation property [15] have
become a viable way to provide estimations of the model
uncertain terms, even in model based control schemes. For
instance, in [15] and [16], neural networks with weight adapta-
tion laws which rely on Lyapunov’s stability theory have been
introduced. The same concepts have been used in [17]–[19] to
directly generate the control laws. Moreover, Lyapunov-based
adaptation laws have been used to train DNNs which esti-
mate the unknown dynamics in the case of continuous-time
systems in [20], and in that of discrete-time system in [21].
The combination of neural networks with SMC has been also
investigated, see e.g., [22]–[25].

In this letter, we propose a novel NN-ISM control approach.
Specifically, we extend the algorithm in [10] to the case of
unknown nominal dynamics, exploiting the use of two DNNs
to design the so-called integral sliding manifold. This allows us
to produce a sliding mode control law with a smaller amplitude
than the one that would be obtained, to get equal performance,
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via a conventional SMC approach. This because the NN-ISM
control law does not rely on conservative bounds on the uncer-
tain terms, but on the rather accurate approximation of these
terms provided by the DNNs included in the control scheme.
Moreover, differently from other published solutions which
use SMC and neural networks, no knowledge of the bounds
of the function reconstruction errors is necessary in our pro-
posal. In the considered setting, the ultimate boundedness of
the state to a set depending on the design control parameters
(i.e., the enforcement of a practical sliding mode) is formally
proved in this letter. The generation of ideal sliding modes is
instead proved in some specific conditions.

To the best of our knowledge, this is the first time that
ISM and neural networks are combined giving rise to an orig-
inal solution, which is capable of solving a complex control
problem with a minimum amount of available information, and
a limited amplitude of the sliding mode control input, thus alle-
viating all the problems which, in practical implementations,
are normally associated with a high control gain.

Notation: The used variables and operators are mostly stan-
dard. Let x be a vector, then x� refers to its transpose. Given
a real matrix A ∈ R

n×n, then tr(A) is its trace. Given two real
matrices A, B ∈ R

n×n, then tr(A + B) = tr(A) + tr(B), while
given A ∈ R

n×m, B ∈ R
m×n, then tr(AB) = tr(BA). Given two

real column vectors a, b ∈ R
n, the trace of the outer product

is equivalent to the inner product, i.e., tr(ba�) = a�b.

II. PRELIMINARIES AND PROBLEM STATEMENT

The aim of this section is to describe the dynamical system
that will be considered in this letter and recall the main features
of the ISM control in [10].

Consider the following nonlinear system

ẋ = f (x(t)) + B(x(t))u(t) + h(x(t), t), x(0) = x0, (1)

where x ∈ R
n is the measurable state vector, x0 ∈ R

n is the
initial condition, u ∈ R is the control variable, f (x(t)) : Rn →
R

n represents the drift dynamics, B(x(t)) : R
n → R

n is the
control effectiveness term, and h(x(t), t) : R

n × R → R
n is

the system perturbation. Moreover, the following assumption,
classical in the sliding mode theory [1], [26], holds.
A1: There exists a known constant �h ∈ R>0 such that the

perturbation function h(x(t), t) is bounded as

sup
t∈R≥0

‖h‖ ≤�h. (2)

In order to compensate the effect of the external distur-
bance h(x(t), t) from t ≥ 0, an ISM controller can be designed.
According to [10], the control law is defined as

u = u0 + u1, (3)

where u0 is a control law making the origin be an asymptoti-
cally stable equilibrium point for the nominal dynamics, given
by (1) when h = 0, while u1 is a discontinuous control aimed
at rejecting the uncertainties. In particular, it is defined as

u1 = −ρ sign(s), (4)

where ρ ∈ R>0 is the control gain, and s(x(t)) : Rn → R is
the so-called integral sliding variable given by

s(x(t)) = s0(x(t)) + z(x(t)), s(x0) = 0. (5)

Specifically, in (5) z is the so-called transient function selected
such that

ż = −∂s0

∂x
(f (x) + B(x)u0), z(0) = −s0(0). (6)

Then, by properly selecting the stabilizing control law u0 and
the discontinuous control gain ρ, the sliding mode condition
and the robustness of the controlled system with respect to
the matched perturbation h can be proved (see [10] for further
details). Note that, for the sake of simplicity, in the following
the dependence of the sliding variable on x(t) is omitted when
obvious, leaving only the time dependence.

III. DNN BASED FUNCTION APPROXIMATION

While in [10] the nominal dynamics of the system is
assumed to be fully known, in this letter the functions f (x)
and B(x) are assumed to be unknown. Hence, in this section
we introduce two DNNs to estimate such terms, relying on the
so-called universal approximation property. More precisely,
consider the following theorem.

Theorem 1 (Universal Approximation [15]): Let � ⊆ R
p

be a compact set and consider a smooth function g(α) : Rp →
R

q. Then, there exists a two-layer neural network with L ∈
N>0 neurons in the hidden layer characterized by ideal weights
W ∈ R

L×q and � ∈ R
p×L, ideal activation function vector

σ(·) : RL → R
L and a constant �εg ∈ R>0 such that

g(α) = W�σ(��α) + εg(α), (7)

with εg(α) : R
q → R

q being the so-called function recon-
struction error so that ||εg|| <�εg for all α ∈ �.

The above theorem can be exploited in order to approximate
the unknown drift dynamics f (x) and the control effectiveness
term B(x) in (1), as

f (x) = W�
f σf (�

�
f x) + εf (x), (8)

B(x) = W�
B σB(��

B x) + εB(x), (9)

for x ∈ � ⊆ R
n. In particular, Wf ∈ R

Lf ×n, WB ∈ R
LB×n

and �f ∈ R
n×Lf , �B ∈ R

n×LB are the ideal NN weights,
σf (·) : R

Lf → R
Lf and σB(·) : R

LB → R
LB are the ideal

bounded activation functions vectors, while εf (x) : Rn → R
n

and εB(x) : R
n → R

n are the functions reconstruction
errors. Since the ideal DNNs are not known, an approxima-
tion of them can be used. In particular, the unknown drift
dynamics and the unknown control effectiveness term can be
estimated by

̂f (x) = ̂W�
f σ̂f (̂�

�
f x), (10)

̂B(x) = ̂W�
B σ̂B(̂��

B x), (11)

where σ̂f (·), σ̂B(·) are the activation functions vectors selected
by the designer, which may differ from the ideal ones σf (·)
and σB(·). As a consequence, the weight estimation errors are
expressed as

˜Wf (t) = Wf − ̂Wf (t), (12a)
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˜WB(t) = WB − ̂WB(t), (12b)
˜�f (t) = �f − ̂�f (t), (12c)
˜�B(t) = �B − ̂�B(t). (12d)

Now, the following assumption about the bounds of the ideal
output layer weights and about the activation functions vectors
needs to be introduced.
A2: By virtue of the universal approximation property, there

exist known constants �WF , �WB, �σf , �σB, �̂σ f , �̂σB ∈ R>0
such that the unknown ideal output layer weights Wf ,
WB, the unknown ideal activation functions vectors σf (·),
σB(·) and the designer-selected activation functions vec-
tors σ̂f (·), σ̂B(·) are bounded as

sup
x(t)∈�

‖Wf ‖ ≤ �Wf , sup
x(t)∈�

‖WB‖ ≤ �WB,

sup
x(t)∈�

‖σf ‖ ≤ �σf , sup
x(t)∈�

‖σB‖ ≤ �σB,

sup
x(t)∈�

‖σ̂f ‖ ≤ �̂σ f , sup
x(t)∈�

‖σ̂B‖ ≤ �̂σB.

As for the functions reconstruction errors, the following
assumption instead holds.
A3: There exist unknown constants �εf ,�εB ∈ R>0 such that

the function reconstruction errors εf and εB are bounded,
i.e.,

sup
x(t)∈�

‖εf ‖ ≤�εf , sup
x(t)∈�

‖εB‖ ≤�εB.

IV. NN-ISM CONTROLLER DESIGN

We are now in a position to introduce the proposed NN-ISM
control algorithm.

First, select the component s0 of the sliding variable in (5)
as the linear combination of the system states, i.e., s0 = λ�x,
with λ ∈ R

n being a design vector such that λ�1 > 0, and
1 ∈ R

n being a column vector of all ones. Then, by using
the approximations defined in (10) and (11), it is possible to
approximate the dynamics (6) as

ż = −λ�(

̂f (x) +̂B(x)u0
)

, z(0) = −s0(0),

which, exploiting (10) and (11), can be rewritten as

ż = −λ�(

̂W�
f σ̂f (̂�

�
f x) + ̂W�

B σ̂B(̂��
B x)u0

)

, (13)

with σ̂B(·) and σ̂f (·) being selected as vectors of logistic sig-
moid functions. For the sake of simplicity, in the rest of this
letter the quantities σf (̂�

�
f x), σB(̂��

B x), σ̂f (̂�
�
f x) and σ̂B(̂��

B x)
are indicated as σf , σB, σ̂f and σ̂B, respectively.

Now, in analogy with the classical ISM approach, in order
to make the origin be an asymptotically stable equilibrium
point for the approximated nominal dynamics

ẋ =̂f (x) +̂B(x)u0 = ̂W�
f σ̂f + ̂W�

B σ̂Bu0, (14)

the control law u0 can be selected as

u0 = −kx, (15)

with k ∈ R
1×n being a row vector of positive gains ki, ∀i =

1, 2, . . . , n. Then, the overall control input is obtained as the
sum of (4) and (15), i.e.,

u = −kx − ρ sign (s). (16)

Fig. 1. Block diagram of the proposed NN-ISM control scheme.

The adaptation laws for the estimated weights are instead
chosen as

˙̂Wf = 
f σ̂f sλ�, (17a)
˙̂WB = −
Bσ̂Bkxsλ�, (17b)

˙̂�f = �f x
( ˙̂σ�

f
̂Wf sλ

)�
, (17c)

˙̂�B = −�Bx
( ˙̂σ�

B
̂WBkxsλ

)�
, (17d)

where 
f ∈ R
Lf ×Lf , 
B ∈ R

LB×LB , �f ∈ R
n×n and �B ∈ R

n×n

are diagonal gain matrices, and

˙̂σ f = diag {̂σf }(ILf ×Lf − diag {̂σf }), (18a)
˙̂σB = diag {̂σB}(ILB×LB − diag {̂σB}), (18b)

with ILf ×Lf and ILB×LB being identity matrices.
The dynamics of the sliding variable, that is,

ṡ = λ�ẋ + ż, can be computed. In particular,
using (1), (8), (9), (13), (15), (16) and exploiting rela-
tions (12a) and (12b) to express ̂Wf = Wf − ˜Wf and
̂WB = WB − ˜WB, one obtains

ṡ = λ�(

h + εf − εB(ρ sign (s) + kx)

− W�
B σBρ sign (s) + W�

f (σf − σ̂f )

− W�
B (σB − σ̂B)kx + ˜W�

f σ̂f − ˜W�
B σ̂Bkx

)

. (19)

The proposed control scheme is illustrated in Fig. 1.

V. STABILITY ANALYSIS

In this section, the main theoretical results relevant to the
proposed control approach are presented. In particular, the fol-
lowing theorem proves the ultimate boundedness of the system
state, providing a bound on the convergence set depending on
the control parameters. Moreover, conditions for the enforce-
ment of both practical and ideal integral sliding modes are
indicated.

Theorem 2 (Ultimate Boundedness): Consider the nonlinear
system (1) controlled by (16), with x0 ∈ �, sliding variable as
in (5) and (13), and output layer weights adaptation laws (17a)
and (17b). If A1, A2 and A3 hold, and

ρ >
h + Wf (σ f + σ̂ f )

WBσB
, (20)

then ∀t ≥ t̃, with t̃ ≥ 0, the state of the controlled system x(t)
is ultimately bounded in the set X ⊆ � given by

X :=
{

x ∈ � | ‖x‖ ≤ εf

‖k‖(WB(σB + σ̂B)
)

}

. (21)
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Proof: Select the following Lyapunov-like candidate func-
tion V ,

V = 1

2
s2 + 1

2
tr(˜W�

f 
−1
f

˜Wf ) + 1

2
tr(˜W�

B 
−1
B

˜WB) (22)

where s is the sliding variable defined in (5). By differentiating
with respect to time, one has

V̇ = sṡ + tr(˜W�
f 
−1

f
˙̃Wf ) + tr(˜W�

B 
−1
B

˙̃WB). (23)

Exploiting (19) and, since by computing the derivatives
of (12a) and (12b) one has ˙̃Wf = − ˙̂Wf and ˙̃WB = − ˙̂WB,
then the derivative becomes

V̇ = sλ�(

h + εf − εB(ρ sign (s) + kx)

− W�
B σBρ sign (s) + W�

f (σf − σ̂f )

− W�
B (σB − σ̂B)kx + ˜W�

f σ̂f − ˜W�
B σ̂Bkx

)

− tr(˜W�
f 
−1

f
˙̂Wf ) − tr(˜W�

B 
−1
B

˙̂WB). (24)

Using the adaptive laws (17a) and (17b) one has

V̇ = sλ�(

h + εf − εB(ρ sign (s) + kx)

− W�
B σBρ sign (s) + W�

f (σf − σ̂f )

− W�
B (σB − σ̂B)kx + ˜W�

f σ̂f − ˜W�
B σ̂Bkx

)

− tr(˜W�
f σ̂f sλ�) + tr(˜W�

B σ̂Bkxsλ�)

= sλ�(

h + εf − εB(ρ sign (s) + kx)

− W�
B σBρ sign (s) + W�

f (σf − σ̂f )

− W�
B (σB − σ̂B)kx + ˜W�

f σ̂f − ˜W�
B σ̂Bkx

)

− sλ�
˜W�

f σ̂f + sλ�
˜W�

B σ̂Bkx. (25)

Rearranging the previous expression, V̇ can be written as

V̇ = −sλ�(

−h − W�
f (σf − σ̂f )

)

− sλ�εBρ sign (s)

− sλ�εBkx − sλ�W�
B σBρ sign (s)

− sλ�(

−εf + W�
B (σB − σ̂B)kx

)

. (26)

Since A1, A2 and A3 hold, one can write

V̇ ≤ −λ�1
(−�h − �Wf (�σf + �̂σ f )

)|s| − λ�1�εBρ|s|
− λ�1�εB‖k‖‖x‖|s| − λ�1�WB�σBρ|s|
− λ�1

(−�εf + �WB(�σB + �̂σB)‖k‖‖x‖)|s|
≤ −λ�1

(�WB�σBρ − (�h + �Wf (�σf + �̂σ f )
))|s|

− λ�1
(�WB(�σB + �̂σB)‖k‖‖x‖ −�εf

)|s|. (27)

Using ρ as in (20), the first term of inequality (27) is negative,
while for the second term two cases can occur. If

‖x‖ ≤ �εf

‖k‖(�WB(�σB + �̂σB)
) ,

then V̇ < 0 or V̇ ≥ 0. In this second subcase, one has that,
inside the ball of radius

�εf

‖k‖(�WB(�σB+�̂σB))
, V is an increasing

function and ‖x‖ increases until ‖x‖ = �εf

‖k‖(�WB(�σB+�̂σB))
. On the

other hand, if

‖x‖ >
�εf

‖k‖(�WB(�σB + �̂σB)
) ,

then V̇ < 0, and, outside the ball, ‖x‖ decreases until ‖x‖ ≤�εf

‖k‖(�WB(�σB+�̂σB))
. Therefore, ∀ t ≥ t̃, with t̃ ≥ 0 the state of

the controlled system x(t) is ultimately bounded in the set X
in (21). Moreover, by using (22) and (27) one may observe
that V is bounded, which in turn implies that the weights ̂Wf

and ̂WB are bounded as well.
Remark 1 (Size of the Convergence Set): Note that, accord-

ing to Theorem 2, a degree of freedom for the designer to
reduce the radius of the set X is provided by the possibility
of sizing the gain vector norm ‖k‖.

Remark 2 (Practical and Ideal Integral Sliding Mode):
Note that, if x(t) is ultimately bounded in the set X , as it
happens if the assumptions of Theorem 2 hold, then accord-
ing to the definition of s0, also |s0| is ultimately bounded. This
implies that a practical integral sliding mode is enforced in a
boundary layer around s = 0, the amplitude of which can be
reduced by acting on ‖k‖. This will be illustrated in § VI.

In case V̇ in (23) would result in being negative-definite
both outside and inside X , then, with ρ as in (20), the reach-
ing condition [1, Ch. 1] would be verified. Therefore, s would
become zero in a finite time t̄, and remain zero ∀ t ≥ t̄. Since,
according to (13), s(x0) = 0, then t̄ = 0, which means that
an ideal integral sliding mode on s(t) = 0 would be enforced
since the initial time instant. Notice that, when s = 0, the
controlled system, which is in sliding mode, becomes equal
to system (14) (i.e., to the approximated nominal dynamics)
with u0 as in (15). By design, u0 makes the origin be an
asymptotically stable equilibrium point for the approximated
nominal dynamics. Hence, when an ideal integral sliding mode
on s = 0 is produced, it follows that the origin results
in being an asymptotically stable equilibrium point also for
system (1) controlled by means of the proposed control u
indicated in (16).

Remark 3 (Conservativeness of the Control Gain): Note
that Theorem 2 holds under the assumption A3, which implies
the control gain ρ in (20), and the set X in (21). However, if
we could relax A3 by assuming to know the bound of the input
function reconstruction error εB, that is �εB ∈ R>0, the sliding

mode control gain would be given by �ρ >
�h+�Wf (�σf +�̂σ f )

�WB�σB+�εB
, with

�ρ < ρ. As a consequence, the new convergence set �X ⊂ X
would be

�X :=
{

x ∈ � | ‖x‖ ≤ �εf

‖k‖(�WB(�σB + �̂σB +�εB)
)

}

. (28)

VI. NUMERICAL EXAMPLE

In this section, the proposed control scheme is assessed
in simulation, considering as process to control the Duffing
oscillator (see [1, Ch. 1]) described by

f (x) =
[

x2
g
l sin(x1) − β

ml2
x1 − γ

ml2
x2

]

, B(x) =
[

0
1

]

h(x, t) =
[

h1
h2

]

=
[

0

0.15 sin
(

1
2 t

)

+ 0.1 cos(t)

]

,

where x = [

x1 x2
]�, with x1 being the position and x2 the

velocity, m the mass of the oscillator, and l its length. If the
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Fig. 2. State-space trajectories in the case of different values of ‖k‖.

Fig. 3. Time evolution of the norm of the drift term estimation error
when the system is controlled with different values of ‖k‖.

model parameters β and γ are chosen such that g
l − β

ml2
= 1,

g
6l = 1 and γ

ml2
= 1, then the dynamics can be rewritten as

{

ẋ1 = x2

ẋ1 = x1 − x3
1 − x2 + u + h2.

(29)

Note that the knowledge of this model is assumed not to be
available for the controller design.

A. Settings

To asses the validity of the NN-ISM control algorithm intro-
duced in § IV, three different simulations has been carried out,
analyzing the behavior of system (29) for different values of
the control gain vector k: k = [

5 5
]

, k = [

10 10
]

and
k = [

20 20
]

, with ‖k‖ equal to 7.071, 14.142 and 28.284,
respectively. The drift dynamics and the control effectiveness
term used for updating the transient function z have been
estimated by using 2 DNNs with one output layer with 2
neurons and one hidden layer with Lf = LB = 50 neurons.
Such DNNs are characterized by output layer weights ̂Wf ,
̂WB and hidden layer weights ̂�f , ̂�B, whose values are ini-
tialized as small random numbers (between 0 and 0.01) and
then adapted using (17), with 
f = 
B = 0.7 · I50×50 and
�f = �B = 0.9 · I2×2. All the simulations have the same
initial conditions x0 = [

1 1
]� and duration equal to 100 sec-

onds. Moreover, the sliding variable parameter vector has been
chosen as λ = [

1 1
]�, while the discontinuous control gain

has been selected as ρ = 0.3, which, assuming upper bounds
�h = 0.25, �Wf = 0.2, �WB = 2.2 and �̂σ f = �σf = �σB = 1,
satisfies (20).

B. Results and Discussion

By virtue of Theorem 2, and according to Remark 1 the size
of the convergence set X decreases as ‖k‖ increases. Fig. 2
shows indeed that, larger ‖k‖ is, smaller the radius of set X ,

Fig. 4. Lower and upper bounds of ̂Wf (in blue) and ̂WB (in red) when
‖k‖ = 28.284.

Fig. 5. Time evolution of s = s0+z when ‖k‖ = 7.071 (a), ‖k‖ = 14.142
(b) and ‖k‖ = 28.284 (c).

Fig. 6. Time evolution of ‖x‖ when the system is controlled via a con-
ventional SMC, with different control amplitudes, and via the proposed
NN-ISM control.

namely rX , becomes. This result is also evident from Table I,
where rX is estimated relying on (21). Evidence of the DNN
capability of estimating, for instance, the uncertain drift term is
provided in Fig. 3, where the norm of the drift term estimation
error is reported versus time for different values of ‖k‖.

In Fig. 4 the evolution of the output layer weights ̂Wf and
̂WB is shown. As expected from Theorem 2, they are also
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TABLE I
SIZE OF THE CONVERGENCE SET X WITH RESPECT TO ‖k‖

bounded. In Fig. 5 the time evolution of the sliding variable
s is illustrated for different value of ‖k‖. Starting from s = 0,
then for a short transient of 2 seconds the sliding mode is
temporarily lost until the DNN weights ̂Wf , ̂WB, ̂�f , ̂�B are
properly adjusted, and then it is again steered to zero. Finally,
a comparison between the proposed NN-ISM control approach
and a classical SMC [26], with amplitude of the control input
based on the knowledge of the upper bounds of the uncertain
terms, is reported in Fig. 6. Notice that to obtain a performance
comparable with that of the NN-ISM control, the amplitude
of the classical SMC must be about 5 times higher.

VII. CONCLUSION

In this letter, a novel NN-ISM control algorithm is proposed
for a class of uncertain nonlinear systems. In order to use
the classical ISM control approach, the nominal model of the
system should be known, which is not true in the consid-
ered case. Thus, in this letter, the integral sliding manifold
is designed relying on two DNNs. The theoretical analysis
reported in this letter provides conditions for the enforcement
of practical integral sliding modes, as well as results on the
boundedness of the DNNs weights. Moreover, the possible
generation of ideal integral sliding modes is discussed. The
proposed control approach provides satisfactory performance,
as assessed in simulation.
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