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Stabilization of Unstable Distributed
Port-Hamiltonian Systems in Scattering Form

Alessandro Macchelli , Senior Member, IEEE , Yann Le Gorrec , Senior Member, IEEE ,
and Héctor Ramírez , Member, IEEE

Abstract—In this letter, we consider the exponential
stabilization of a distributed parameter port-Hamiltonian
system interconnected with an unstable finite-dimensional
linear system at its free end and control input at the
opposite one. The infinite-dimensional system can also
have in-domain anti-damping. The control design passes
through the definition of a finite-dimensional linear system
that “embeds” the response of the distributed parameter
model, and that can be stabilized by acting on the available
control input. The conditions that link the exponential sta-
bility of the latter system with the exponential stability of
the original one are obtained thanks to a Lyapunov analy-
sis. Simulations are presented to show the pros and cons
of the proposed synthesis methodology.

Index Terms—Distributed-parameter systems, Lyapunov
methods, port-Hamiltonian systems.

I. INTRODUCTION

D ISTRIBUTED port-Hamiltonian systems [1], [2] are a
framework for modeling, simulation and control design

for physical systems described by partial differential equations
(PDEs). The most popular control synthesis methodologies
deal with the linear case and are based on the so-called energy-
shaping plus damping injection paradigm, [3]. The control
action, usually applied at the boundary of the spatial domain,
is designed so that the energy function is modified in partic-
ular to shift the equilibrium, and some dissipative effect is
added, [4]–[6]. Control design and stability proof rely on the
hypothesis that the dynamics is passive or dissipative. This
means that the plant has a sort of “stable behavior” since if
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the control input is set equal to zero, the total energy is not
increasing.

In this letter, the stabilization problem of boundary control
systems in port-Hamiltonian form that are not dissipative is
tackled. The focus is on systems with one-dimensional spatial
domain associated to the dynamics of two coupled trans-
port equations, and with an unstable SISO finite-dimensional
linear system at the uncontrolled side of the domain. The con-
trol input is at the other side. This is a particular case of
the framework analyzed in [7] where the regulator has been
obtained thanks to a backstepping transformation. The idea
is to extend the reduction method illustrated in [8], [9] and
applied to finite-dimensional linear systems with input delay
to the mixed PDE and ordinary differential equation (ODE)
models studied here. The result is a control action in state-
feedback form and designed to transform the system into a
new one that “embeds” the response of the PDE model and
can be made exponentially stable. Such a finite-dimensional
system is endowed with the same input of the original model
and its dynamics is strongly related to the one of the system
interconnected at the free end of the domain. The design
procedure is rather simple, and the true question is to deter-
mine under which conditions the exponential stability of this
latter system implies that the same property holds for the
initial one.

The stability analysis is based on Lyapunov techniques for
linear hyperbolic systems, see [10] for a complete overview.
The Lyapunov functionals proposed in [11] are employed
to determine under which conditions the closed-loop system
is exponentially stable. Despite its simplicity, the regulator
deals with port-Hamiltonian systems for which energy-based
techniques fail. For example, passivity or the fact that the
system interconnected at the free end has to be exponen-
tially stable are not required. On the other hand, the approach
inherits most of the “structural” problems of Lyapunov-based
controllers designed for hyperbolic systems. Among them,
in-domain cross-coupling between state variables, actuation
only at one side of the domain and a finite-dimensional lin-
ear system at the other one with a large feedthrough gain
limit the applicability of the method. In general, such limi-
tations are not present when the controller is obtained via a
backstepping transformation, [7]. However, the price to pay is
a noteworthy computational effort to determine the feedback
gains.
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II. PROBLEM FORMULATION

Let us consider the following infinite-dimensional port-
Hamiltonian system, [1], [2]:

∂

∂t

(
ξ1(t, z)
ξ2(t, z)

)
=

(−λ 0
0 λ

)
∂

∂z

(
ξ1(t, z)
ξ2(t, z)

)

+
(

m11 m12
m21 m22

)
︸ ︷︷ ︸

=:M

(
ξ1(t, z)
ξ2(t, z)

)
, (1)

where, z ∈ [0, �] is the spatial coordinate, ξ := (ξ1, ξ2) ∈
L2(0, �;R2) the state variable, and λ a positive real constant.
Despite its simplicity, this PDE is quite general and includes
models of flexible structures, traveling waves or heat exchang-
ers. In (1), (ξ1, ξ2) are the wave or scattering variables [12],
with ξ1 associated to the propagation from 0 to �, and ξ2
to the propagation in the opposite direction. Differently from
what is usually done within the port-Hamiltonian framework
where the dynamics is formulated in terms of the energy
and co-energy variables, this linear hyperbolic form has been
preferred because control synthesis and stability proof turn out
to be simpler.

The next step deals with the definition of boundary input
and output pairs for (1). Let u0, u� ∈ R be the inputs in z = 0
and z = �, respectively, given by

(
u0(t)
u�(t)

)
:=

(
0 0 w01 w02

w�1 w�2 0 0

)
︸ ︷︷ ︸

=:W

⎛
⎜⎜⎝

ξ1(t, �)
ξ2(t, �)
ξ1(t, 0)

ξ2(t, 0)

⎞
⎟⎟⎠, (2)

where wij ∈ R, and so that w01, w�2 �= 0. From [2,
Th. 4.2], this requirement assures that, when M + MT ≤
0, (1) is a boundary control system in the sense of semi-
group theory provided that u0(t) and u�(t) are of class C2,
[13, Definition 3.3.2]. From a physical point of view, the con-
dition on M means that no anti-dissipative effect is present
along the spatial domain. The well-posedness result, however,
can be extended to the general case, i.e., when in (1) the matrix
M is arbitrary, thanks to [13, Th. 3.2.1]. The outputs y0, y� ∈ R

in z = 0 and z = �, respectively, are defined in a similar
manner:

(
y0(t)
y�(t)

)
:=

(
0 0 w̃01 w̃02

w̃�1 w̃�2 0 0

)
︸ ︷︷ ︸

=:W̃

⎛
⎜⎜⎝

ξ1(t, �)
ξ2(t, �)
ξ1(t, 0)

ξ2(t, 0)

⎞
⎟⎟⎠. (3)

Here, w̃ij ∈ R, and so that w̃02, w̃�1 �= 0. Besides, the matrix(
W
W̃

)
has to be invertible.

Let us assume that the finite-dimensional linear system{ ˙̄x(t) = Ax̄(t) + By�(t)
u�(t) = Cx̄(t) + Dy�(t),

(4)

with x̄ ∈ R
n and matrices A, B, C, and D constant and of

proper dimensions, is interconnected to (1) in z = �. In addi-
tion, we suppose that such a system is controllable, and this
implies that there exists a family of matrices K ∈ R

1×n for
which A + BK is Hurwitz. The aim of this letter is to deter-
mine the control input u0(t) so that the system resulting from

the interconnection of (1) with (4) is exponentially stable. The
problem discussed here is a particular case of the one tackled
in [7]. However, the main difficulties are still present. Among
them, the fact that the PDE (1) could be characterized by
the presence of a positive dissipative contribution, that the
wave variables ξ1 and ξ2 could be algebraically coupled, i.e.,
m12, m21 �= 0, and that (4) could be unstable or have a pos-
itive feedthrough term. The design procedure is illustrated in
Section III, while the stability analysis of the corresponding
control action is performed in Section IV.

III. CONTROL DESIGN

The design procedure relies on the definition of a finite-
dimensional system whose dynamics is related to (4) and
“embeds” the PDE model (1). The main difference with (4) is
that the control input is u0(t), which can be chosen to make
such a “new” system asymptotically stable. This methodol-
ogy is related to the reduction-based approach proposed in [8]
to stabilize linear systems with input delay, and extended
in [9] to deal with linear, lumped-parameter systems in port-
Hamiltonian form. It is easy to check, in fact, that the input
delay follows from (1) by imposing M = 0, and looking at the
dynamics of the ξ1 coordinate only. The stability of the original
system, i.e., the one resulting from the coupling of (1) with (4),
with the control input u0(t) computed below is investigated in
Section IV.

Let f1, f2 ∈ L2(0, �;Rn) to be determined later, and let

v(t) := x̄(t) +
∫ �

0

[
f1(z)ξ1(t, z) + f2(z)ξ2(t, z)

]
dz. (5)

Clearly, v ∈ R
n. Moreover, we have that

v̇ = Av + By� − A
∫ �

0

[
f1(z)ξ1(z) + f2(z)ξ2(z)

]
dz

+
∫ �

0
f1(z)

[
−λ

∂ξ1

∂z
(z) + m11ξ1(z) + m12ξ2(z)

]
dz

+
∫ �

0
f2(z)

[
λ

∂ξ2

∂z
(z) + m21ξ1(z) + m22ξ2(z)

]
dz,

where the dependence on t has been removed for the sake of
clearness. Noticing that∫ �

0
fi(z)

∂ξi

∂z
(z) dz = −

∫ �

0

dfi
dz

(z)ξi(z) dz

+ fi(�)ξi(�) − fi(0)ξi(0)

for i = 1, 2, and from (2), (3) and the last relation in (4) we
get that

w�1ξ1(�) + w�2ξ2(�) = Cx̄ + D
[
w̃�1ξ1(�) + w̃�2ξ2(�)

]
,

which implies that

ξ2(�) = (w�2 − Dw̃�2)
−1[Cx̄ + (Dw̃�1 − w�1)ξ1(�)

]
, (6)

and also that

y� = w̃�1ξ1(�) + w̃�2ξ2(�), (7)

where ξ2(t, �) is given by (6). From a physical point of view,
γ2 := w�2 − Dw̃�2 �= 0 in (6) means that the feedthrough term
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in (4) combined with the input / output pair defined in z = �

is not akin to a negative damper whose value matches the
“impedance” of the infinite-dimensional system (1).

With simple calculations, we obtain that

v̇ = Āv + B̄0ξ1(0) + B̄�ξ1(�) + C̄0ξ2(0) + I1 + I2, (8)

where

Ā := A + γ −1
2

[
w̃�2B + λf2(�)

]
C

B̄0 := λf1(0)

B̄� := w̃�1B − λf1(�) + γ1γ
−1
2

[
w̃�2B + λf2(�)

]
C̄0 := −λf2(0) (9)

with γ1 := Dw̃�1 − w�1, and

I1 :=
∫ �

0
ξ1(z)

[(
m11In − Ā

)
f1(z) + m21f2(z) + λ

df1
dz

(z)

]
dz

I2 :=
∫ �

0
ξ2(z)

[(
m22In − Ā

)
f2(z) + m12f1(z) − λ

df2
dz

(z)

]
dz, (10)

with In the n×n identity matrix. The design procedure is now
summarized in the following proposition.

Proposition 1: Let us consider (1) equipped with the
boundary sensing and actuation signals defined by (2) and (3),
and interconnected in z = � to (4). As far as the
input / output pairs (u0, y0) and (u�, y�) are concerned, assume

that w01, w̃02, w̃�1, w�2 �= 0, and that the matrix

(
W
W̃

)
is

invertible. Finally, let

�(ϕ) := γ −1
2

[
w̃�2B + λϕ

]
, ϕ ∈ R

n.

If there exists ϕ ∈ R
n so that f1, f2 ∈ C1(0, �;Rn) satisfy

d

dz

(
f1
f2

)
= λ−1	(ϕ)

(
f1
f2

)
(11)

where

	(ϕ) :=
(

A + �(ϕ)C − m11In − m21In

m12In − A − �(ϕ)C + m22In

)

and with

f1(�) = λ−1[w̃�1B + γ1�(ϕ)
]

f2(�) = ϕ

f2(0) = 0, (12)

and if there exists Kξ ∈ R
1×n such that

λ
[
f1(0)Kξ + γ −1

2 ϕC
]

= BK − γ −1
2 w̃�2BC (13)

for some K ∈ R
1×n that makes the matrix A + BK Hurwitz,

then (5) goes to 0 exponentially.
Proof: This result is a consequence of the previous com-

putations. In fact, if the functions f1 and f2 exist, from (10)
and (11) we have that I1 = I2 = 0, while from (9) and (12)
that B̄� = 0 and C̄0 = 0. Then, for the quantity defined in (5),
along the system trajectories we get that (8) holds, which in
this case becomes

v̇(t) =
{

A + γ −1
2

[
w̃�2B + λϕ

]
C

}
v(t) + λf1(0)ξ1(t, 0).

If (13) holds, by selecting

ξ1(t, 0) = Kξ v(t), (14)

we obtain that v̇ = (A + BK)v, with A + BK Hurwitz, and so
v(t) goes to 0 exponentially.

The idea of the previous proposition is to employ a stabi-
lizing law, i.e., a gain K, for (4) to obtain the one when the
PDE model (1) is present. Even if several choices for K are
possible, it is not immediate to find out when (11) is satisfied
for a Kξ , in particular when n > 1, and because of the gener-
ality of the boundary input / output mapping for (1) defined by
(2) and (3). However, since the goal is to let v(t) go to zero,
we can state the following simpler result.

Corollary 1: Under the conditions of Proposition 1 except
that the pair (A, B) of (4) is controllable, if the pair (Ā, B̄0).
with Ā and B̄0 defined in (9), is controllable, there exists Kξ ∈
R

1×n such that Ā + B̄0Kξ is Hurwitz, and so v(t) goes to 0
exponentially thanks to (14).

The previous results are instrumental for defining a control
action in z = 0 that makes the overall system exponentially
stable. To get the stabilizing u0(t), from (3) we have ξ2(t, 0) =
w̃−1

02 [y0(t) − w̃01ξ1(t, 0)], and then from (2)

u0(t) = w01ξ1(t, 0) + w02ξ2(t, 0)

=
(

w01 − w02w̃−1
02 w̃01

)
ξ1(t, 0) + w02w̃−1

02 y0(t).

Finally, from (14), the control action turns out to be

u0(t) = K′v(t) + Kyy0(t)

= K′x̄(t) + Kyy0(t) + K′
∫ �

0

[
f1(z)ξ1(t, z) + f2(z)ξ2(t, z)

]
dz,

(15)

where Ky := w02w̃−1
02 and K′ := (w01 − w̃01Ky)Kξ . Note

that (15) requires the knowledges of the full state of (1), so
the development of observers and how to use their estimate
in (15) is a fundamental topic to investigate.

Remark 1: The main difficulty in the design procedure is
to find ϕ ∈ R

n so that f1 and f2 exist. This problem cannot
be solved explicitly except in some cases (e.g., when M = 0
or diagonal). Since the ODE (11) is linear, of order 2n, and
with the conditions in z = � for (f1, f2) parameterized by ϕ,
the value of ϕ follows by requiring that f2(0) = 0, which is
equivalent to impose n independent constraints. Such a ϕ can
be computed numerically with few lines of code.

Remark 2: The control law (15) has the same expression
of the ones obtained in [5], [6], [14]–[16] thanks to passivity
arguments, and in [7] by relying on the backstepping trans-
formation. So, there are no relevant differences as far as its
“practical” implementation is concerned. Besides, the gains
that appear in (15) are obtained in a simple way, similar as in
the design methodologies based on passivity arguments. On
the other hand, if compared to approaches that exploit a back-
stepping transformation, the computations are less demanding,
but at the same time, the stability result is not so general, since
exponential stability has been proved only for a smaller class
of systems.
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IV. STABILITY ANALYSIS

The aim is to study under which conditions the control law
(15) makes the system obtained from the interconnection of
(1) with (4) exponentially stable. The analysis is based on
Lyapunov arguments, and relies on [11]. Stability is achieved
thanks to (15) when two conditions are met. The first one
is that in the infinite-dimensional system (1) the ξ1 and ξ2
coordinates are not “strongly coupled” and � is not “large”.
Secondly, when the feedthrough term in (4) combined with
the definition of the input and output signals (2) and (3) in
z = � generates a “sufficiently small” algebraic coupling. More
details are given in Remark 3 after the Lyapunov analysis.

Let us consider the Lyapunov function

V1(v(t)) := 1

2
vT(t)Qvv(t), with Qv = QT

v > 0. (16)

From Proposition 1 and the Lyapunov Theorem for finite-
dimensional linear systems, we can select Qv so that

V̇1(v(t)) ≤ −δ1vT(t)v(t) (17)

for some δ1 > 0. On the other hand, for the PDE model (1),
we take the Lyapunov function

V2(ξ1(t, ·), ξ2(t, ·)) = 1

2

∫ �

0

[
q1(z)ξ

2
1 (t, z) + q2(z)ξ

2
2 (z)

]
dz,

(18)

where q1, q2 ∈ L2(0, �;R≥0) are specified later. Here, R≥0
denotes the set of positive real numbers. As in [11], we get

V̇2 = λ

∫ �

0

[
−q1(z)ξ1(z)

∂ξ1

∂z
(z) + q2(z)ξ2(z)

∂ξ2

∂z
(z)

]
dz

+
∫ �

0

[
m11q1(z)ξ

2
1 (z) + m22q2(z)ξ

2
2 (z)

]
dz

+
∫ �

0

[
m12q1(z) + m21q2(z)

]
ξ1(z)ξ2(z) dz. (19)

By integrating by parts, the first term in (19) becomes

λ

2

∫ �

0

[
dq1

dz
(z)ξ2

1 (z) − dq2

dz
(z)ξ2

2 (z)

]
dz

+ λ

2

[
q1(0)ξ2

1 (0) − q1(�)ξ
2
1 (�) − q2(0)ξ2

2 (0)

+ q2(�)ξ
2
2 (�)

]
. (20)

Now, from (2), (3), (4) and (5), we get that

u� = w�1ξ1(�) + w�2ξ2(�)

= C

{
v −

∫ �

0

[
f1(z)ξ1(z) + f2(z)ξ2(z)

]
dz

}
+ Dy�,

which combined with (7) gives

γ2ξ2(�) = γ1ξ1(�) + Cv −
∫ �

0

[
f̃1(z)ξ1(z) + f̃2(z)ξ2(z)

]
dz

where f̃i(z) := Cfi(z). From the Young’s inequality, i.e., 2ab ≤
εa2 + ε−1b2 for all a, b, ε ∈ R and ε > 0, we obtain

γ 2
2 ξ2

2 (�) ≤ (1 + ε1 + ε2)γ
2
1 ξ2

1 (�) +
(

1 + ε−1
1 + ε−1

3

)
(Cv)2

+
(

1 + ε−1
2 + ε3

)
×

{∫ �

0

[
f̃1(z)ξ1(z) + f̃2(z)ξ2(z)

]
dz

}2

, (21)

for any ε1, ε2, ε3 > 0, where the integral can be bounded by

2
∫ �

0

[
f̃ 2
1 (z)ξ2

1 (z) + f̃ 2
2 (z)ξ2

2 (z)
]
dz.

We are now ready to state the following proposition that pro-
vides sufficient conditions for the exponential stability of the
closed-loop system.

Proposition 2: Given the control law (14)-(15) obtained in
Proposition 1, let q1, q2 ∈ C1(0, �;R≥0) so that

dq1

dz
(z) < 0

dq2

dz
(z) > 0

−λ2 dq1

dz
(z)

dq2

dz
(z) >

[
m12q1(z) + m21q2(z)

]2 (22)

for all z ∈ [0, �]. If there exists ε1, ε2, ε3 > 0, such that for
the functions q1 and q2 for which (22) holds we have that

2
(

1 + ε−1
2 + ε3

)
q2(�)f̃

2
i (z) < γ 2

2 (δ2 − mii)qi(z) (23)

for i = 1, 2 and all z ∈ [0, �], and that

γ 2
1 (1 + ε1 + ε2)q2(�) ≤ γ 2

2 q1(�), (24)

then the closed-loop system is exponentially stable.
Proof: Based on (16) and (18), we consider the Lyapunov

function V(x̄, ξ) := κV1(v(x̄, ξ)) + V2(ξ), where κ ∈ R is a
positive constant. In [11, Sec. 5], the existence of q1 and q2
such that (22) holds for a PDE in the same form as (1) has
been proved. So, there exists δ2 > 0 such that

λ

2

(
dq1

dz
ξ2

1 − dq2

dz
ξ2

2

)
+ (m12q1 + m21q2)ξ1ξ2

≤ −δ2

(
q1ξ

2
1 + q2ξ

2
)
. (25)

Besides, starting from (19) and (20), we can write that

V̇2 ≤ λ

2
q1(0)

(
Kξ v

)2 −
∫ �

0
(δ2 − m11)q1(z)ξ

2
1 (z) dz

−
∫ �

0
(δ2 − m22)q2(z)ξ

2
2 (z) dz

− λ

2

[
q1(�)ξ

2
1 (�) − q2(�)ξ

2
2 (�)

]
,

where (14) has been taken into account. With an eye on (21),
we get that

q2(�)ξ
2
2 (�)−q1(�)ξ

2
1 (�) ≤ [

(1+ε1+ε2)γ
2
1 γ −2

2 q2(�)−q1(�)
]
ξ2

1 (�)

+ q2(�)γ
−2
2

(
1+ε−1

1 +ε−1
3

)
(Cv)2+q2(�)γ

−2
2

(
1+ε−1

2 +ε3

)

×
{∫ �

0

[
f̃1(z)ξ1(z)+f̃2(z)ξ2(z)

]
dz

}2

≤ q2(�)γ
−2
2

(
1+ε−1

1 +ε−1
3

)
(Cv)2+ q2(�)γ

−2
2

(
1+ε−1

2 +ε3

)

×
{∫ �

0

[
f̃1(z)ξ1(z)+f̃2(z)ξ2(z)

]
dz

}2
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because of (24). From (17) and (23), and if κ is so that

2
δ1κ

λ
> q1(0)

∥∥Kξ

∥∥2 + q2(�)γ
2
2

(
1 + ε−1

1 + ε−1
3

)
‖C‖2

we get that V̇(x̄(t), ξ(t)) ≤ −
V(x̄(t), ξ(t)) for some 
 > 0,
which finally proves the exponential stability.

Remark 3: As already pointed out, (22) does not pose par-
ticular constraints on the existence of q1 and q2 that appear in
the Lyapunov analysis. The challenge is to meet (23) and (24).
If m12 = m21 = 0, i.e., the ξ1 and ξ2 coordinates are not
algebraically linked, q1 and q2 can be chosen so that (25) is
satisfied for an arbitrarily large δ2. So, (23) holds for all mii,
i = 1, 2, and this implies that even in-domain instability in the
PDE (1) does not cause any particular issue. Besides, as far
as relation (24) is concerned, note that (4) can be re-written
in terms of the (boundary) input ξ1(t, �) and output ξ2(t, �) as{

ẋ(t) = Aξ x(t) + Bξ ξ1(t, �)
ξ2(t, �) = Cξ x(t) + Dξ ξ1(t, �),

(26)

where Aξ := A + w̃�2γ
−1
2 BC, Bξ := (w̃�1 + w̃�2γ

−1
2 γ1)B,

Cξ := γ −1
2 C, and Dξ := γ −1

2 γ1. From (24) and as in
[11, Th. 2], there is an upper bound on the absolute value
of feedthrough term Dξ that depends on the functions q1 and
q2 evaluated in z = �, and for which exponential convergence
is achieved. More precisely, we get that D2

ξ < q1(�)q
−1
2 (�).

This fact is intrinsic in all the stability results that rely on
quadratic functionals in the form (18). It is important to note
that, in general, design methods for linear hyperbolic systems
based on the backstepping transformation such as [7] do not
suffer from such limitations.

V. NUMERICAL EXAMPLES

In this section, numerical results that illustrate pros and cons
of the design methodology discussed in Sections III and IV are
presented. Starting from the discussion in Remark 3, the main
properties of the control law (15) are better investigated once
for the system interconnected in z = �, the expression (26)
is employed. As a matter of fact, the control input takes the
simpler expression (14). For simplicity, we assume that n =
1, and that the initial condition for the closed-loop system
is (x̄(0), ξ1(0, z), ξ2(0, z)) = (x̄�, ξ1�, ξ2�), so the state of the
PDE is constant along the spatial domain in t = 0. Based on
the second relation in (26), the condition ξ2� = Cξ x̄� + Dξ ξ1�

has to hold.
In the numerical examples presented below, we suppose that

ξ1� = −ξ2� = 1, while for the PDE model (1), we have that
λ = 0.33 and � = 2. A finite difference scheme has been
adopted for its simulation, [17, Ch. 1]. Finally, as far as (26)
is concerned, we set Aξ = 0.3, Bξ = Cξ = 0.5 and Dξ = 0.8.
Note that such a system is unstable. In the first simulation, the
ξ1 and ξ2 coordinates in (1) are not algebraically linked since
m12 = m21 = 0. Besides, we have assumed that m11 = 0.2
and m22 = −0.1. As discussed in Corollary 1, since it is
obtained that Ā = 0.30 and B̄0 = 0.2727, the control gain
Kξ = −10 in (14) makes the v dynamics asymptotically stable.
The behavior of the closed-loop system is summarized by the
graphs in Fig. 1. As pointed out in Remark 3, even if the
finite-dimensional linear system is unstable, the PDE model

Fig. 1. In (1), we have m12 = m21 = 0, m11 = 0.2, and m22 = −0.1,
while in (14) we have Kξ = −10.

(1) does not prevent to exponentially stabilize the system due
to the lack of cross-coupling between the wave variables. This
result is in line with what has been presented, e.g., in [9],
where just the pure delay on the input signal has been taken
into account.

The case in which the ξ1 and ξ2 coordinates are algebraically
linked has been taken into account in a second simulation. All
the parameters remain the same as in the previous case, with
the exception of m12 and m21 that have been set equal to 0.35
and −0.2, respectively. The response of the closed-loop system
with such a new choice in the parameters is reported in Fig. 2.
Since Ā = 0.4467 and B̄0 = 0.1106, no change in the Kξ

gain is necessary. It is immediate to note how coupling causes
a performance degradation: for example, the steady-state is
reached after a longer time interval. The anti-stable behavior
in the ξ1 coordinate associated to the m11 coefficient, prevents
to effectively compensate the effect due to the ξ2 dynamics.
In fact, if the m12 coefficient is increased, e.g., to 0.7, the
closed-loop system is unstable, and this fact is in line with the
analysis in Remark 3. However, since Ā = 0.5814 and B̄0 =
0.0505, asymptotic stability of the v dynamics is guaranteed
with Kξ = −100, and then also for the overall system. The
results are reported in Fig. 3. The oscillatory behavior, e.g., in
the evolution of x̄ reveals that the system is close to instability.

VI. CONCLUSION AND FUTURE WORK

This letter contribution is a design procedure of simple
control actions for one-dimensional, distributed parameter
port-Hamiltonian systems associated to the dynamics of cou-
pled transport equations. Such a PDE model is interconnected
to an unstable finite-dimensional linear system at its free end,
is equipped with a control input at the other side, and can
also have in-domain anti-damping. To get the stabilizing law,
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Fig. 2. In (1), we have m12 = 0.35 and m21 = −0.2, while m11, m22
and Kξ are the same as in Fig. 1.

Fig. 3. In (1), we have m12 = 0.7 and Kξ = −100, while m11, m21 and
m22 are the same as in Fig. 2.

a new finite-dimensional system that embeds the response of
the infinite-dimensional dynamics, and has the same input of
the original one is obtained. The key result has been to show
under which conditions the exponential stability of this lat-
ter system implies that the same property is valid for the
initial one.

Open Access funding provided by ‘Università di Bologna’ within the CRUI-CARE Agreement

Future researches are mainly focused on two topics. Since
the feedback law relies on the knowledge of the full state of
the PDE (1), the first one deals with observer design whose
estimate has to be employed in the control action. The second
subject, instead, is about the generalization of the proposed
synthesis methodology to a wider class of boundary con-
trol systems (possibly nonlinear) in port-Hamiltonian form,
for which the instability source is either at the boundary of
the spatial domain, and inside the domain itself. Exponential
convergence is expected to be achieved under less restrictive
conditions than the ones obtained here.
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