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On Discrete-Time Output Negative
Imaginary Systems

Parijat Bhowmick , Member, IEEE , and Alexander Lanzon , Senior Member, IEEE

Abstract—This letter introduces the notion of linear
Discrete-time Output Negative Imaginary (D-ONI) systems.
The D-ONI class is defined in the z-domain and it includes
the systems having poles on the unit circle. The proposed
definition involves a real parameter δ ≥ 0, which indicates
the strictness properties. δ > 0 specifies the strict subset,
Discrete-time Output Strictly Negative Imaginary (D-OSNI),
within the stable D-ONI class. Interestingly, the new D-ONI
class captures the existing D-NI systems while restricted
to discrete-time LTI systems having a real, rational and
proper transfer function. However, the D-OSNI systems are
not identical to the existing strictly D-NI (D-SNI) subset.
Instead, these two subsets intersect each other. An LMI-
based state-space characterisation is derived to check the
strict/non-strict D-ONI properties of a given system relying
on the value of δ. The paper also establishes the con-
nections between the discrete-time Passive and discrete-
time NI systems. Finally, a closed-loop stability result is
proposed for a positive feedback interconnection of two
D-ONI systems without poles at z = −1 and z = +1.

Index Terms—Discrete-time output negative imaginary
systems, discrete-time passive systems, Bilinear transfor-
mation, DC-gain, z-domain stability.

I. INTRODUCTION

NEGATIVE Imaginary (NI) systems theory has already
established its worth due to its potential applications in

real-world engineering problems, such as, in vibration con-
trol of lightly-damped mechanical systems [1]–[6], cantilever
beam [7], large space structures [8] and robotic manipula-
tors [8]; nano-positioning applications [9]; vehicle platooning;
etc. NI theory was introduced in [1] and was primarily inspired
by the positive position feedback control of highly resonant
mechanical structures with colocated position sensors and
force actuators. Recently, in [10] and [11], NI property has
been extended to capture improper and non-rational systems.
Of late, the Output Negative Imaginary (ONI) systems the-
ory [2], [12]–[15] has drawn the attention of the control
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Fig. 1. Relationship among the strict and non-strict subsets within the
class of real, rational and proper D-ONI systems.

community due to establishing the missing links amongst the
NI theory, classical dissipativity and passivity [14].

However, most of the developments on analysis and syn-
thesis of NI systems have been done in the continuous-time
setting. References [16] and [17] did the first works in
extending the continuous-time NI (C-NI) theory to discrete-
time LTI systems exploiting the well-established Bilinear
Transformation (s = z−1

z+1 ) adopted in [18] for defining
Discrete-time Positive Real (D-PR) systems. Reference [16]
also defined two strict subsets within the D-NI1 class,
viz. Discrete-time Strictly Negative Imaginary (D-SNI) and
Discrete-time Strongly Strict Negative Imaginary (D-SSNI),
along the lines of the continuous-time versions of the SNI and
SSNI systems, as introduced in [10] and [11]. Recently, [17]
and [19] also have defined and characterised the D-NI and D-
SNI systems for discrete-time real, rational and proper transfer
functions without using the symmetry assumption. However,
the discrete-time extension of the Output Negative Imaginary
systems has not yet been explored in the literature.

This letter introduces the notion of real, rational, proper
D-ONI systems and provides a complete theoretical analysis of
such systems, including the connections amongst the discrete-
time Passive [20], D-PR [18], [21] and D-ONI classes. A strict
subset within the D-ONI class, referred to as the D-OSNI sub-
class, is defined only for the stable discrete-time systems (i.e.,
having no poles in {z ∈ C : |z| ≥ 1}) and attributed by a
parameter δ > 0. An in-depth study reveals that the D-OSNI
subset is not identical to the existing D-SNI subset [16], [17]

1In [16], D-NI systems and the strict subsets D-SNI and D-SSNI were
defined for discrete-time LTI systems having real and symmetric transfer
functions. However, when restricted to real, rational transfer functions, the
symmetry assumption in [16] can be easily removed.
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– they rather intersect. D-OSNI systems may contain block-
ing zeros on the unit circle (|z| = 1), in contrast to the D-SNI
systems. The relationship among the major subclasses within
the D-ONI class is shown in the Venn diagram in Fig. 1,
which indicates that the D-SSNI [16] systems belong to the
intersection of D-OSNI and D-SNI subsets. This letter also
derives an LMI-based state-space characterisation that can be
conveniently used to test the strict/non-strict D-ONI proper-
ties of a given system depending on the parameter δ. In this
context, note that the D-SNI property cannot be captured by
the state-space characterisation of D-NI systems [16, Th. 3.2]
and [17, Lemma 11], since a D-SNI system loses its strict-
ness when transformed into the D-PR (or D-passive) domain.
However, D-OSNI systems overcomes this difficulty because
they are defined analogously as the discrete-time output pas-
sive (D-OP) systems [20] and hence, retains the strictness after
getting transformed into the D-PR/D-passive domain. Finally,
we propose a set of necessary and sufficient conditions to
guarantee the internal stability of a positive feedback loop con-
taining a D-ONI system without any poles at z = −1, +1 and
a D-OSNI system.

Notation: R and C denote respectively the sets of all real
and all complex numbers. �(·) and �(·) express the real and
the imaginary parts respectively. A�, A∗ and Ā denote respec-
tively the transpose, complex conjugate transpose and complex
conjugate of a matrix A. A−∗ and A−� represent shorthand
for (A−1)∗ and (A−1)� respectively. λmax(A) denotes the
maximum eigenvalue of a matrix A that has only real eigen-

values. Let

[
Ad Bd
Cd Dd

]
represent a state-space realisation of a

discrete-time, real, rational and proper transfer function matrix
M(z) = Dd + Cd(zI − Ad)

−1Bd.
In this letter, we will use a specific Bilinear Transformation

s = z − 1

z + 1
(1)

for transforming the s-domain transfer functions into the
z-domain following the same philosophy adopted in [18]

and [21]. Note here that the relationship s = z − 1

z + 1
is obtained

from the standard Bilinear Transformation, when restricted to
have a specific sample time Ts = 2s.

II. TECHNICAL PRELIMINARIES

In this section, we present essential technical preliminaries,
definitions and lemmas which underpin the proofs of the main
results of this letter. We first set the notations and definitions
for discrete-time NI and SNI systems in the z-domain with
respect to the unit disc.

Definition 1 (D-NI Systems [16], [17], [19], [22]): Let
M(z) be the discrete-time, real, rational and proper trans-
fer function matrix of a finite-dimensional, causal and square
system M. Then, M(z) is said to be a Discrete-time Negative
Imaginary (D-NI) system if

• M(z) has no poles in {z ∈ C : |z| > 1};
• j[M(ejθ ) − M(ejθ )∗] ≥ 0 for all θ ∈ (0, π) except the

values of θ for which z = ejθ is a pole of M(z);
• if z0 = ejθ0 with θ0 ∈ (0, π) is a pole of M(z), then

it is a simple pole and the normalised residue matrix

K0 = 1

z0
limz→z0(z − z0)jM(z) is Hermitian and positive

semidefinite;
• if z0 = 1 is a pole of M(z), then limz→1(z−1)kM(z) = 0

for all integer k ≥ 3 and limz→1(z−1)2M(z) is Hermitian
and positive semidefinite.

Definition 2 (D-SNI Systems [16], [22]): Let M(z) be the
discrete-time, real, rational and proper transfer function matrix
of a finite-dimensional, causal and square system M. Then,
M(z) is said to be a Discrete-time Strictly Negative Imaginary
(D-SNI) system if M(z) has no poles in {z ∈ C : |z| ≥ 1} and
j[M(ejθ ) − M(ejθ )∗] > 0 for all θ ∈ (0, π).

The following lemma gives a state-space characterisation for
D-NI systems having no poles at z = −1 and z = +1. This is
considered as the discrete-time counterpart of the continuous-
time NI lemma [1], [23].

Lemma 1 (D-NI Lemma [16], [22]): Let M be a finite-
dimensional, causal and square system with the discrete-time,
real, rational and proper transfer function matrix M(z) and a

minimal state-space realisation

[
Ad Bd
Cd Dd

]
. Suppose det [I +

Ad] 	= 0 and det [I − Ad] 	= 0. Then, M(z) is D-NI if and only
if there exists P = P� > 0 such that

A�
d PAd − P ≤ 0 and Cd+B�

d (A�
d −I)−1P(Ad+I) = 0. (2)

We will now derive a version of the discrete-time
output (strictly) passive2 lemma taking the inspiration
from [20, Lemma 3] and the discrete-time Positive Real
lemma [18], [21]. This lemma will be exploited in Section III
for proving the main results of this letter.

Lemma 2 (D-OP Lemma): Let

[
Ad Bd

Cd Dd

]
be a minimal

state-space realisation of a finite-dimensional, causal and
square system M having a discrete-time, real, rational trans-
fer function matrix M(z). Suppose M(z) has no poles in
{z ∈ C : |z| > 1 and z = −1}. Then, M is Discrete-time
Output Passive (D-OP) if and only if there exist a real scalar
δp ≥ 0 and a real matrix P = P� > 0 such that⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
P − A�

d PAd

−δp C�
d Cd

)
(

C�
d − A�

d PBd

−δp C�
d Dd

)
(

C�
d − A�

d PBd

−δp C�
d Dd

)�

(
Dd + D�

d − A�
d PBd

−δp D�
d Dd

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0. (3)

Moreover, M is a Discrete-time Output Strictly Passive
(D-OSP) system if and only if M(z) has no poles in {z ∈
C : |z| ≥ 1} and (3) holds for δp > 0.

Proof (Sufficiency): Let M be an discrete-time, LTI output
passive system, as described in the statement of Lemma 2, with
δp ≥ 0. Then, there exists a C1 storage function V : R

n → R>0
such that 2y�

k uk − δp y�
k yk ≥ V̇(xk) for all k ∈ {0, 1, 2, . . .}.

This inequality is equivalent to (3) when V(xk) = x�
k Pxk ∀xk ∈

R
n with P = P� > 0.
(Necessity): Given a feasible solution P = P� > 0,

δp ≥ 0 of (3) for a discrete-time LTI system M with a

2Time-domain and frequency-domain definitions of discrete-time output
(strictly) passive systems are given in [20, Definition 3 and Lemma 1].
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minimal state-space realisation, it can be established follow-
ing [20, Lemma 1] and [24, Th. 1] that there always exists
a C1 storage function V : R

n → R>0 such that M satisfies
2y�

k uk − δp y�
k yk ≥ V̇(xk) with the same δp.

This completes the proof.
To this end, we present two algebraic lemmas that will be

utilised in Section III for proving the D-ONI lemma.
Lemma 3: Let A ∈ R

n×n. Suppose det [A − I] 	= 0 and
det [A + I] 	= 0. Then, (A − I)−1(A + I) = (A + I)(A − I)−1.

Proof: The proof is carried out as (A+ I)(A− I)−1 = A(A−
I)−1 +(A− I)−1 = A[(I −A−1)A]−1 +(A− I) = (I −A−1)−1 +
(A − I) = [A−1(A − I)]−1 + (A − I)−1 = (A − I)−1(A + I).

Lemma 4: Let A ∈ R
n×n. Suppose det [A − I] 	= 0. Then,

A(A − I)−1 = I + (A − I)−1.
Proof: We have I+(A−I)−1 = (A−I)(A−I)−1+(A−I)−1 =

[(A − I) + I](A − I)−1 = A(A − I)−1.

III. D-ONI SYSTEMS: DEFINITION AND PROPERTIES

This section caters the main contributions of this letter. We
begin with the definitions, properties and examples of D-ONI
and D-OSNI systems. After that, we will establish the con-
nections between D-ONI and D-OP systems in Section III-A.
Subsequently, Section III-B derives an LMI-based state-space
characterisation for the entire class of D-ONI systems.

Definition 3 (D-ONI Systems): Let M(z) be the discrete-
time, real, rational and proper transfer function matrix of a
finite-dimensional, causal and square system M. Define F(z) =(

z − 1

z + 1

)
[M(z)−M(−1)]. Then, M(z) is said to be a Discrete-

time Output Negative Imaginary (D-ONI) system if M(z) has
no poles in {z ∈ C : |z| > 1 and z = −1} and there exists a
real scalar δ ≥ 0 such that

F(z) + F(z)∗ − δF(z)∗F(z) ≥ 0 (4)

for all z such that |z| > 1 and �[z] > 0.
M(z) is called a Discrete-time Output Strictly Negative

Imaginary (D-OSNI) system if M(z) has no poles in {z ∈
C : |z| ≥ 1} and (4) holds for δ > 0.

It is worth noting that for D-ONI systems without any
poles at z = −1, M(−1) exists and M(−1) = M(−1)� (see
[16, Remark 3.3]). Definition 3 can also be expressed with
respect to the unit circle in the z-domain (i.e., |z| = 1).

Definition 4: Let M(z) be the discrete-time, real, ratio-
nal and proper transfer function matrix of a finite-
dimensional, causal and square system M. Define F(ejθ ) =
(
ejθ − 1

ejθ + 1
)[M(ejθ ) − M(ejπ)]. Then, M(z) is D-ONI if

• M(z) has no poles in {z ∈ C : |z| > 1 and z = −1};
• there exists a real scalar δ ≥ 0 such that

F(ejθ ) + F(ejθ )∗ − δF(ejθ )∗F(ejθ ) ≥ 0 (5)

for all θ ∈ [0, π ] except the values of θ for which z = ejθ

is a pole of M(z);
• if z0 = ejθ0 with θ0 ∈ (0, π) is a pole of M(z), then

it is a simple pole and the normalised residue matrix

K0 = 1

z0
limz→z0(z − z0)jM(z) is Hermitian and positive

semidefinite;
• if z0 = +1 is a pole of M(z), then limz→1(z−1)kM(z) = 0

for all integer k ≥ 3 and limz→1(z−1)2M(z) is Hermitian
and positive semidefinite.

M(z) is D-OSNI if there exists no θ ∈ [0, π ] such that z = ejθ

is a pole of M(z) and (5) holds for δ > 0.
Note that inequality (5) can equivalently be expressed in

terms of M(ejθ ), as mentioned below:

sin θ

1 + cos θ
j
[
M(ejθ ) − M(ejθ )∗

]

− δ

(
sin θ

1 + cos θ

)2

M̄(ejθ )∗M̄(ejθ ) ≥ 0, (6)

utilising the relationship
z − 1

z + 1
= ejθ − 1

ejθ + 1
= j

sin θ

1 + cos θ
and

on noting that M̄(ejθ ) = M(ejθ ) − M(ejπ ).

A. Relationship Between D-ONI and D-OP Systems

This subsection establishes the relationship between D-ONI
and D-OP systems when they do not have any poles at z = −1
and z = +1. The proof of Lemma 5 relies on the definition
and state-space characterisation of C-ONI systems [2], [12],
[13] and exploits the Bilinear Transformation (1) to switch
back and forth between the discrete-time and continuous-time
settings.

Lemma 5: Let

[
Ad Bd

Cd Dd

]
be a minimal state-space realisa-

tion of a finite-dimensional, causal and square system M hav-
ing a discrete-time, real, rational and proper transfer function
matrix M(z). Let M(z) have no poles in {z ∈ C : |z| > 1, z =
+1 and z = −1}. Then, M is a D-ONI system if and only if

M(−1) = M(−1)� and F(z) =
(

z − 1

z + 1

)
[M(z) − M(−1)] is

D-OP.
Proof: We begin the proof on noting that for a D-ONI trans-

fer function M(z) without any poles at z = −1, M(−1) exists
and M(−1) = M(−1)� according to [16, Lemma 3.8]. Now,
we have the following set of equivalent statements:

M(z) is D-ONI without any poles at z = +1

⇔ M̄(z) = M(z) − M(−1) =
[

Ad Bd

Cd 0

]
is D-ONI

without any poles at z = +1

⇔ M̄c(s) = Mc(s) − Mc(∞) =
[

Ac Bc

Cc 0

]
is C-ONI

without any poles at s = 0 and Dc = Mc(∞) = D�
c

holds automatically; Mc(s) = M(z)|z= 1+s
1−s

and the

triplet (Ac, Bc, Cc) is minimal via [18, Lemma 3]

[The equivalance between the D-ONI and C-ONI versions

holds due to the Bilinear Transformation, along the lines of

the proof of [16, Lemma 3.2] relying on [10, Lemma 3.1]]

⇔ Fc(s) = sM̄c(s) =
[

Ac Bc

CcAc CcBc

]
is continuous-time

output passive without any poles at s = 0 and Dc = D�
c

[following [13, Theorem 2] and [12, Lemma 1]]

⇔ F(z) =
(

z − 1

z + 1

)
M̄(z) =

(
z − 1

z + 1

)
[M(z) − M(−1)] is D-OP

without any poles at z = +1 and M(−1) = M(−1)�,

where M(z) = Mc(s)|s= z−1
z+1

.

This completed the proof.
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B. State-Space Characterisation of D-ONI Systems

The lemma given next, termed as the D-ONI lemma, pro-
vides a couple of LMI conditions that can be conveniently used
to test the strict/non-strict D-ONI properties of a discrete-time
LTI system based on its minimal state-space realisation.

Lemma 6 (D-ONI Lemma): Let

[
Ad Bd

Cd Dd

]
be a mini-

mal state-space realisation of a finite-dimensional, causal and
square system M having a discrete-time, real, rational and
proper transfer function matrix M(z). Let det [Ad + I] 	= 0
and det [Ad − I] 	= 0. Define � = (Ad − I)(Ad + I)−1. Then,
M is a D-ONI system without poles at z = +1 if and only if
there exist δ ≥ 0 and P = P� > 0 such that

P − A�
d PAd − δ (Cd�)�Cd� ≥ 0 and (7a)

Cd + B�
d (Ad − I)−�P(Ad + I) = 0. (7b)

Proof: We begin the proof on noting that for a
D-ONI transfer function M(z) without any poles at
z = −1, M(−1) exists and M(−1) = M(−1)�
according to [16, Lemma 3.8]. Furthermore,

F(z) =
(

z − 1

z + 1

)
[M(z) − M(−1)] has a minimal state-

space realisation

[
Ad Bd

Cd(Ad − I)(Ad + I)−1 Cd(Ad + I)−1Bd

]

when (Ad, Bd, Cd, Dd) is minimal and M(z) has no poles
at z = +1. We now have the following set of equivalent
statements.

M(z) is D-ONI without any poles at z = +1

⇔ M̄(z) = M(z) − M(−1) is D-ONI without any

poles at z = +1

⇔ F(z) =
(

z − 1

z + 1

)
M̄(z) =

[
Ad Bd

Cd� Cd(Ad + I)−1Bd

]

is D-OP without any poles at z = +1 [via Lemma 5]

⇔ there exist δ ≥ 0 and the matrix P = P� > 0 such that⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
P − A�

d PAd−
δ (Cd�)�Cd�

)
(
��C�

d − A�
d PBd

−δ ��C�
d Cd×

(Ad + I)−1Bd

)

(
��C�

d − A�
d PBd

−δ ��C�
d Cd×

(Ad + I)−1Bd

)�

(
Cd(Ad + I)−1Bd+

B�
d (Ad + I)−�C�

d −
δ B�

d (Ad + I)−�×
C�

d Cd(Ad + I)−1Bd

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0

[via applying Lemma 2]

⇔ there exist δ ≥ 0 and the matrices L ∈ R
m×n,

W ∈ R
m×m and P = P� > 0 such that

P − A�
d PAd − δ (Cd�)�Cd� = L�L,

��C�
d − A�

d PBd − δ ��C�
d Cd(Ad + I)−1Bd = L�W,

Cd(Ad + I)−1Bd + B�
d (Ad + I)−�C�

d − B�
d PBd

− δ B�
d (Ad + I)−�C�

d Cd(Ad + I)−1Bd = W�W

⇔ there exist δ ≥ 0 and the matrices L ∈ R
m×n,

W ∈ R
m×m and P = P� > 0 such that

P − A�
d PAd − δ (Cd�)�Cd� = L�L,

Cd =
[
B�

d PAd + W�L
]
(Ad − I)−1(Ad + I) + δ B�

d

× (Ad + I)−�C�
d Cd [using Lemma 3 and Lemma 4]

and Cd(Ad + I)−1Bd + B�
d (Ad + I)−�C�

d − B�
d PBd

− δ B�
d (Ad + I)−�C�

d Cd(Ad + I)−1Bd = W�W

⇔ there exist δ ≥ 0 and the matrices L ∈ R
m×n,

W ∈ R
m×m and P = P� > 0 such that

P − A�
d PAd − δ (Cd�)�Cd� = L�L,

Cd =
[
B�

d PAd + W�L
]
(Ad − I)−1(Ad + I)

+ δ B�
d (Ad + I)−�C�

d Cd and[
B�

d PBd + B�
d P(Ad − I)−1Bd + B�

d (Ad − I)−�PBd

−δ B�
d (Ad + I)−�C�

d Cd(Ad + I)−1Bd

+ B�
d (Ad − I)−�L�L(Ad − I)−1Bd

]

=
[
W − L(Ad − I)−1Bd

]�[
W − L(Ad − I)−1Bd

]
⇔ there exist δ ≥ 0 and the matrices L ∈ R

m×n,

W ∈ R
m×m and P = P� > 0 such that

P − A�
d PAd − δ (Cd�)�Cd� = L�L,

Cd =
[
B�

d PAd + W�L
]
(Ad − I)−1(Ad + I) +

δ B�
d (Ad + I)−�C�

d Cd and

0 =
[
W − L(Ad − I)−1Bd

]�[
W − L(Ad − I)−1Bd

]
⇔ there exist δ ≥ 0 and the matrices L ∈ R

m×n and

P = P� > 0 such that

P − A�
d PAd − δ (Cd�)�Cd� = L�L and

Cd =
[
B�

d PAd + B�
d (Ad − I)−�L�L

]
(Ad − I)−1

× (Ad + I) + δ B�
d (Ad + I)−�C�

d Cd

⇔ there exist δ ≥ 0 and P = P� > 0 such that

P − A�
d PAd − δ (Cd�)�Cd� ≥ 0 and

Cd + B�
d (Ad − I)−�P(Ad + I) = 0.

Hence, the proof is done.
Note that for δ = 0, the proposed D-ONI lemma implies the

existing D-NI lemma derived in [16] and [17]. The following
corollary is an important specialisation of Lemma 1 to D-OSNI
systems (characterised by δ > 0).

Corollary 1 (D-OSNI Lemma): Let

[
Ad Bd

Cd Dd

]
be a mini-

mal state-space realisation of a finite-dimensional, causal and
square system M having a discrete-time, real, rational and
proper transfer function matrix M(z). Let M(z) have no poles
in {z ∈ C : |z| ≥ 1}. Define � = (Ad − I)(Ad + I)−1. Then, M
is D-OSNI if and only if there exist δ > 0 and Y = Y� > 0
such that ⎡

⎢⎣
Y (Cd�Y)� YA�

d

Cd�Y
1

δ
Im 0

AdY 0 Y

⎤
⎥⎦ ≥ 0 and (8a)

Bd + (Ad − I)Y(Ad + I)−�C�
d = 0. (8b)

Proof: The proof is a straightforward specialisation of
Theorem 1 to the cases where M(z) has no poles in {z ∈
C : |z| ≥ 1}. The LMI condition (8a) is obtained from (7a)
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via applying first an appropriate congruence transformation
and then taking a Schur complement, since δ > 0 and on not-
ing that Y = P−1 > 0. The equality condition (8b) is a simple
rearrangement of (7b) with Y = P−1.

The following lemma shows that a D-OSNI system M(z)
with a full-rank Bd matrix enjoys the property M(1) −
M(−1) > 0.

Lemma 7: Let M(z) be the real, rational and proper transfer
function matrix of a (m × m) D-OSNI system with a min-

imal state-space realisation

[
Ad Bd

Cd Dd

]
where Ad ∈ R

n×n,

rank[Bd] = m and m ≤ n. Then, M(1) − M(−1) > 0.
Proof: Note that rank[Bd] = m implies rank[Cd] = m

from (8b) since Y > 0, det [Ad − I] 	= 0 and det [Ad + I] 	= 0.
We now obtain M(1) − M(−1) = Cd(I − Ad)

−1Bd + Dd −
Cd(−I − Ad)

−1Bd − Dd = Cd[(I − Ad)
−1 + (I + Ad)

−1]Bd =
2Cd(I+Ad)

−1(I−Ad)
−1Bd = 2Cd(I+Ad)

−1(I−Ad)
−1[−(Ad−

I)Y(Ad + I)−�C�
d ] = 2Cd(I + Ad)

−1Y(Ad + I)−�C�
d with the

help of (8b). It readily follows that rank[Cd(I + Ad)
−1] = m.

Therefore, rank[Cd(I +Ad)
−1Y(Ad + I)−�C�

d ] = rank[(Cd(I +
Ad)

−1Y
1
2 )(Cd(I + Ad)

−1Y
1
2 )�] = rank[(Cd(I + Ad)

−1Y
1
2 )] =

m exploiting [25, Th. 2.4.3 and Corollary 2.5.1]. Hence,
M(1) − M(−1) > 0.

Remark 1: An inquisitive reader may wonder that why
a D-SNI system N(z) automatically satisfies the properties
rank[Bd] = rank[Cd] = m and N(1)−N(−1) > 0 [16], [17], in
contrast to a D-OSNI system. The reason is that the D-OSNI
systems are not defined by the strict z-domain inequality
j[N(ejθ )−N(ejθ )∗] > 0 ∀θ ∈ (0, π), unlike the D-SNI systems.
For a D-OSNI system, det [N(ejθ ) − N(ejθ )∗] = 0 may occur
at a finite number of distinct θ ∈ (0, π).

C. Numerical Examples

We will now study several numerical examples that will
show the usefulness of the D-ONI lemma to test the strict/non-
strict D-ONI properties of a given system. The examples have
been tested in the MATLAB software environment using the
CVX (SeDuMi and SDPT3 solvers) toolbox [26].

Example 1: Consider the discrete-time real, rational,
proper transfer function M1(z) = 0.26316(z+1)(z+0.6)

(z+0.7315)(z+0.2158)

[Mc1(s) = s+4
s2+8s+10

] having a minimal state-space realisa-

tion

[
Ad Bd

Cd Dd

]
=

⎡
⎣−0.90 − 0.26 0.21

0.42 − 0.053 0.84
0.13 0.17 0.26

⎤
⎦. It satisfies

the D-ONI lemma, that is the LMI conditions (7a) and (7b),

with P =
[

1.55 0.31
0.31 0.31

]
> 0 and δ = 0.7882 > 0. Hence,

M1(z) is a D-OSNI system. Note that M1(z) satisfies also the
D-SNI property, which can be readily verified via Definition 2.

Example 2: Consider another discrete-time trans-
fer function M2(z) = 0.066667(z+1)2(z2+1.556z+1)

(z2+1.741z+0.9259)(z2+1.296z+0.9361)

[Mc2(s) = s2+8
s4+s3+25s2+8s+100

] with a minimal state-
space realisation. Applying LMI conditions (7a)
and (7b) to this system, we obtain a feasible solution

P =
⎡
⎢⎣

2.00 0.00 2.00 0.00
0.00 2.13 0.00 1.56
2.00 0.00 3.13 0.00
0.00 1.56 0.00 1.56

⎤
⎥⎦>0 and δ = 1.1192 > 0.

This implies that M2(z) is D-OSNI. Note however that

Fig. 2. A positive feedback interconnection of two D-ONI systems.

M2 does not satisfy the strict frequency-domain condition
j[M2(ejθ ) − M2(ejθ )∗] > 0 ∀θ ∈ (0, π). Hence, M2(z) is not
D-SNI.

Example 3: Let M3(z) = 12.195(z+1)(z+0.6)

(z2+1.512z+0.6098)
[Mc3(s) =

100(s+4)

s2+8s+32
] represent a discrete-time LTI system with a mini-

mal state-space realisation

[
Ad Bd

Cd Dd

]
. Similar to the previous

examples, in order to test the strict/non-strict D-ONI property
of M3, we apply again the D-ONI lemma and obtain a feasible

solution P =
[

2.34 0.78
0.78 0.39

]
> 0 and δ = 0, which indicates

that M3(z) does not satisfy the D-OSNI property. However, it
can be verified that M3(z) satisfies the D-SNI property since
j[M3(ejθ ) − M3(ejθ )∗] > 0 ∀θ ∈ (0, π).

Following the same procedure adopted in Examples 1–3,
we can easily verify that M4(z) = 0.083333(z+1)2(z2−0.5z+0.5)

z(z−0.3333)(z2+z+0.5)

[Mc4(s) = 2s2+s+1
(s+1)(2s+1)(s2+2s+5)

] is a non-strict (i.e., δ = 0) sta-

ble D-ONI system. Finally, M5(z) = 0.8(z+1)2

(z2+1.2z+1)
[Mc5(s) =

4
s2+4

], M6(z) = z+1
z−1 [Mc6(s) = 1

s ] and M7(z) = z2+2z+1
z2−2z+1

[Mc7(s) = 1
s2 ] are examples of D-ONI systems having pole(s)

on the unit circle (|z| = 1).

IV. INTERNAL STABILITY OF D-ONI SYSTEMS

This section deals with internal stability of a positive feed-
back interconnection of D-ONI (without any poles at z = +1)
and D-OSNI systems, as shown in Fig. 2. The proof of this
result builds on the following technical lemma, which gives the
closed-loop stability conditions in the continuous-time setting,
that is, for interconnected C-ONI and C-OSNI systems.

Lemma 8 [14]: Let M(s) be a (not necessarily stable) C-NI
system without poles at the origin and N(s) be a C-OSNI
system. Let � = {ω ∈ (0,∞) : s = jω is not a pole of M(s)}
and let j[N(jω0) − N(jω0)

∗] > 0 ∀ω0 ∈ (0,∞)\�. Suppose
there exists no ω ∈ � such that det [M(jω) − M(jω)∗] = 0
and det [N(jω) − N(jω)∗] = 0. Then, the positive feedback
interconnection of M(s) and N(s) is internally stable if and
only if⎧⎨

⎩
det [I − M(∞)N(∞)] 	= 0,

λmax
[
(I − M(∞)N(∞))−1(M(∞)N(0) − I)

]
< 0,

λmax
[
(I − N(0)M(∞))−1(N(0)M(0) − I)

]
< 0.

(9)

We will now present the internal stability theorem for
discrete-time ONI systems.

Theorem 1 (D-ONI Stability Theorem): Let M(z) be a
D-ONI system without any poles at z = +1 and N(z)
be a D-OSNI system. Let 	 = {θ ∈ (0, π) : z =
ejθ is not a pole of M(z)} and let j[N(ejθ0) − N(ejθ0)∗] > 0
∀θ0 ∈ (0, π)\	. Suppose there exists no θ ∈ 	 such that
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det [M(ejθ0) − M(ejθ0)∗] = 0 and det [N(ejθ0) − N(ejθ0)∗] = 0.
Then, the positive feedback interconnection of M(z) and N(z),
as shown in Fig. 2, is internally stable if and only if⎧⎨

⎩
det[I − M(−1)N(−1)] 	= 0,

λmax
[
[I − M(−1)N(−1)]−1{M(−1)N(1) − I}] < 0,

λmax
[
[I − N(1)M(−1)]−1{N(1)M(1) − I}] < 0.

(10)

Proof: Let Mc(s) = M(z)|z= 1+s
1−s

and Nc(s) = N(z)|z= 1+s
1−s

be respectively the C-ONI and C-OSNI versions of M(z)
and N(z) in the spirit of Lemma 5. Now, the positive feed-
back interconnection of Mc(s) and Nc(s) is guaranteed to be
internally stable, via Lemma 8, if and only if (9) holds. Note
that the set of conditions in (10) is the discrete-time equivalent
of (9). This completes the proof.

The following corollary is an immediate consequence of
Theorem 1 under the additional assumptions N(−1) ≥ 0 and
M(−1)N(−1) = 0. It offers an appealing and more elegant
‘DC loop gain’ condition for checking the internal stability of
a D-ONI interconnection.

Corollary 2: Suppose either N(−1) ≥ 0 and
M(−1)N(−1) = 0, or else M(−1) = 0, in addition to
the suppositions of Theorem 1. Then, the positive feedback
interconnection of M(z) and N(z) is internally stable if and
only if λmax[N(1)M(1)] < 1.

Proof: The proof readily follows from Theorem 1 subject to
the additional constraints N(−1) ≥ 0 and M(−1)N(−1) = 0,
or M(−1) = 0.

Remark 2: Note that the internal stability result of a pos-
itive feedback interconnection of D-NI and D-SNI systems,
without considering poles at z = +1, is already available in
the literature [22, Th. 3] and [17, Th. 1]. However, this result
cannot capture the stability of D-NI and D-OSNI systems since
the D-SNI and D-OSNI subsets are not identical. At the same
time, the proposed Theorem 1 also cannot capture the stability
of D-NI and D-SNI (but not D-OSNI) systems.

V. CONCLUSION

This letter defines and characterises the class of Discrete-
time Output Negative Imaginary (D-ONI) systems, which
captures the existing class of real, rational, proper D-NI
systems [16], [17], [22]. An asymptotically stable, strict sub-
set, designated as the D-OSNI systems, is also defined within
the D-ONI class. Interestingly, the D-OSNI subset is not iden-
tical to the existing D-SNI subset. Instead, they form an
intersection, as depicted in the Venn diagram in Fig. 1. In the
sequel, an LMI-based state-space characterisation is developed
for the D-ONI systems without poles at z = +1. Finally, an
internal stability result is proposed for a D-ONI system when
interconnected with a D-OSNI system via positive feedback.
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