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Construction Methods of the Nearest
Positive System
Kazuhiro Sato and Akiko Takeda

Abstract—Positive systems can be used as
mathematical models for many practical systems, such
as biological systems, communication networks, and
interconnected systems. In this letter, we propose proximal
alternating linearized minimization (PALM) and PALM-like
algorithms to determine the nearest discrete-time linear
positive system to a given system, with the same order as
that of the considered system. Global convergence of the
PALM algorithm to a critical point of the considered objec-
tive function is ensured by using the Kurdyka–Łojasiewicz
and semi-algebraic properties. Numerical experiments
are performed to compare the PALM and PALM-like
algorithms.

Index Terms—Identification, optimization, positive
system, proximal alternating linearized minimization.

I. INTRODUCTION

MANY practical systems such as biological
systems [1], [2], communication networks [3], [4], and

interconnected systems [5], [6] can be modeled as positive
systems [7]. Although such systems may in fact be nonlinear
positive systems [8], [9], linear positive systems can be
considered as a first approximation. Therefore, theoretical
results pertaining to linear positive systems have been estab-
lished. In fact, we can find the existing results on positive
realization problems [10], [11], controllability [12], [13],
observability [11], [14], observer synthesis [14], robust
control [15]–[17], and decentralized control [18], [19].
Nevertheless, as indicated in [20], data-driven modeling
methods—which have become a popular research topic in
recent years [21], [22]—for such systems have not been
developed satisfactorily. In particular, it is difficult to identify
a linear positive system by using the existing identification
methods [23]–[27].
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Thus, in this letter, we propose methods for the establish-
ment of a nearest discrete-time linear positive system to a
given discrete-time linear system

{
xt+1 = Ãxt + B̃ut,

yt = C̃xt,
(1)

where xt ∈ R
n, ut ∈ R

m, and yt ∈ R
p respectively denote

the state, input, and output vectors; and Ã, B̃, and C̃ are
constant matrices with corresponding sizes over the set of
real numbers R. The primary objective is to best approximate
system (1), which is not necessarily a positive system, by an
internally positive system{

xt+1 = Axt + But,

yt = Cxt,
(2)

where A, B, and C are constant matrices with appropriate sizes
over R. Here, system (2) is termed internally positive if for any
x0 ≥ 0 and ut ≥ 0, t = 0, 1, . . ., the solution xt, t = 0, 1, . . . ,

to (2) and the output yt, t = 0, 1, . . ., are nonnegative. In [28],
it has been shown that system (2) is internally positive if and
only if A ≥ 0, B ≥ 0, and C ≥ 0.

A few relevant existing studies are as follows: In [29], the
authors proposed scalable identification methods for stable
discrete-time internally positive systems under the assumption
that the input, output, and full state data can be obtained. As
mentioned in [29], the assumption is rather restrictive, because
the state data may not be consistent with a positive realization.
Moreover, although identification methods for discrete-time
externally positive systems were proposed in [20], several of
the results provided in [5], [7], [15], [17]–[19] for internally
positive systems cannot be used. Here, system (2) is called
externally positive if ut ≥ 0 implies yt ≥ 0 for t = 0, 1, . . .

Clearly, an internally positive system is externally positive.
Furthermore, in [30], the author developed a construction
method for finding the nearest stable Metzler matrix by using
the dissipative Hamiltonian theory; that is, a continuous-time
case with no input and output was considered. However, this
case does not correspond to the discrete-time case with input
and output considered in this letter.

The contributions of this letter can be summarized as
follows.

• We provide a formulation of the minimization problem
for finding the nearest internally positive system of the
same order as the given system, and then establish a
simpler problem.
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• We develop a proximal alternating linearized
minimization (PALM) [31] algorithm for the estab-
lished simpler problem, and subsequently propose a
PALM-like algorithm for the general problem.

• For the PALM algorithm, global convergence to a critical
point of the considered objective function is ensured by
using the Kurdyka–Łojasiewicz (KL) and semi-algebraic
properties.

The remaining paper is organized as follows. The formula-
tion of the problem is presented in Section II. The development
of the PALM and PALM-like algorithms for solving the
considered problems is described in Section III. Section IV
presents the analysis of the convergence of the sequence gen-
erated by the PALM algorithm. In Section V, the comparison
of the PALM and PALM-like algorithms is described, and the
conclusions are presented in Section VI.

Notation: The set of real numbers is denoted by R. We
define R+ := {x ∈ R | x ≥ 0}. If A ∈ R

n×m+ , A ≥ 0. Given
matrices A, B ∈ R

n×n, 〈A, B〉 is the Euclidean inner product,
and ‖A‖F is the Frobenius norm; i.e., 〈A, B〉 := tr (A�B) and
‖A‖F := √〈A, A〉, where the superscript � denotes the trans-
pose and tr(A) denotes the sum of the diagonal elements of A.
The symbols GL(n) and O(n) denote the general linear group
and orthogonal group in R

n×n, respectively.

II. PROBLEM SETTING

This section describes the formulation of the two problems
addressed in this letter.

Even if system (1) is not internally positive,{
x̄t+1 = T−1ÃTx̄t + T−1B̃ut,

yt = C̃Tx̄t
(3)

may be internally positive, where xt = Tx̄t and T ∈ GL(n). In
other words, it may be possible to find a basis change matrix
T ∈ GL(n) such that system (3) is internally positive. In this
case, there are A ≥ 0, B ≥ 0, C ≥ 0, and T ∈ GL(n) such that
F(A, B, C, T) = 0, where

F(A, B, C, T) := 1

2
‖A − T−1ÃT‖2

F + γ1

2
‖B − T−1B̃‖2

F

+ γ2

2
‖C − C̃T‖2

F. (4)

Here, γ1 > 0 and γ2 > 0 are fixed parameters that represent
the weights of each term. However, in general, A ≥ 0, B ≥ 0,
C ≥ 0, and T ∈ GL(n) may not necessarily exist. Therefore, to
construct the nearest positive system for all cases, we consider
the following non-convex optimization problem.

Problem 1:

minimize F(A, B, C, T)

subject to A ≥ 0, B ≥ 0, C ≥ 0, T ∈ GL(n).

Note that the objective function F(A, B, C, T) is not defined
on (Rn×n × R

n×m × R
p×n) × R

n×n, although it is defined on
(Rn×n ×R

n×m ×R
p×n)× GL(n). This aspect is the reason for

the difficulty in developing an efficient algorithm for solving
Problem 1, as further explained in Section III-B.

To overcome this limitation, we replace the constraint T ∈
GL(n) in Problem 1 with U ∈ O(n), in which the orthogonal

group O(n) is the maximal compact subgroup of GL(n). The
modified problem is equivalent to the following problem.

Problem 2:

minimize F̃(A, B, C, U)

subject to A ≥ 0, B ≥ 0, C ≥ 0, U ∈ O(n).

Here, F̃(A, B, C, U) := 1
2‖A‖2

F − 〈A, U�ÃU〉 + γ1(
1
2‖B‖2

F −
〈B, U�B̃〉) + γ2(

1
2‖C‖2

F − 〈C, C̃U〉). The equivalence follows
from F(A, B, C, U) = F̃(A, B, C, U) + 1

2 (‖Ã‖2
F + γ1‖B̃‖2

F +
γ2‖C̃‖2

F) subject to U ∈ O(n), where Ã, B̃, and C̃ are con-
stant matrices. Note that F̃(A, B, C, U) is defined on (Rn×n ×
R

n×m ×R
p×n)×R

n×n in contrast to the case of F(A, B, C, T).
Remark 1: As mentioned already, the parameters γ1 and γ2

are the weights of each term in the objective function defined
by (4). Thus, if the eigenvalues of A are desired to be as close
as possible to those of Ã, it is preferable to choose sufficiently
small values of γ1 and γ2. This is because the eigenvalues of
Ã and T−1ÃT coincide.

Remark 2: The search space for Problem 2 is narrower than
that for Problem 1. However, Problems 1 and 2 are both non-
convex. Consequently, in practice, one can determine only
local optimal solutions to Problems 1 and 2. That is, a solution
attained using an algorithm for Problem 2 may be better than
that for Problem 1, as demonstrated later in Section V.

III. ALGORITHMS FOR SOLVING PROBLEMS 1 AND 2

This section describes two algorithms for solving
Problems 1 and 2. Because it is easier to develop an algorithm
for Problem 2 than Problem 1, first, a PALM [31] algorithm
for Problem 2 is developed, and subsequently, we develop a
PALM-like algorithm for Problem 1.

A. PALM Algorithm for Solving Problem 2

To develop the PALM algorithm for solving Problem 2, we
reformulate Problem 2 into the following PALM-applicable
form by introducing the indicator function

IS(X) :=
{

0, X ∈ S,

∞, X �∈ S,

where S is an arbitrary set.
Problem 3:

minimize α̃(W, U) := f (W) + IO(n)(U) + H̃(W, U)

subject to W = (A, B, C) ∈ R
n×n × R

n×m × R
p×n,

U ∈ R
n×n.

Here,

f (W) := I
R

n×n+ (A) + I
R

n×m+ (B) + I
R

p×n
+

(C), (5)

and H̃(W, U) := F̃(A, B, C, U). Note that f is convex and
nonsmooth; H̃ is differentiable in terms of W on R

n×n ×
R

n×m × R
p×n and U on R

n×n, and their gradients are
Lipschitz-continuous, as shown later.

In the PALM algorithm [31], we consider the proximal
regularization of the Gauss-Seidel scheme:

Wk+1 ∈ argmin
W

�̃1(W, Uk), (6)
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Algorithm 1 PALM Algorithm for Problem 2

1: Set (A0, B0, C0, U0) ∈ R
n×n × R

n×m × R
p×n × R

n×n, and
cW , cU > 1.

2: for k = 0, 1, 2, . . . do
3: Set ηk = cWLW , and compute (8), (9), and (10).
4: Set μk = cULU(Wk+1), and compute (12).
5: end for

Uk+1 ∈ argmin
U

�̃2(Wk+1, U), (7)

where �̃1(W, Uk) := 〈∇WH̃(Wk, Uk), W − Wk〉 + ηk
2 ‖W −

Wk‖2
F + f (W) and �̃2(Wk+1, U) := 〈∇UH̃(Wk+1, Uk), U −

Uk〉 + μk
2 ‖U − Uk‖2

F + IO(n)(U), and ηk, μk > 0 are the
parameters which are determined later. Here, ∇WH̃(W, U) =
(A − U�ÃU, γ1(B − U�B̃), γ2(C − C̃U)) and ∇UH̃(W, U) =
−Ã�UA− ÃUA� −γ1B̃B� −γ2C̃�C. The function �̃1(W, Uk)

is separable in terms of (A, B, C), because �̃1(W, Uk) =
〈Ak − U�

k ÃUk, A − Ak〉 + ηk
2 ‖A − Ak‖2

F + I
R

n×n+ (A) + γ1〈Bk −
U�

k B̃, B − Bk〉+ ηk
2 ‖B − Bk‖2

F +I
R

n×m+ (B)+ γ2〈Ck − C̃Uk, C −
Ck〉 + ηk

2 ‖C − Ck‖2
F + I

R
p×n
+

(C). Thus, the optimal solution
to (6) is given by

Ak+1 = max

(
Ak − 1

ηk
(Ak − U�

k ÃUk), 0

)
, (8)

Bk+1 = max

(
Bk − γ1

ηk
(Bk − U�

k B̃), 0

)
, (9)

Ck+1 = max

(
Ck − γ2

ηk
(Ck − C̃Uk), 0

)
, (10)

where the max operation is applied component-wise.
Moreover, (7) is equivalent to

Uk+1 ∈ argmin
U∈O(n)

μk

2
‖U − (Uk − 1

μk
Vk)‖2

F (11)

with Vk := ∇UH̃(Wk+1, Uk). According to [32, Sec. 12.4], if
the singular value decomposition of Uk − 1

μk
Vk is given by

Ūk�kV̄�
k , the solution to (11) can be computed by

Uk+1 = ŪkV̄�
k . (12)

Algorithm 1 describes the PALM algorithm for solving
Problem 3. Here, LW and LU(W) denote the Lipschitz con-
stants for ∇WH̃(W, U) and ∇UH̃(W, U), respectively. That is,
LW satisfies ‖∇WH̃(W1, U) − ∇WH̃(W2, U)‖F ≤ LW‖W1 −
W2‖F for any W1, W2 ∈ R

n×n ×R
n×m ×R

p×n, and LU(W) sat-
isfies ‖∇UH̃(W, U1) − ∇UH̃(W, U2)‖F ≤ LU(W)‖U1 − U2‖F
for any U1, U2 ∈ R

n×n. Via direct calculation, we can obtain

LW = max(1, γ1, γ2), (13)

LU(W) = 2‖A‖F · ‖Ã‖F. (14)

Hence, ηk = cWLW for each k = 0, 1, 2, . . . In other words,
in practice, instead of calculating ηk at step 3, it is sufficient
to calculate η0 at step 1. Note that ηk and μk in Algorithm 1
ensure that the objective function decrease monotonically. The
parameters cW , cU > 1 relate to the convergence speed, as
illustrated in Section V.

Remark 3: To solve Problem 2, instead of Algorithm 1,
we can also use the proximal alternating projection method

(PAPM) proposed in [33]. In this case, similar update formu-
las on A, B, and C with (8), (9), and (10) can be obtained.
However, update formula (11) is replaced with

Uk+1 ∈ argmin
U∈O(n)

h(U), (15)

where h(U) := −〈Ak+1, U�ÃU〉 − γ1〈Bk+1, U�B̃〉 −
γ2〈Ck+1, C̃U〉 + μk

2 ‖U − Uk‖2
F. Unfortunately, it is difficult

to obtain a closed-form solution for (15) unlike for (11).
Although we can develop a Riemannian optimization algo-
rithm for solving (15) by regarding the orthogonal group O(n)

as a Riemannian manifold [34], its use is less efficient than
using a closed-form solution. Thus, it can be considered that
Algorithm 1 is more efficient than the PAPM for several cases.

B. PALM-Like Algorithm for Solving Problem 1

To develop an algorithm for solving Problem 1, we refor-
mulate the problem as follows.

Problem 4:

minimize α(W, T) := f (W) + IGL(n)(T) + H(W, T)

subject to W = (A, B, C) ∈ R
n×n × R

n×m × R
p×n,

T ∈ R
n×n.

Here, f (W) is defined as in (5), and H(W, T) := F(A, B, C, T).
Although H is differentiable in terms of W on R

n×n ×R
n×m ×

R
p×n and T on GL(n), the function is not differentiable in

terms of T on R
n×n. In particular, the function H is not

defined on (Rn×n × R
n×m × R

p×n) × R
n×n. Thus, to solve

Problem 4, we cannot adopt the PALM algorithm unlike for
Problem 3, because the algorithm requires that H is differen-
tiable on (Rn×n × R

n×m × R
p×n) × R

n×n. However, we can
develop a PALM-like algorithm as follows.

To develop a PALM-like algorithm, we consider

Wk+1 ∈ argmin
W

�1(W, Tk), (16)

Tk+1 ∈ argmin
T

�2(Wk+1, T), (17)

where �1(W, Tk) := 〈∇WH(Wk, Tk), W − Wk〉 + ηk
2 ‖W −

Wk‖2
F + f (W) and �2(Wk+1, T) := 〈∇TH(Wk+1, Tk), T −

Tk〉 + μk
2 ‖T − Tk‖2

F + IGL(n)(T). Here, ∇WH(W, T) and
∇TH(W, T) denote the gradients of H(W, T) with respect
to W on R

n×n × R
n×m × R

p×n and T on GL(n), respec-
tively, and they can be computed by ∇WH(W, T) = (A −
T−1ÃT, γ1(B − T−1B̃), γ2(C − C̃T)) and ∇TH(W, T) =
(T−1)�(A−T−1ÃT)T�Ã�(T−1)�− Ã�(T−1)�(A−T−1ÃT)+
γ1(T−1)�(B − T−1B̃)B̃�(T−1)� − γ2C̃�(C − C̃T). Similar to
that for (6), the optimal solution for (16) is given by

Ak+1 = max

(
Ak − 1

ηk
(Ak − T−1

k ÃTk), 0

)
, (18)

Bk+1 = max

(
Bk − γ1

ηk
(Bk − T−1

k B̃), 0

)
, (19)

Ck+1 = max

(
Ck − γ2

ηk
(Ck − C̃Tk), 0

)
. (20)

In addition, (17) is equivalent to

Tk+1 ∈ argmin
T∈GL(n)

g(T), (21)
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Algorithm 2 Steepest Descent Method for Problem (21)

1: Set an initial point T0 ∈ GL(n).
2: for j = 0, 1, 2, . . . do
3: Determine the search direction ξj ∈ TTj GL(n) ∼= R

n×n

using ξj = −grad g(Tj).
4: Compute the step size tj > 0 and iterate

Tj+1 = Tj exp(tj(T
j)−1ξj).

5: end for

where g(T) := μk
2 ‖T − (Tk − 1

μk
∇TH(Wk+1, Tk))‖2

F .
Specifically, the update formula for T can be obtained by
solving the minimization problem of g(T) on the general lin-
ear group GL(n). Algorithm 2 represents the steepest descent
method for solving problem (21) using the gradient

grad g(T) = μk(T − Tk) − ∇TH(Wk+1, Tk)

and the Lie group exponential map. In particular, because
GL(n) is a Lie group and R

n×n can be regarded as Lie alge-
bra of GL(n), we can use the Lie group exponential map
on GL(n) in step 4, where exp denotes the usual matrix
exponential map [35]. As the step size tj > 0 at step 4,
we can employ the Armijo step size [34]. Note that if
Tk − 1

μk
∇TH(Wk+1, Tk) ∈ GL(n), the optimal solution to (21)

is given by

Tk+1 = Tk − 1

μk
∇TH(Wk+1, Tk). (22)

In this case, we do not need to use Algorithm 2.
Algorithm 3 describes the PALM-like algorithm for solving

Problem 1. The differences between Algorithms 1 and 3 can
be summarized as follows:

1) Although the initial point (A0, B0, C0, U0) in
Algorithm 1 can be selected from R

n×n × R
n×m ×

R
p×n × R

n×n, (A0, B0, C0, T0) in Algorithm 3 must
be chosen from R

n×n × R
n×m × R

p×n × GL(n).
That is, we cannot select T0 in Algorithm 3 from an
arbitrary element in R

n×n unlike for the case of U0 in
Algorithm 1.

2) The parameters ηk and μk in Algorithm 1 were defined
by ηk = cWLW and μk = cULU(Wk+1) with cW , cU > 1,
because in this case, we can guarantee the global con-
vergence to a critical point of the objection function, as
described later in Section IV. In contrast, the param-
eters in Algorithm 3 were not defined, because the
Lipschitz constant corresponding to LU(W) cannot be
defined in the case of Problem 4. As a result, it is diffi-
cult to guarantee the global convergence in the case of
Algorithm 3.

3) Unlike in the case of Algorithm 1, we may need to use
Algorithm 2 at step 8 in Algorithm 3. That is, in general,
we must use the nested iterative schemes in the case of
Algorithm 3.

Remark 4: Algorithms 1 and 3 can be used to identify
discrete-time linear internally positive systems. The procedure
can be summarized as follows.

1) Identify (Ã, B̃, C̃) for system (1) using the existing
identification methods [23]–[27].

Algorithm 3 PALM-Like Algorithm for Problem 1

1: Set (A0, B0, C0, T0) ∈ R
n×n × R

n×m × R
p×n × GL(n).

2: for k = 0, 1, 2, . . . do
3: Set ηk, μk, and compute (18), (19), and (20).
4: if Tk − 1

μk
∇TH(Wk+1, Tk) ∈ GL(n) then

5: Compute (22).
6: else
7: Compute (21) using Algorithm 2.
8: end if
9: end for

2) Construct (A, B, C) satisfying A ≥ 0, B ≥ 0, and C ≥ 0
by using Algorithm 1 or 3.

Step 2 is required to obtain an internally positive system
because, in general, (Ã, B̃, C̃) generated in step 1 is not
internally positive.

IV. CONVERGENCE ANALYSIS OF ALGORITHM 1

This section proves the following theorem.
Theorem 1: Assume that ‖Ã‖F > 0, infk ‖Ak‖F > 0, and

{(Wk, Uk)} is a bounded sequence generated by Algorithm 1,
where Wk := (Ak, Bk, Ck). Then, the sequence {(Wk, Uk)}
converges to a (limiting) critical point (W∗, U∗) of the objec-
tive function α̃ in Problem 3; i.e., a point (W∗, U∗) satisfies
(0, 0) ∈ ∂α̃(W∗, U∗), where ∂α̃(W, U) denotes the (limiting)
subdifferential of α̃ at (W, U) ∈ (Rn×n×R

n×m×R
p×n)×R

n×n.
To this end, we need to show that the objective function α̃

satisfies the following KL property [31], [33].
Definition 1: Let σ : R

n → R ∪ {∞} be proper and lower
semicontinuous. The function σ is said to have the KL prop-
erty at x∗ ∈ dom ∂σ := {x ∈ R

n | ∂σ(x) �= ∅} if there exist
η ∈ (0,∞], a neighborhood U of x∗, and a continuous concave
function φ : [0, η) → R+ with φ(0) = 0 such that

1) φ is C1 on (0, η), and φ′(s) > 0 for all s ∈ (0, η), where
φ′ denotes the derivative of φ.

2) for all x in U ∩{x ∈ R
n | σ(x∗) < σ(x) < σ(x∗)+η}, the

KL inequality φ′(σ (x)− σ(x∗)) inf{‖y‖ | y ∈ ∂σ(x)} ≥ 1
holds.

Moreover, if σ satisfies the KL property at each point of
dom ∂σ , then σ is called a KL function.

According to [31], the following propositions hold.
Proposition 1: Suppose that {(Wk, Uk)} is a bounded

sequence generated using Algorithm 1. Moreover, suppose that
the objective function α̃(W, U) in Problem 3 is a KL function
that satisfies the following:

1) infW,U α̃(W, U) > −∞, infW f (W) > −∞, and
infU IO(n)(U) > −∞.

2) There exists L1(U) such that ‖∇WH̃(W1, U) −
∇WH̃(W2, U)‖F ≤ L1(U)‖W1 −W2‖F for any W1, W2 ∈
R

n×n ×R
n×m ×R

p×n. Similarly, there exists L2(W) such
that ‖∇UH̃(W, U1) − ∇UH̃(W, U2)‖F ≤ L2(W)‖U1 −
U2‖F for any U1, U2 ∈ R

n×n. Moreover, there exist
positive real numbers λ−

1 , λ+
1 , λ−

2 , and λ+
2 such that

infk{L1(Uk)} ≥ λ−
1 , infk{L2(Wk)} ≥ λ−

2 , supk{L1(Uk)} ≤
λ+

1 , and supk{L2(Wk)} ≤ λ+
2 .

3) The gradient ∇H̃(W, U) is Lipschitz continuous on the
bounded subsets of (Rn×n × R

n×m × R
p×n) × R

n×n.
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Fig. 1. F (Ak ,Bk ,Ck ,Uk )
F (A0,B0,C0,U0) obtained using Algorithm 1, and F (Ak ,Bk ,Ck ,Tk )

F (A0,B0,C0,T0)
obtained using Algorithm 3 for Case 1. The left (right) figure shows
the result for the case in which the system has an internally positive
realization by acting the orthogonal (general linear) group.

Then, the sequence {(Wk, Uk)} converges to a critical point
(W∗, U∗) of α̃.

Proposition 2: Let σ : R
n → R ∪ {∞} be a proper and

lower semicontinuous function. If σ is semi-algebraic, then it
satisfies the KL property at any point of dom σ .

Because the objective function α̃(W, U) is semi-
algebraic [31], α̃(W, U) satisfies the KL property. Moreover,
α̃(W, U) satisfies 1), 2), and 3) in Proposition 1 under the
assumption of Theorem 1. In fact, 1) is clear, and 3) follows
from the mean value theorem. To see that α̃(W, U) satisfies
2) in Proposition 1 under the assumption of Theorem 1,
note that L1(U) and L2(W) are equal to LW of (13) and
LU(W) of (14), respectively. Thus, infk{L1(Uk)} ≥ 1,
supk{L1(Uk)} ≤ max(1, γ1, γ2), and infk{L2(Wk)} > 0.
Moreover, the boundedness of {(Wk, Uk)} implies that {Ak}
is a bounded sequence. That is, there exists a > 0 such that
‖Ak‖F < a for any k, and thus supk{L2(Wk)} ≤ 2a · ‖Ã‖F .
Therefore, α̃(W, U) satisfies 2) in Proposition 1, because we
have assumed ‖Ã‖F > 0.

Considering this discussion, Propositions 1 and 2 imply
Theorem 1.

V. NUMERICAL EXPERIMENTS

This section provides the comparison of Algorithms 1 and 3.
It should be noted that the parameters ηk and μk in
Algorithm 3 were defined as ηk = cW max(1, γ1, γ2) and
μk = 2cU‖A‖F · ‖Ã‖F , respectively. That is, the parame-
ters in Algorithm 3 were determined in a similar manner as
in Algorithm 1. The parameters γ1 and γ2 in the objective
function were both equal to 1. The initial points (A0, B0, C0)

in Algorithms 1 and 3 were equal and chosen randomly.
Moreover, we selected U0 = T0 = In.

A. Case 1 (Internally Positive System)

We generated two systems with (n, m, p) = (4, 2, 1),
which can be expressed using (1). The first system admits an
internally positive realization by acting O(4); i.e., there exists
U ∈ O(4) such that U�ÃU ≥ 0, U�B̃ ≥ 0, and C̃U ≥ 0. The
second system admits an internally positive realization by act-
ing GL(4); i.e., there exists T ∈ GL(4) such that T−1ÃT ≥ 0,
T−1B̃ ≥ 0, and C̃T ≥ 0.

The left (right) part of Fig. 1 shows the relative objec-
tive values attained by Algorithms 1 and 3 in the case of
the first (second) system, where (cW , cU) in Algorithm 1

Fig. 2. F (Ak ,Bk ,Ck ,Uk )
F (A0,B0,C0,U0) obtained using Algorithm 1, and F (Ak ,Bk ,Ck ,Tk )

F (A0,B0,C0,T0)
obtained using Algorithm 3 for Case 2. The left and right figures per-
tain to the cases in which (cW ,cU ) = (2,2) and (cW ,cU ) = (100,100),
respectively.

were assigned values of (2, 2). According to the left part
of Fig. 1, Algorithm 1 produced A, B, C, and U satisfying
F(A, B, C, U) ≈ 0; however, A, B, C, and T generated by
Algorithm 3 did not satisfy F(A, B, C, U) ≈ 0. Moreover, the
right figure showed that Algorithm 1 generated a better solu-
tion than Algorithm 3 in the iterations. These cases indicate
that for Problem 1, Algorithm 3 does not always generate
better solutions than Algorithm 1, although the search space
of Problem 1 is broader than that of Problem 2. This find-
ing is a result of non-convexity of the considered problem, as
mentioned in Remark 2.

B. Case 2 (Externally Positive System)

We set

Ã = 0.9

⎛
⎜⎝

cos(
√

2
π

) sin(
√

2
π

) 0

− sin(
√

2
π

) cos(
√

2
π

) 0
0 0 1

⎞
⎟⎠, B̃ =

⎛
⎝0.5

0.6
1

⎞
⎠,

C̃ = (
0.5 0.5 1

)
.

According to [20], this system is an externally positive system
that does not admit an internally positive system.

Fig. 2 shows the relative objective values obtained using
Algorithms 1 and 3; the left and right parts pertain to the
cases of (cW , cU) = (2, 2) and (cW , cU) = (100, 100), respec-
tively. According to Fig. 2, Algorithm 3 generated a better
solution than Algorithm 1 for this case. In particular, the left
and right figures indicate that the oscillation of the sequence
generated by Algorithm 3 decreased as cW and cU increased;
however, the convergence speeds of Algorithms 1 and 3 were
low. Moreover, it was verified that the relative objective val-
ues in this case were larger than those for Case 1, because
the system did not admit an internally positive system in
contrast to the system in Case 1. However, the dominant eigen-
value of Ã nearly coincided with those of A generated using
Algorithms 1 and 3. That is, from the perspective of the eigen-
values, we could construct an internally positive system near
the original system.

Remark 5: We also generated a number of random
(Ã, B̃, C̃) which were not externally positive. These cases
occur frequently when we perform step 1, as mentioned in
Remark 4. In these cases, Algorithm 3 generated better solu-
tions than Algorithm 1. However, similar to in Case 2, the
sequence generated by Algorithm 3 oscillated when cW and cU
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were small. In contrast, the sequence generated by Algorithm 1
always decreased monotonically.

VI. CONCLUSION

We developed PALM and PALM-like algorithms for deter-
mining the nearest discrete-time linear positive system for a
given system discrete-time system, with the same order as
that of the considered system. For the PALM algorithm, the
global convergence property to a critical point of the consid-
ered objective function was guaranteed by using the KL and
semi-algebraic properties. Through numerical experiments, we
demonstrated the effectiveness of the proposed algorithms.

The following issues must be addressed in future studies.
1) The analysis of the convergence rate of the PALM

algorithm can be reduced to studying the KL expo-
nent in several cases [31], [33]. Because α̃(W, U) in
Problem 3 is semi-algebraic, the function has a KL expo-
nent in [0, 1). However, the determination of the KL
exponent is considerably difficult because of the term
〈A, U�ÃU〉 in α̃. In fact, although a few results pertain-
ing to these determination have been reported, as in [36],
these results cannot be used due to the existence of the
term. Consequently, the analysis of the convergence rate
of Algorithm 1 would be investigated in future work.

2) Although we defined ηk and μk in Algorithm 3 in a sim-
ilar manner as in Algorithm 1 in Section V, the sequence
generated using Algorithm 3 oscillated in contrast to that
of Algorithm 1. The development of a method for set-
ting ηk and μk in Algorithm 3 such that a monotonically
decreasing sequence is obtained would be considered in
future work.

3) The findings for Case 2, as reported in Section V,
demonstrated that there may be an internally positive
system near a given externally positive system. This
leads to the conjecture that the set of all internally
positive systems is a dense subset of the set of all exter-
nally positive systems in a sense. The analysis of the
conjecture would be considered in future work.
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