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Abstract—Behavior trees represent a hierarchical and
modular way of combining several low-level control
policies into a high-level task-switching policy. Hybrid
dynamical systems can also be seen in terms of task
switching between different policies, and therefore several
comparisons between behavior trees and hybrid dynamical
systems have been made, but only informally, and only
in discrete time. A formal continuous-time formulation
of behavior trees has been lacking. Additionally, conver-
gence analyses of specific classes of behavior tree designs
have been made, but not for general designs. In this let-
ter, we provide the first continuous-time formulation of
behavior trees, show that they can be seen as discontin-
uous dynamical systems (a subclass of hybrid dynamical
systems), which enables the application of existence and
uniqueness results to behavior trees, and finally, provide
sufficient conditions under which such systems will con-
verge to a desired region of the state space for general
designs. With these results, a large body of results on
continuous-time dynamical systems can be brought to use
when designing behavior tree controllers.

Index Terms—Autonomous systems, behavior trees, sta-
bility of hybrid systems, switched systems.

I. INTRODUCTION

BEHAVIOR trees (BTs) are a way to combine a set of
controllers (policies) into higher-level controllers in a

hierarchical and modular way. In this letter, we give the first
continuous-time representation of BTs and provide sufficient
conditions for convergence of general BTs.

Modularity is a key tool to handle complexity in software
systems, as it enables different components to be developed
and tested individually, and BTs have been shown to be opti-
mally modular in comparison to other decision structures [1].
Hierarchical modularity, where each module may contain sub-
modules, is also beneficial since a single level of modules in a
large system either leads to very large and complex modules,
or a very large number of smaller modules. Additionally, a
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hierarchical structure is more natural in many applications, as
many tasks can be divided into subtasks in a hierarchical way,
such as when a robot has to fetch an object, which might
include subtasks such as navigation, door opening, object
grasping, and so on.

Improved modularity is the reason that BTs were conceived
in the first place [2] as an equally expressive [3] alternative
to finite-state machines (FSMs) in the design of non-player
characters in video games. In this virtual setting, the world
is predictable by design and many low-level policies can be
developed with relative ease. Thus, game developers started to
put together large sets of low-level policies earlier than robot
developers and therefore had a stronger need for modular tools.
However, the interest in BTs from the robotics community has
increased over time and they are now used in both open-source
middleware, such as the Robotic Operating System (ROS)1

and innovative industry software from Boston Dynamics2 and
Nvidia.3

Even though there is an increasing interest in BTs from
the robotics and AI communities (see the recent survey
in [4] with over 180 papers) there is still no continuous-
time formulation available. The need for such a formulation
is clear from the fact that almost all major branches of con-
trol theory, from linear systems to optimal control, have been
developed for both continuous-time and discrete-time systems,
but BTs have so far only had a discrete-time formulation.
With the proposed continuous-time model, continuous-time
control theory results, such as sliding mode control, can now
be used to analyze BT designs. To date, the only efforts
towards continuous-time models have either been informal
comparisons of BTs and hybrid dynamical systems (HDS),
considering discrete-time BTs and discrete-time HDS, or dif-
ferent ways of doing event-based ticking, or letting the tick
frequency go to infinity [5]–[8].

A key topic in control theory is stability and convergence
to a particular equilibrium point, or region of the state space.
For a BT, this translates to reaching the so-called success
region, a state where the BT returns success. Important results
on sufficient conditions for convergence to the success region

1https://navigation.ros.org/configuration/packages/configuring-bt-navigator.
html

2https://dev.bostondynamics.com/docs/concepts/autonomy/missions_
service

3https://docs.nvidia.com/isaac/isaac/packages/behavior_tree/doc/behavior_
trees.html
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have been presented in [9], [10], but in both cases the analysis
was limited to a particular subclass of BTs. In this letter we
propose sufficient conditions that can be use to analyze any
BT design.

The main contributions of this letter are as follows. We
provide the first formal formulation of BTs in continuous time
(Definition 1). We show that the proposed formulation can be
seen as a discontinuous dynamical system (DDS) (Theorem 2),
with corresponding results regarding existence and uniqueness
(Theorem 3). We provide sufficient conditions under which a
BT execution will converge to a desired region of the state
space (Theorem 4).

The organization of this letter is as follows. In Section II,
we discuss how our contributions differ from those presented
in related work. In Section III, we provide a brief overview of
tools for analyzing ordered trees and results regarding DDSs.
Then, in Section IV, we formulate continuous-time BTs and
connect them to DDSs in Section V. Finally, in Section VI,
we present a convergence proof and in Section VII, we state
our conclusions.

II. RELATED WORK

In this section, we will describe related work from a number
of different aspects.

Continuous-Time: In [6], a continuous-time BT is informally
described as a discrete-time BT with an infinite tick rate, as a
means to compare BTs to HDSs. In [8], instead of querying
behaviors at a certain tick rate, behaviors run continuously and
notify superior behaviors when their status changes. Our work
addresses the same problems; however, our work does so on
the basis of a formal state space definition of continuous-time
BTs (Definition 1).

Hybrid Dynamical Systems: The first comparison of BTs
to HDSs appears to have been made in [5]. Therein, it was
described how BTs modularly represent HDSs and implicitly
encode explicit state transitions through its tree structure. This
discussion continued along the same lines in [7] and equiv-
alence notions between discrete-time BTs and HDSs were
presented in [6].

In these works, the interpretation of an HDS is such that a
discrete state determines which behavior to use. However, as
we will show, a BT is aptly described by a DDS [11], where
the state’s presence in certain regions solely determines which
behavior is used. Thus, we go beyond related work by not only
showing that BTs more closely correspond to DDSs [11], but
we also do this formally (Theorem 2). As a result, we also
address existence and uniqueness of solutions (Theorem 3).

Convergence Analysis: It was shown in [7] that the com-
position of behaviors in Fallback BTs is similar to the idea
of sequential composition [12]. Therein, sufficient conditions
for convergence to a goal state were presented formally in
terms of the attraction region of individual behaviors. These
concepts were applied in [13] to guarantee BT performance
in the presence of black-box controllers.

A version of BTs called Robust Logical-Dynamical Systems
was proposed in [9], which uses an Implicit-Sequence BT
structure like in [7]. Therein, they show convergence in

Fig. 1. A thermostat state-feedback controller modeled by a BT (top),
and the phase portrait of its corresponding discontinuous dynamical
system ẋ = f (x, u0(x)) = u0(x) (bottom). If x > T then x ∈ �4 and
ẋ = u4(x) = −1. Conversely, if x ≤ T then x ∈ �3 and ẋ = u3(x) = 1,
see Theorem 2.

the presence of uncontrolled behavior changes. Our work is
related to all of the above in that we prove convergence in
BTs (Theorem 4); however, our work is different in the sense
that the results can be applied to general BT structures, not
just special classes.

A concept of [12] not used in the above works is the “pre-
pares graph”, a directed graph of transitions induced by the
composition of policies. In [12], this graph is used to con-
struct a totally ordered subgraph of policies that lead to the
goal state. This construction was extended in [14] to allow
for multiple controllers in the subgraph to overlap in order to
attain more flexibility in the presence of disturbances, thereby
forming a partially ordered subgraph. We will use this notion
of a prepares graph as a tool to prove the convergence of
general BTs.

III. PRELIMINARIES

In this section we will first describe how two partial orders
can be used for analyzing ordered trees, and then present some
results on DDSs.

A. Ordered Trees

As we will see below, BTs are ordered trees, and as was
discussed in [15], ordered trees can either be seen as graphs,
as drawn in Fig. 1, or as a set of vertices with two partial
orders, the so-called parent and sibling orders.

A directed graph is often defined in terms of G = (V, E),
where V is the vertices and E ⊂ V2 is the edges. If the graph
has no cycles and no two distinct paths from a starting vertex
meet at the same ending vertex, it is called a tree; if one
vertex is designated as the root, it is called rooted. Given a
root, the usual concepts of parent/child can be applied to each
edge, with the parent being closer to the root and the child
further away. To create an ordering between siblings (children
of the same parent) the vertices can be embedded in a plane
(as drawn on a paper) and the order given by clockwise or
left/right positions. In Fig. 1, the root would be vertex 0, and
its two children vertex 1 and 4 (in that order) and so on.

In this letter, we will use the graph model for BTs, but
we will also make use of order theory for analyzing ordered



SPRAGUE AND ÖGREN: CONTINUOUS-TIME BTs AS DISCONTINUOUS DYNAMICAL SYSTEMS 1893

trees, as described in [15]. As we will show, this formulation
will support the analysis. We now use (V,≤S,≤P) to define
the tree, where V is the vertex set as above, and ≤S,≤P are
two partial orders on V , called the sibling and parent orders,
respectively.

A partial order ≤ on a set is a homogeneous binary relation
≤⊂ V2 (if (x, y) ∈≤ we write x ≤ y) that is reflexive (∀x ∈
V : x ≤ x), antisymmetric (∀x, y ∈ V : (x ≤ y) ∧ (y ≤ x) =⇒
x = y), and transitive (∀x, y, z ∈ V : (x ≤ y) ∧ (y ≤ z) =⇒
x ≤ z). The order is partial, since two elements x, y might not
satisfy x ≤ y or y ≤ x. If so, x, y are said to be incomparable
by ≤. If all elements are comparable, the order is said to be a
total order, instead of a partial order. We write x < y if x ≤ y
and x �= y, and for the reversed order ≥ we write y ≥ x if
x ≤ y.

In Fig. 1, we have that 1 ≤S 4, since 1 and 4 are siblings
and 1 is to the left of 4. Note that 0 and 1 are incomparable
by ≤S, since they have no sibling relation. Instead, they are
comparable by ≤P, with 0 ≤P 1. Furthermore, 0 and 3 are
comparable by ≤P, with 0 ≤P 3 by transitivity, but 0 and 3
are incomparable by ≤S.

We can also combine orders into new orders as

≤A ◦ ≤B :=
{
(x, z) ∈ V2|∃y ∈ V : (x ≤A y) ∧ (y ≤B z)

}
. (1)

In this way, we can define a generalized uncle relation from
the sibling and parent relations as <LU:=<S ◦ ≤P (left uncle)
>RU :=>S ◦ ≤P (right uncle). These relations include several
steps in both sibling and parent directions, thus including sib-
lings, uncles, great uncles, great-great uncles, and so on. In
Fig. 1, we have that 4 >RU 2 and 4 >RU 3 because 4 is a
right uncle of 2 and 3.

Independently of the graph or ordered set representations,
we will use the parent map p : V → V , mapping a vertex to
its parent.

B. Dynamical Systems Theory

In this section, we will remind readers of a result from [11]
on the existence and uniqueness of the solutions to DDSs. The
notation used here will be used in the following sections to
show how BTs fit into this formalism.

Theorem 1 (Existence and Uniqueness [11, Proposition 5,
p.53]): Let X : R

n → R
n be a piecewise continuous vector

field, with R
n = D1∪D2. Let SX = ∂D1 = ∂D2, where ∂ is the

boundary operator, be the set of points at which X is discon-
tinuous, and assume that SX is a C2-manifold. Furthermore,
assume that, for i ∈ {1, 2}, X|D̄i

is continuously differentiable
on Di and X|D̄1

− X|D̄2
is continuously differentiable on SX ,

where X|D̄i
is the continuous extension of the restriction of X

to D̄i. If, for each x ∈ SX , either X|D̄1
points into D2 or X|D̄2

points into D1, there will exist a unique Filippov solution to
ẋ = X(x) starting from each initial condition.

IV. CONTINUOUS-TIME BTS

In this section, we will define continuous-time BTs, and see
how the example of Fig. 1 forms a continuous-time controller.

As noted above, BTs are a hierarchical and modular way
of combining controllers into new controllers. In this letter we

let all controllers be state-feedback controllers, i.e., functions
from the state space R

n to some control space R
m. If one

wants to include some internal dynamics, such as a Kalman
filter, in the controller, the state space can be extended.

Definition 1 (Behavior Tree): A function Ti : Rn → R
m ×

{R,S ,F }, defined as

Ti(x) := (ui(x), ri(x)), (2)

where i ∈ V is an index, ui : Rn → R
m is a controller, and

ri : Rn → {R,S ,F } is a metadata function, describing the
progress of the controller in terms of the outputs: running (R),
success (S ), and failure (F ). Define the metadata regions for
x ∈ R

n as the running, success, and failure regions:

Ri := {x : ri(x) = R},
Si := {x : ri(x) = S }, Fi := {x : ri(x) = F }, (3)

respectively, which are pairwise disjoint and cover Rn.
The metadata can intuitively be interpreted as follows. If x ∈

Si, Ti has either succeeded with whatever it was supposed to
do (such as opening a door), or the goal was already achieved
to begin with (the door was open). Either way, it might make
sense to execute another controller to achieve some other goal
(perhaps a goal that was intended to be achieved after opening
the door).

If x ∈ Fi, Ti has either failed (the door to be opened turned
out to be locked), or has no chance of succeeding (the door is
out of reach from the current position). Either way, it might
make sense to execute another controller (either to open the
door in some other way or to achieve a higher-level goal in a
way that does not involve opening the door).

If x ∈ Ri, it is too early to determine if Ti will succeed
or fail. In most cases, it makes sense to continue executing
Ti, but it could also be reasonable to change the controller if
some other action is more important (e.g., low battery level
indicates the need for recharging).

Definition 2 (Continuous BT Execution): Given some
dynamical system f : Rn ×R

m → R
n that is to be controlled,

and assuming the root of the BT is T0 (has index 0), we have

ẋ = f (x, u0(x)), (4)

where u0(x) is given by (2).
Below we will describe the properties of this execution,

and in particular show that it can be seen as a DDS, with
corresponding results regarding the existence and uniqueness
of solutions.

As described above, knowing if a lower-level controller
failed, succeeded, or is still trying (running) is crucial for a
higher-level controller to decide if another sequence should be
initiated, or if some kind of fallback action needs to be invoked
to achieve the desired outcome. These two cases are captured
by the two fundamental BT composition types: Sequence and
Fallback. The result of these behavior compositions is sim-
ply another BT that satisfies (2). This is what gives BTs their
hierarchical modularity.

A Sequence is used to combine subtrees that are to be exe-
cuted in order, where each one requires the success of the
previous action. If any subtree fails, the whole sequence fails.
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Fig. 2. An example BT containing two composition nodes: a Sequence
(node 0) and a Fallback (node 2).

In Fig. 2, node 0 is a Sequence. First, node 1 is executed to
get into the kitchen, and then node 2 is executed to turn one of
the lamps on. But it only makes sense to try turning the lamps
on if the action of moving to the kitchen succeeds. Formally,
a Sequence is defined as follows.

Definition 3 (Sequence): A function Seq that composes an
arbitrarily finite sequence of M ∈ N BTs into a new BT as

Seq[T1, . . . ,TM](x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TM(x) if x ∈ S1 ∩ . . . SM−1
...

...

T2(x) else-if x ∈ S1
T1(x) else.

(5)

If Ti = Seq[T1, . . . ,TM], then j, k ∈ {1, . . . , M} are the chil-
dren of i, such that p(j) = i, and are related as siblings, by
j ≤S k, if j ≤ k.

As can be seen in (5), a subtree Ti is only executed if the
state is in the success region of the siblings to the left Tj, j < i.

A Fallback on the other hand only executes the next subtree
if the previous one fails. If any subtree succeeds, the Fallback
returns success, but it only returns failure if all subtrees fail. In
Fig. 2, node 2 is a Fallback, and the two subtrees correspond
to turning on either lamp A or lamp B.

Definition 4 (Fallback): A function Fal that composes an
arbitrarily finite sequence of M ∈ N BTs into a new BT as

Fal[T1, . . . ,TM](x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TM(x) if x ∈ F1 ∩ . . . FM−1
...

...

T2(x) else-if x ∈ F1
T1(x) else.

(6)

If Ti = Fal[T1, . . . ,TM], then j, k ∈ {1, . . . , M} are the chil-
dren of i, such that p(j) = i, and are related as siblings, by
j ≤S k if j ≤ k.

The metadata regions (3) of the Sequence and Fallback com-
positions are given by the definition, but can also be explicitly
computed in terms of the children regions and the orders
<S,<P as follows.

Lemma 1: The metadata regions of a Sequence Ti can be
computed from the children metadata regions as follows:

Ri =
⋃

p(j)=i

⎛
⎝Rj

⋂
k<Sj

Sk

⎞
⎠,

Si =
⋂

p(j)=i

Sj, Fi =
⋃

p(j)=i

⎛
⎝Fj

⋂
k<Sj

Sk

⎞
⎠. (7)

Proof: A straightforward application of (3) and (5). The
running region of the sequence is the running region of the

first child and the intersection of the success region of the first
child with the running region of the second child and so on.
The failure region works similarly, whereas the success region
is the intersection of all the children success regions, as the
sequence requires all children to succeed to return success.

Lemma 2: The metadata regions of a Fallback Ti can be
computed from the children metadata regions as follows

Ri =
⋃

p(j)=i

⎛
⎝Rj

⋂
k<Sj

Fk

⎞
⎠,

Si =
⋃

p(j)=i

⎛
⎝Sj

⋂
k<Sj

Fk

⎞
⎠, Fi =

⋂
p(j)=i

Fj. (8)

Proof: A straightforward application of (3) and (6). The run-
ning region is similar as for the Sequence above. The success
region is similar to the running region, but the failure region is
different since it requires all children to fail before returning
failure.

V. BTS AS DISCONTINUOUS DYNAMICAL SYSTEMS

We need to show that the BT execution of (4) can be seen
as a DDS. Thus we need to identify the operating regions
�i of the BT, i.e., the regions where the root BT executes a
particular subtree T0 = Ti. As we will see, the �i will depend
on both the subtree Ti itself, and its place in the surrounding
BT. But, before we can define the operating region �i we need
to define the influence region Ii and the success and failure
pathways S,F.

Informally, the influence region Ii is the region where the
design of Ti influences the execution of T0, either by return-
ing, e.g., failure so another node executes or by executing itself
(thus we will have Ii ⊃ �i).

We will be using the so-called left uncle (LU) order
<LU:=<S ◦ ≤P defined in Section III. Note that Tj : j <LU i
are left siblings of either i or any ancestors of i. For a state to
be in Ii it needs to be in the success region of the left uncles
that have a Sequence as a parent, and in the failure region of
the left uncles that have a Fallback as a parent. Formally we
write the following.

Definition 5 (Influence Region): A subset of the state space
defined for Ti as

Ii :=
⋂

Sj

j<LUi
Tp(j)is Seq

∩
⋂

Fj

j<LUi
Tp(j)is Fal.

(9)

In the example of Fig. 2, assuming the state space is Rn, we
have that I0 = R

n, I1 = R
n, I2 = S1, I3 = S1, and I4 = S1∩F3.

Thus, a change in T1 can influence T0 in any part of the state
space, but a change in T4 can only influence T0 if x ∈ S1∩F3,
i.e., if going to the kitchen was successful and turning on lamp
A failed.

If the state is in Ii and Ti returns running, it will execute.
But, it will also execute in the case when Ti returns success
or failure and that same metadata is progressed all the way up
to the root. Thus we need to identify what subtrees are on the
so-called success and failure pathways. We now make use of
the right uncle (RU) order that was also defined in Section III,
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>RU :=>S ◦ ≤P. Similarly, Tj : j >RU i are right siblings of
either i or any ancestors of i.

Informally, success pathways are vertices i such that there
are no right uncles, with Sequence parents, that can take over
the execution when Ti returns success. Similarly, failure path-
ways are vertices i such that there are no right uncles, with
Fallback parents, that can take over the execution when Ti

returns failure. We call them pathways since if i is on the
pathway then so is every other vertex on the path from i to
the root. Formally, we write the following.

Definition 6 (Success and Failure Pathways):

S := {
i ∈ V| � ∃j ∈ V : (j >RU i) ∧ (

Tp(j) is Seq
)}

(10)

F := {
i ∈ V| � ∃j ∈ V : (j >RU i) ∧ (

Tp(j) is Fal
)}

, (11)

respectively.
In the example of Fig. 2, we have that S = {0, 2, 3, 4},

since success from these nodes leads to success of the entire
BT, and only success in going to the kitchen leads to other
actions. Similarly, F = {0, 1, 2, 4}, since failure from these
nodes leads to failure of the entire BT, and only a failure in
turning on lamp A can be handled (by turning on lamp B).

We are now ready to define the operating regions.
Definition 7 (Operating Region): A subset of the state

space defined for Ti as

�i :=

⎧
⎪⎪⎨
⎪⎪⎩

Ii ∩ (Ri ∪ Si ∪ Fi) = Ii if i ∈ S ∩ F
Ii ∩ (Ri ∪ Si) else-if i ∈ S
Ii ∩ (Ri ∪ Fi) else-if i ∈ F
Ii ∩ Ri else.

(12)

In the example of Fig. 2, we have that �0 = R
n, �1 =

R1 ∪ F1, �2 = S1 ∩ (R2 ∪ S2), �3 = S1, �4 = S1 ∩ F3.
We will now show that a BT’s operating region is partitioned

by its childrens’ operating regions.
Lemma 3: Operating regions of siblings are pairwise dis-

joint, �i ∩ �j = ∅ for all i <S j, and cover their parent’s
operating region, �i = ⋃

p(j)=i �j.
Proof: As shown in [7], compositions can be expressed

as follows: Seq[T1,T2,T3] = Seq[T1, Seq[T2,T3]] and
Fal[T1,T2,T3] = Fal[T1, Fal[T2,T3]]. Thus, it is sufficient
to analyze the case of two children.

Let 0, 1, 2 ∈ V such that 1 <S 2 and p(1) = p(2) = 0. We
will now apply each case of (12) to �1, assuming 2 ∈ S∩F,
which implies 0 ∈ S ∩ F according to (10) and (11).

The first case is ruled out because 1 ∈ S ∩ F implies that
� ∃j : j >RU 1 and we know that 2 >RU 1.

In the second case, 1 ∈ S \ F implies that � ∃j : (j >RU 1)

∧(Tp(j) is Seq), thus node 0 must be a Fallback. With the
application of (8), (9), and (12), we then have �0 = I0, �1 =
I1 ∩ (R1 ∪ S1) = I0 ∩ (R1 ∪ S1), and �2 = I2 = I0 ∩ F1.
From this, we see that �1 ∩�2 = I0 ∩ (R1 ∪ S1)∩ I0 ∩ F1 = ∅
because {R1, S1, F1} are pairwise disjoint by (3). Additionally,
�1 ∪�2 = (I0 ∩ (R1 ∪ S1))∪ (I0 ∩ F1) = I0 ∩ (R1 ∪ S1 ∪ F1) =
I0 = �0.

In the third case, 1 ∈ F \ S implies that � ∃j : (j >RU 1)

∧(Tp(j) is Fal) thus node 0 must be a Sequence. With the
application of (7), (9), and (12), we then have �0 = I0, �1 =
I1 ∩ (R1 ∪ F1) = I0 ∩ (R1 ∪ F1), and �2 = I2 = I0 ∩ S1.
From this, we see that �1 ∩�2 = I0 ∩ (R1 ∪ F1)∩ I0 ∩ S1 = ∅

because {R1, S1, F1} are pairwise disjoint by (3). Additionally,
�1 ∪�2 = (I0 ∩ (R1 ∪ F1))∪ (I0 ∩ S1) = I0 ∩ (R1 ∪ S1 ∪ F1) =
I0 = �0.

The fourth case’s proof follows similarly with �1 = I1∩R1.
The proofs for the cases of (12) for �2 are also similar.

We will now formally prove that the state’s presence in �i

is indeed a sufficient condition to conclude that Ti is being
executed.

Theorem 2: Let P be the set of leaf nodes whose operating
regions are non-empty:

P := {i ∈ V|(�i �= ∅) ∧ ( � ∃j ∈ V : j >P i)}. (13)

Then, we have x ∈ �i : i ∈ P =⇒ ẋ = f (x, u0(x)) =
f (x, ui(x)) and

⋃
i∈P�i = R

n.
Proof: We need to show that x ∈ �i : i ∈ P =⇒

f (x, u0(x)) = f (x, ui(x)) and that {�i}i∈P cover the state space.
We have that �i ⊂ Ii by (12) and from (9) we see that no

leaf to the left of ui can execute. Furthermore, by the con-
struction of (12), either x ∈ Ri, or x is in the success or failure
region of a node on a success or failure pathway (respectively),
so no leaf to the right of ui can execute. Thus, we conclude
that x ∈ �i : i ∈ P =⇒ f (x, u0(x)) = f (x, ui(x)).

Now we need to show that {�i}i∈P cover the state space.
From Lemma 3 we have that �i for a set of siblings are pair-
wise disjoint and cover �p(i). By definition, I0 = R

n and
since 0 ∈ S ∩ F we have �0 = I0 = R

n by (12). Applying
Lemma 3 recursively down the tree we see that for the leaves
in P we have that {�i}i∈P are pairwise disjoint and cover Rn,⋃

i∈P�i = R
n.

Theorem 3: The execution (4) will have a unique Filippov
solution (see [11]) for each initial state if, for every pair of
neighboring sets with index in P, i.e., sets �i,�j with i, j ∈ P
and ∂�i ∪ ∂�j �= ∅, the sets �i,�j and the vector field

X(x) =
{

f (x, ui(x)) if x ∈ �i

f
(
x, uj(x)

)
else

(14)

are such that the following holds with D1 = �i and D2 =
R

n \ D1. SX = ∂Di is the set where X(x) is discontinuous and
SX is a C2-manifold. Furthermore, for i ∈ {1, 2}, X|D̄i

is con-
tinuously differentiable on Di and X|D̄1

− X|D̄2
is continuously

differentiable on SX . For each x ∈ SX , either X|D̄1
points into

D2 or X|D̄2
points into D1.

Proof: A straightforward application of Theorem 1 for every
neighboring pair of �i.

Sufficient conditions for the existence and uniqueness of BT
executions can thus be found using the corresponding results
for DDS in Theorem 1.

VI. CONVERGENCE ANALYSIS

In this section, we will state the conditions under which a
general BT is convergent. The main idea of our convergence
theorem is similar to the concept of prepares from [12]. Given
a BT and its operating regions, the region of attraction of each
policy invokes switching between operating regions, thereby
inducing a partial order ≤f of transitions.

The reflexive-transitive reduction of this partial order is
a directed acyclical graph (prepares graph), as illustrated in
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Fig. 3. Prepares graph for the BT in Fig. 2.

Fig. 3 for the kitchen-lamp example in Section IV. The tran-
sitions (edges) of this graph are described as follows: (a, b)

going to the kitchen and trying to turn on lamp A because
it is closer, (a, d) going to the kitchen and trying to turn on
lamp B because it is closer, (b, d) trying to turn on lamp
B because lamp A did not work, (b, c) successfully turning
on lamp A, (d, e) successfully turning on lamp B. Note, the
dashed regions in Fig. 3 correspond to the success and failure
pathways. Informally speaking, the BT will be convergent if
this graph is acyclical and has all its sinks in success regions.
We will now formally state the convergence theorem.

Theorem 4: If there exists a subset L ⊆ P and a partial
order ≤f ⊂ L2 such that the constraint region

�i :=
⋃
j≥f i

�j \ F0 (15)

is invariant under f (x, ui(x)) for all i ∈ L, and there exists a
finite time τi > 0, such that if x(t) ∈ �i \ S0 then x(t + τi) �∈
�i \ S0 for all i ∈ L, then there exists a maximum number of
transitions N ∈ N and a maximum duration t′ > 0, such that
if x(0) ∈ �i for any i ∈ L, then x(t) ∈ S0 in bounded time
t ≤ t′ within N transitions.

Proof: We have that if x(t) ∈ �i \S0 then x(t+τi) �∈ �i \S0.
But, �i is invariant under f (x, ui(x)). Thus, if x(t) ∈ �i then
x(t+τi) ∈ �j\F0 for some j ≥f i, meaning that either x(t+τi) ∈
R0 or x(t + τi) ∈ S0. Thus, if x(0) ∈ �i then x(t) ∈ S0 in
bounded time t ≤ t′ with t′ = maxL0⊆L

∑
k∈L0

τk and at most
N = maxL1⊆L |L1| transitions, such that L0, L1 are maximal,
totally ordered by ≤f , and i ≤f k for all k ∈ L0 ∪ L1. In other
words, L0 and L1 are the chains of transitions with the largest
duration and cardinality, respectively.

We now have a tool to assess the convergence properties of
a general BT. The key challenge is thus to design the structure
of the BT itself and its controllers to satisfy Theorem 4. An
extended version of this letter, with a longer example of the
application of this result can be found in [16].

VII. CONCLUSION

In this letter, we have formulated BTs in continuous-time
and shown how they fit the formalism of a DDS and the

conditions under which solutions to their execution exist and
are unique. To do this, we embedded the order of the BT struc-
ture itself into the formulation. These contributions allow the
application of the rich literature in hybrid dynamical systems
[17]–[19] to BTs in general. Finally, we have provided the
conditions under which a general BT will be convergent to a
goal.
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