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Iterative Greedy LMI for Sparse Control
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and Yutaka Yamamoto , Life Fellow, IEEE

Abstract—In this letter, we propose a novel method to
find matrices that satisfy sparsity and LMI (linear matrix
inequality) constraints at the same time. This problem
appears in sparse control design such as sparse represen-
tation of the state feedback gain, sparse graph represen-
tation with fastest mixing, and sparse FIR (finite impulse
response) filter design, to name a few. We propose an
efficient algorithm for the solution based on Dykstra’s pro-
jection algorithm. We then prove a convergence theorem of
the proposed algorithm, and show some control examples
to illustrate merits and demerits of the proposed method.

Index Terms—Greedy algorithms, linear matrix inequali-
ties, sparse control, network theory.

I. INTRODUCTION

LMIS (linear matrix inequalities) are a fundamental and
powerful tool for representing many types of constraints

in control systems, such as stability conditions, H2 and H∞
norm constraints, and dissipativity [1], [2]. Since the set
described by LMIs is convex, many related optimal control
problems, such as H2 and H∞ control problems, are described
as convex optimization problems (or sequences of convex
optimization problems), which can be effectively solved by
using modern optimization solvers such as Sedumi [3] and
SDPT3 [4]. Coding LMIs is also an easy task if we use
modeling languages such as Yalmip [5] or CVX [6] on
MATLAB, or CVXPY [7] on Python.

More recently, resource-aware and energy-saving design of
control systems is becoming more and more important for a
sustainable world, which we call green control [8]. To real-
ize green control, event-triggered control (or self-triggered
control) [9], [10] is an effective control scheme. This is ape-
riodic control where sensing and actuation are performed
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when and only when they are needed, and hence, can reduce
the number of updates of control values [11]. On the other
hand, sparse control is another practical scheme for green
control. Maximum hands-off control [12] is sparse control
that minimizes the time duration on which the control val-
ues are nonzero by minimizing the L1 norm of the control,
relaxation of L0 norm. This idea has been extended to dis-
tributed control [13], time-optimal control [14], and discrete-
valued control [15]. Also, sparse control has been proposed
for controller complexity reduction [16], [17], [18], [19]
by promoting sparsity of the feedback gain minimiz-
ing the �1 norm or the sum-of-logs instead of its �0

norm.
The convex relaxation of the �0 norm by the �1 norm is

widely used and proved to be effective in signal and image
processing in particular, which is also known as compressed
sensing [20], [21]. Although �1 convex optimization problems
can be efficiently solved, it is very difficult to check their
optimal solution is equivalent, or even close to �0-optimal
solutions in general. In fact, checking the equivalence by
using the well-known restricted isometry property (RIP) is as
hard as to solve the �0 optimization itself [22]. Therefore, an
alternative method called the greedy method has also been
proposed to solve �0 problems [23], [24], [25]. Although
the greedy method does not guarantee to return the global
optimizer in general, it is shown to be effective in the conver-
gence speed that is much faster than algorithms for �1-based
optimization [25].

In this letter, we propose a novel greedy algorithm for sparse
control with LMI constraints, which appears, for example, in
sparse feedback gain design mentioned above. Namely, we
consider a feasibility problem to find a matrix (or a vector)
that is k-sparse (i.e., its �0 norm is less than k) and satis-
fies given LMIs at the same time. To solve this problem, we
adapt Dykstra’s projection algorithm [26], [27] that computes
the projection onto the intersection of two (or more) convex
sets. Although the set described by LMIs is convex, the set
of k-sparse matrices (or vectors) is not convex, and Dykstra’s
algorithm cannot be applied to this case. However, we propose
to naively use Dykstra’s algorithm to obtain a matrix that is
k-sparse and satisfies given LMIs. We call this the iterative
greedy LMI.

This problem also appears in sparse control over networks.
There exist several important networked dynamical processes
taking place in sociotechnical networks including epidemic
spreading processes over social networks [28], synchronization

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8992-2495
https://orcid.org/0000-0002-3857-3942
https://orcid.org/0000-0002-8829-1732


NAGAHARA et al.: ITERATIVE GREEDY LMI FOR SPARSE CONTROL 987

dynamics in biological networks [29], and opinion formation
in online social networks [30]. Conventional control strategies
developed for small- or medium-scale systems are not neces-
sarily scalable for the control of such networked dynamical
systems, as the conventional strategies can result in the inter-
vention on most of the nodes (or, edges) in the network, which
can be challenging to implement when the network is large
(see, e.g., [31]). For this reason, we can find in the literature
several attempts to realize a sparse control via �1-relaxations
for networked systems such as power systems [32], [33] and
consensus dynamics [34], [35]. In contrast with these works, in
this letter we propose a novel framework for the sparse control
without resorting to the �1-relaxation, and illustrate the effec-
tiveness of the framework by its application to the problem of
finding fastest mixing Markov processes [36], [37].

The iterative greedy LMI is also effective in sparse FIR
(finite impulse response) filter design [38], [39], which is
important for implementing digital filters in small embedded
systems.

This letter is organized as follows. Section II shows con-
trol problems that can be formulated in terms of sparse LMIs.
Section III shows the projection operators of the set described
by LMIs and the set of k-sparse matrices, and proposes a novel
algorithm to find a k-sparse matrix that satisfies given LMIs
based on Dykstra’s projection algorithm. Section V shows
numerical examples to illustrate the effectiveness and merits
of the proposed method. Section VI makes a conclusion.

Notation: N is the set of natural numbers, namely, N =
{1, 2, 3, . . .}. R

l and R
m×n are respectively the set of l-

dimensional real vectors, and m × n real matrices. For a
matrix (or a vector) X ∈ R

m×n, the Frobenius norm ‖X‖F

is defined by ‖X‖F �
√

trace(X�X), where trace(X) is the
trace of X. The Frobenius inner product of two matrices
X and Y is defined by 〈X, Y〉F � trace(X�Y). Also, for
X ∈ R

m×n, the �0 norm of X is defined by ‖X‖0 � |supp(X)|,
where |supp(X)| is the number of elements of the support set
supp(X) � {(i, j) : Xij �= 0}. In other words, ‖X‖0 is the num-
ber of nonzero elements in X. By 1 we denote the all-one
vector, that is, 1 = [1, 1, . . . , 1]�. For a symmetric matrix X,
X 	 0, X 
 0, X ≺ 0, and X � 0, respectively mean that
X is positive definite, positive semi-definite, negative definite,
and negative semi-definite. Also, for a matrix (or a vector) X,
X > 0, X ≥ 0, X < 0, and X ≤ 0 are element-wise inequalities.

II. SPARSE CONTROL PROBLEMS

In this section, we introduce some sparse control problems
described by LMIs with a sparsity constraint.

A. Sparse Representation of Stabilizing Feedback Gain

We first introduce the sparse controller design proposed
in [17]. Let us consider a linear time-invariant system with
state feedback: ẋ = Ax + Bu with u = Kx. We assume (A, B)

is controllable. From the Lyapunov stability theorem, the feed-
back system is asymptotically stable if and only if there exists
Q 	 0 such that (A + BK)�Q + Q(A + BK) ≺ 0. Now, intro-
ducing new variables P � Q−1 and Y � KP, we have the

following LMIs:

AP + PA� + BY + Y�B� ≺ 0, P 	 0. (1)

The sparse feedback gain problem is to find a sparse Y (i.e.,
‖Y‖0 is small) that satisfies (1). If Y is sparse, then choosing
the output as y = P−1x, one can implement a sparse feedback
gain u = Yy.

B. Sparse Graph Representation With Fastest Mixing

We state the problem of designing the fastest mixing
Markov process [36]. In order to state the problem, we intro-
duce the following notations and conventions. Let G = (V, E)

be an undirected and weighted network with N vertices
V = {1, . . . , N} and the edge set E. We let wij ≥ 0 denote
the weight of an undirected edge {i, j}. Let L be the weighted
Laplacian matrix L ∈ R

N×N of the graph G [36]. It is
well-known [36] that, if G is connected, then L has a zero
eigenvalue with multiplicity one, and the other eigenvalues of
L are all positive. Therefore, we can order the eigenvalues of
L as 0 = λ1 < λ2 ≤ · · · ≤ λN . The second-largest eigenvalue
λ2 is called the algebraic connectivity of G and is known to
characterize the mixing rate of the Markov process associated
with G.

The problem of designing the fastest mixing Markov process
concerns finding a set of weights that maximizes λ2. Due to
the homogeneity of λ2, it is customary [36] to impose the
constraint 1�w = 1 for the column vector w containing all
the edge weights of G. It is known that the resulting design
problem can be solved by the following optimization problem
with LMI constraints:

maximize γ

subject to γ I 
 L + 1

n
11�, w ≥ 0, 1�w = 1, (2)

where L is the weighted Laplacian matrix.
In this letter, we aim to find a k-sparse network (i.e., a

network with ‖w‖0 ≤ k) achieving the fastest mixing, based
on our empirical observation that the solution of (2) is not
necessarily unique. We specifically formulate the problem as
follows: find a k-sparse vector w that satisfies the constraints
on w in (2) with γ = γopt, which is the optimal value of (2).
We note that this problem cannot be relaxed by the �1 norm,
since the inequality constraint 1�w = 1 implies that the �1

norm of w is fixed to one. We also remark that, although
the authors in [34] present a procedure for designing sparse
and fastest mixing Markov processes without a relaxation, the
procedure is combinatorial and, therefore, can suffer from the
curse of dimensionality.

C. Sparse FIR Filter Implementation

For a given analog filter (or controller) Kc(s), we often
need to implement it on a digital system. For this, we need
to discretize the analog filter to obtain a digital filter. We
often adopt the bilinear transform or the zero-order hold dis-
cretization [40], which sometimes cause large discretization
errors if the input signal contains high frequency compo-
nents. For more precise discretization, we can instead use
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sampled-data H∞ discretization [39]. In this design, we dis-
cretize a given analog filter into an FIR filter. We assume
that the signal subspace to which the input signals belong is
�F � {Fw : w ∈ L2[0,∞)}, with an analog low-pass filter
F(s) that models the frequency characteristic of the analog
input signals. By the fast sample-hold approximation and the
KYP (Kalman-Yukubovich-Popov) lemma, the design problem
is reduced to the following optimization problem [39]:

minimize γ + λ‖a‖0

subject to

⎡

⎣
A�XA − X A�XB C(a)�

B�XA B�XB − γ I D(a)�
C(a) D(a) − γ I

⎤

⎦ ≺ 0,

X 	 0, (3)

where a is the coefficient vector and λ > 0 is the regulariza-
tion parameter. If we choose larger λ, the solution may become
more sparse, but we cannot specify the sparsity before solv-
ing (3). Instead, we can consider a feasibility problem to find
a k-sparse coefficient vector that satisfies the LMIs in (3) with
given γ > 0 that is larger than the optimal γ .

III. PROJECTION OPERATORS AND DYKSTRA’S
ALGORITHM

In this section, we propose an algorithm to solve the prob-
lems discussed in the previous section, based on Dykstra’s
projection algorithm.

A. Problem Formulation

Let � be a subset of R
m×n that is described by some

LMIs. For example, in the sparse feedback gain problem, �

is given by

� = {X ∈ R
m×n : ∃P 	 0, AP + PA� + BX + X�B ≺ 0}. (4)

Then, the problems discussed in the previous section can be
described as the following problem:

Problem 1 (Sparse LMI): Given k ∈ N, find X ∈ R
m×n

such that ‖X‖0 ≤ k and X ∈ �.

B. Projections

Let �k be the set of k-sparse matrices, that is, �k � {X ∈
R

m×n : ‖X‖0 ≤ k}. Then, Problem 1 is to find a matrix X
such that X ∈ �k ∩�. The idea of finding X that satisfies this
is to alternatively apply projections onto �k and �, which is
known as alternating projection [27]. For a subset C ∈ R

m×n,
the projection operator �C onto C is defined by

�C(X) � arg min
Z∈C

‖Z − X‖F.

It is well known that if C is a non-empty, closed, and convex
set, then �C(X) is uniquely determined, otherwise �C(X) may
be empty or contain multiple elements. Actually, the set �k

is non-convex, and ��k(X) may have multiple elements for
some X, while it is non-empty for any X ∈ R

m×n.

Fig. 1. �2 in R
3 is the union of 3 linear subspaces.

1) Projection Onto Φ: Since � is described by LMIs, this set
is convex. However, if we take the strict inequality, as in (4)
for example, the set � is not closed, and ��(X) may not exist.
To avoid this, we adopt an approximation of the LMIs using
a small number ε > 0 as

P 
 εI, AP + PA� + BX + X�B � −εI.

Then the resulting set � is closed and convex. We also check
if � is non-empty or not, which depends on (A, B) and ε.
More precisely, (A, B) should be controllable, and ε should
be sufficiently small so that � is non-empty. Hereafter, we
assume � is closed, convex, and non-empty.

Now we give an algorithm to obtain the projection ��(X)

for a given X ∈ R
m×n. For this, we use the following

lemma [1, Sec. 2.1].
Lemma 1: For M ∈ R

m×n and γ > 0, inequality ‖M‖F < γ

holds if and only if

trace(S) < γ,

[
S M�
M I

]
	 0.

By this lemma, we can compute the projection ��(X) by
the following optimization problem.

minimize trace(S)

subject to

[
S (Z − X)�

(Z − X) I

]
	 0,

Z ∈ �. (5)

Since � is described by LMIs, this is a convex optimization
problem with LMIs, which can be efficiently solved by
numerical optimization.

2) Projection Onto �k : The k-sparse subspace �k in R
m×n is

obviously non-convex, but it is the union of linear subspaces.
For example, �1 in R

2×2 is the union of four linear
subspaces E1, E2, E3, and E4 respectively spanned by

[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
.

See also Fig. 1 that illustrates �2 in R
3, the union of 3 linear

subspaces. From this property, a projection of X ∈ R
m×n onto

�k always exists. However, it is not unique. The projection
operator ��k(X) characterized by

arg min
Z

‖Z − X‖F subject to ‖Z‖0 ≤ k,

is given as the k-sparse operator Hk(X), which sets all but the
k largest (in magnitude) elements of X to 0 [23], [41]. Fig. 2
illustrates this operation with k = 3.
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Fig. 2. Illustration of k -sparse operator Hk with k = 3: the 3 largest
elements in magnitude are unchanged and the other elements are set
to 0. The numbers 1, 2, 3 indicate the rank of the absolute values of the
elements.

Algorithm 1 Iterative Greedy LMI
Require: sparsity parameter k, set � described by LMIs, and

initial guess X0
Ensure: a matrix in � ∩ �k

X[0] = X0, P[0] = Q[0] = 0
for i = 0, 1, 2, . . . , N do

Y[i] = Hk(X[i] + P[i]) � k-sparse operator
P[i + 1] = X[i] + P[i] − Y[i]
X[i + 1] = ��(Y[i] + Q[i]) � LMI (5)
Q[i + 1] = Y[i] + Q[i] − X[i + 1]

end for
return X[N]

C. Iterative Greedy LMI by Dykstra’s Algorithm

Dykstra’s projection algorithm is an efficient algorithm to
find the projection onto the intersection of two or more convex
sets. Let C and D be two non-empty, closed, and convex sets
in a Hilbert space H. For x0 ∈ H, Dykstra’s algorithm to find
the projection �C∩D(x0) is given by

y[i] = �D(x[i] + p[i]), p[i + 1] = x[i] + p[i] − y[i]

x[i + 1] = �C(y[i] + q[i]), q[i + 1] = y[i] + q[i] − x[i + 1]

for i = 0, 1, 2, . . . with initial values x[0] = x0 and p[0] =
q[0] = 0.

Then we naively apply Dykstra’s algorithm for C = � and
D = �k (which is non-convex), with the projection operators
�� and ��k . Algorithm 1 is the proposed iteration algorithm,
called the iterative greedy LMI.

Since the two projections ��k and �� can be easily com-
puted, Algorithm 1 is an efficient algorithm. However, the
convergence cannot be guaranteed for every initial value X0.
In the next section, we prove the local convergence when the
initial guess is sufficiently close to a point in �k ∩ �.

IV. CONVERGENCE ANALYSIS

To prove the convergence, the following property (local
Kolmogorov criterion) is crucial.

Lemma 2: Let X0 ∈ R
m×n and Y be any matrix in ��k(X0).

Then there exists ε > 0 and an open ball B(Y, ε) � {X ∈
R

m×n : ‖X − Y‖F ≤ ε} such that

〈X0 − Y, X − Y〉F ≤ 0, ∀X ∈ B(Y, ε) ∩ �k (6)

holds.
Proof: If ‖X0‖0 ≤ k then Y = ��k(X0) = X0, and (6)

clearly holds. Hence, we assume ‖X0‖0 > k. Then, by the

definition of k-sparse operator, we have ‖Y‖0 = k, and hence
Y ∈ ∂�k � {X ∈ R

m×n : ‖X‖0 = k}. Then, k elements of Y are
nonzero, and by perturbating these we can choose ε > 0 such
that B(Y, ε) ∩ �k ⊂ ∂�k. It follows from this inclusion that
B(Y, ε) ∩ �k is contained in exactly one of these subspaces,
since �k is the union of linear subspaces of R

m×n. Therefore,
Y is the projection onto this subspace, and from the (global)
Kolmogorov criterion (see, e.g., [27, Sec. 5.1] [42, Th. 1, Sec.
3.12]) it follows that (6) holds.

From this lemma, we can prove the following theorem.
Theorem 1: Suppose that X0 is chosen sufficiently close to a

point X∗ ∈ �k ∩� such that Y[i] in Algorithm 1 is in the same
linear subspace S ∈ �k for any i = 1, 2, . . . Then, the algo-
rithm converges to the projection of X0 onto the intersection
of � and S.

Proof: By the assumption on Y[i] and the local Kolmogorov
criterion (Lemma 2), the convergence proof is reduced to
that for the conventional Dykstra’s algorithm [27] for � and
S. Since � and S are non-empty, closed, and convex sets,
the convergence follows from the convergence result of the
conventional Dykstra’s algorithm.

From this theorem, the choice of initial guess X0 is quite
important. A suggestion of this is to use an �1 solution of
minimizing ‖X‖1 subject to X ∈ �, which is a relaxed convex
problem of Problem 1. See numerical examples in Section V.
On the other hand, if the initial guess X0 is not sufficiently
close to �k ∩ �, then the convergence is not guaranteed. A
typical behavior of the greedy algorithm is oscillatory between
� and a linear subspace S̃ in �k such that � ∩ S̃ = ∅. See
also the example shown in Section V-C.

V. NUMERICAL EXAMPLES

A. Sparse Feedback Gain

We here show a numerical example of the sparse feedback
gain discussed in Section II-A. Let us consider the following
transfer function:

P(s) = s − 10

(s − 1)9(s − 2)(s + 3)
,

and compute the matrices A and B by using ssdata in
MATLAB. Now A ∈ R

11×11 and B ∈ R
11×1. Then we com-

pute the sparse feedback matrix Y ∈ R
1×11 that satisfies (1),

by the �1 relaxation proposed in [43] and the proposed iterative
greedy LMI with sparsity k = 1. The solutions Y1 by �1

optimization and Y0 by the proposed method are obtained as

Y1 = [−0.0027 0.0003 − 0.0001 · · · 1.12 × 10−10
]

Y0 = [−0.00498 0 · · · 0
]

Note that we used Y1 as the initial guess of the iterative greedy
LMI, and iterated 10 times. The proposed greedy algorithm
returned exactly a 1-sparse Y0, while the �1 optimization gave
just an approximately sparse matrix.

B. Sparse Representation of a Graph

In this section, we illustrate the effectiveness of the proposed
approach for sparse control with numerical simulations on
the design of fastest mixing Markov processes described in
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Fig. 3. Structures of optimized networks. Black lines: edges existing in networks optimized by both existing and proposed methods. Red lines:
edges existing only in networks optimized by existing method.

Fig. 4. Sparse FIR filter coefficients obtained by �1 optimization (left), iterative greedy LMI with 22 iterations (center), and 1002 iterations (right).

Section II-B. For the purpose of illustration, we consider the
following three benchmark networks commonly used in the
Network Science [44]; a social network of Zachary’s Karate
club (N = 34 nodes and M = 78 edges), the connectivity
network of states in the USA (N = 49 and M = 107), and a
social network of bottlenose dolphins (N = 69 and M = 159).
The weights of these three networks are optimized for the
maximum algebraic connectivity by the existing method [36]
and by the proposed method. In the proposed method, we
set the sparsity index k to be the maximum integer that does
not exceed (4/5)M, aiming at the reduction of at least 20%
of the total edges. The values of the algebraic connectivity
optimized by the existing and proposed method differ only
slightly; although the existing method achieves higher alge-
braic connectivities, the differences are all less than 10−6.
Then, the structures of the optimized networks are shown in
Fig. 3. We see that the proposed method allows us to design
sparser network structures without significantly altering the
values the algebraic connectivity, confirming the effectiveness
of the proposed method. Specifically, the networks optimized
by the proposed method have 19 (Karate), 33 (USA), and 50
(dolphins) fewer edges than the networks optimized by the
existing method.

C. Sparse FIR Filter Design

Finally, we show an example of sparse FIR filter design dis-
cussed in Section II-C. In this example, we will show not only

the effectiveness of the proposed method but also a demerit,
which greedy algorithms have in general.

We consider the same example as in [39, Sec. 5]. The target
analog filter is

Kc(s) = 0.02567s2 + 0.2636

s3 + 0.594s2 + 0.9388s + 0.2636
,

which is a third-order elliptic filter. The frequency character-
istic of input signals is given by F(s) = 1/(s + 1). We first
solve (3) with λ = 0.01. Fig. 4(a) shows the obtained filter
coefficients. We can see this is already sparse. Let γ ∗ be the
optimal γ in (3) in this case, and we adopt γ̂ � 2γ ∗ to obtain
12-sparse coefficients. That is, we solve the feasibility problem
with k = 12 and the LMIs in (3) with γ = γ̂ . We adopt the
�1-optimal coefficients in Fig. 4(a) as the initial guess for the
iterative greedy LMI algorithm. Note that the LMI is infeasible
over the support set of the 12 largest in magnitude elements
in the �1-optimal coefficients.

Fig. 4(b) is the filter coefficients obtained after 22 iterations
of our algorithm. This is another sparse filter with performance
level 2γ ∗. Then, we continue the iterations, and observe the
result after 1002 iterations. Fig. 4(c) shows the result. This is
not sparse and even worse than the result after 22 iterations. As
mentioned in Section IV, the algorithm converges if the initial
guess is sufficiently close to a feasible solution, but otherwise
it may not converge. The phenomenon shown in Fig. 4(c) well
shows this property. This implies the difficulty of the choice
of an initial guess for a greedy algorithm in general.



NAGAHARA et al.: ITERATIVE GREEDY LMI FOR SPARSE CONTROL 991

VI. CONCLUSION

In this letter, we have proposed a novel algorithm called the
iterative greedy LMI to find a k-sparse matrix (or vector) that
satisfies LMIs. The algorithm is based on Dykstra’s projection
algorithm, for which local convergence is guaranteed. Future
work includes a more efficient method than the �1 solution to
choose the initial guess X0 for the proposed algorithm to meet
the sufficient condition of Theorem 1.
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