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Connectivity and Synchronization in Bounded
Confidence Kuramoto Oscillators

Trisha Srivastava , Carmela Bernardo , Claudio Altafini , Senior Member, IEEE,
and Francesco Vasca , Senior Member, IEEE

Abstract—Frequency synchronization of bounded con-
fidence Kuramoto oscillators is analyzed. The dynamics
of each oscillator is defined by the average of the phase
differences with its neighbors, where any two oscillators
are considered neighbors if their geodesic distance is less
than a certain confidence threshold. A phase-dependent
graph is defined whose nodes and edges represent the
oscillators and their connections, respectively. It is studied
how the connectivity of the graph influences steady-state
behaviors of the oscillators. It is proved that the oscillators
synchronize asymptotically if the subgraph of each parti-
tion, possibly not complete, eventually remains constant
over time. Simulation results show the application of the
theoretical findings also in the presence of oscillators
having different natural frequencies.

Index Terms—Kuramoto oscillators, networks, bounded
confidence opinion dynamics, synchronization, clustering.

I. INTRODUCTION

SYNCHRONIZATION is one of the most interesting col-
lective behaviors observed in many physical, biological,

chemical, and social systems. The emergent behaviors of many
of these systems depend on how the individuals in the system
interact with each other over time. Some of these behaviors
can be studied if each individual unit is modeled as a phase
oscillator. The Kuramoto model [1], [2] consists of a set of
phase oscillators where the intensity of interactions depends
on pairwise phase differences. For this model synchronization
means that the phase difference between any two oscillators
remains constant over time.
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On the basis of how the oscillators are selected to explain
the evolution, different variations of the Kuramoto model
can be obtained [3]. A mean-field model is obtained if
there is an all-to-all coupling among the oscillators. In
many practical scenarios individuals may have only a limited
range of interaction with others. This is taken into account
in the nearest-neighbor model where the time-evolution of
an oscillator is affected only by the closest neighbor [4].
This model does not cover all aspects of the limited range
interaction because the nearest neighbor may be at a large
phase distance. This motivates the bounded confidence
Kuramoto oscillators (BCKO) model, which is discussed in
this letter, where the neighbors of an oscillator are those at
geodesic distances less than a confidence bound.

The analysis of the BCKO model is still at its infancy. The
idea of BCKO was introduced for the first time in [5] where
different types of synchronized states with typical phenomena
of opinion dynamics, such as consensus, polarization, and
fragmentation [6], [7], were discussed. A notion of BCKO can
be found in [8], [9] which discusses about oscillators arranged
in a ring structure and only the oscillators in proximity can
influence each other. Bounded confidence opinion dynamics
is the basic inspiration also for the BCKO in [10] where a
bimodal distribution of natural frequencies is considered and
the influence of the amplitude of the confidence bound on
the clusters achieved at steady-steady is studied. The BCKO
model analyzed in [5], [10] considers the time-evolution of an
oscillator as given by taking the sines of the phase differences
with its neighbors. The summation of these sines is averaged
over the total number of oscillators in the system.

In this letter a discrete-time BCKO model is proposed
which differs from the ones mentioned in [5], [8], [9], [10] in
two aspects: first, as considered in many bounded confidence
opinion dynamics models [11], the average is taken over the
number of neighbors, which makes the analysis nontrivial
because at each time-instant the number of neighbors may
vary depending on the phases of the oscillators; and second,
motivated by the fact that bounded confidence implies small
distances between interacting oscillators, it is shown that
a suitable selection of the coupling function allows one
to reformulate the Kuramoto model dynamics in terms of
phase differences, differently from [5], [10]. The resulting
model appears to be similar to Hegselmann–Krause opinion
dynamics [11], [12] but it differs from it for three major
reasons: i) in the BCKO a cyclic behavior is utilized, ii) dif-
ferently from the opinions, the range of phases is not always

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0007-7747-1440
https://orcid.org/0000-0002-6936-2427
https://orcid.org/0000-0003-4142-6502
https://orcid.org/0000-0002-0960-8683


SRIVASTAVA et al.: CONNECTIVITY AND SYNCHRONIZATION IN BCKO 875

decreasing over time, iii) there are exogenous inputs. By
leveraging the row-stochastic and type-symmetric properties
of the adjacency matrices of the phase-dependent graphs of
BCKO, sufficient conditions for the asymptotic convergence
to frequency synchronization are provided.

The rest of this letter is organized as follows. In Section II
the structure of the proposed BCKO model is presented.
Discussions on frequency synchronization with respect to clus-
tering and connected subgraphs are presented in Section III.
The asymptotic convergence to frequency synchronization
under suitable conditions is proved in Section IV and cor-
responding numerical results are discussed in Section V.
Section VI summarizes conclusions and future work.

A. Notation and Preliminaries
The following notation and definitions are adopted through-

out this letter: R (R+) is the set of real (positive) numbers;
N is the set of positive natural numbers; N ⊂ N is used to
indicate the set of consecutive natural numbers from 1 to N,
i.e., N = {1, 2, . . . , N}; for any x ∈ R the absolute value of x
is expressed by |x|; for any pair of phases θi ∈ R and θj ∈ R

the geodesic distance between θi and θj is the angular length
of the minimum path between θi and θj on the unit circle,
i.e., ‖θj−θi‖ = min{|θ̂j− θ̂i|, 2π −|θ̂j− θ̂i|}, where θ̂i and θ̂j are
the phases reported to the interval [0, 2π); for any finite set S
the notation |S| stands for the size of the set S. Given a finite
set S, a partition of S is a finite family {P�}L

�=1, L ≥ 1, of its
disjoint subsets P� ⊆ S, such that

⋃L
�=1 P� = S. A matrix A

is type-symmetric if there exists α ≥ 1 such that α−1[A]ji ≤
[A]ij ≤ α[A]ji for all i, j, where [A]ij is the i-th row and j-th
column entry of the matrix A; a matrix A is row-stochastic
(column-stochastic) if A1 = 1 (1	A = 1	), where 1 represents
a column vector of all ones of suitable dimension; a matrix A
is entrywise nonnegative if [A]ij ≥ 0 for all i, j. The following
result is proved in [11, Corollary 7]: given a sequence of row-
stochastic and type-symmetric matrices A0, A1, . . . , Ak, . . . ,
if all matrices have strictly positive diagonal entries, then the
product

∏0
i=k Ai = AkAk−1 · . . . · A0 converges to a constant

matrix when k goes to infinity. A graph is a pair of sets of
nodes and edges (or arcs) between the nodes; a subgraph is a
subset of nodes of a graph with the corresponding edges; an
(undirected) graph is connected if there exists a path between
any pair of nodes; a graph is complete if there exists an edge
between any pair of nodes of the graph.

II. BOUNDED CONFIDENCE KURAMOTO MODEL

In this section the proposed BCKO model is introduced
starting from the bounded confidence concept applied to
classical Kuramoto models.

A. Kuramoto Oscillators
The Kuramoto model describes the coupling of N oscilla-

tors, each having a constant natural frequency ωi ∈ R, i ∈ N.
The dynamics of the i-th oscillator can be represented by the
following scalar continuous-time differential equation

θ̇i(t) = ωi +
N∑

j=1

γij(θ) sin
(
θj(t) − θi(t)

)
, (1)

where θi(t) is the phase of the i-th oscillator at time t and γij(θ)

is the coupling function between the i-th and j-th oscillators,
i, j ∈ N, see [3], [13], [14]. By discretizing (1) with the
forward Euler discretization technique one obtains

θ+
i = θi + hωi + h

N∑

j=1

γij(θ) sin
(
θj − θi

)
, (2)

where h ∈ R+ is the sampling period; for simplicity of
notation, θi without any argument indicates the phase of the
i-th oscillator at the discrete time-step k ∈ N and θ+

i stands
for the phase at the next step k + 1, i ∈ N, k ∈ N.

Different choices of the coupling functions γij(θ), i, j ∈ N,
lead to variants of the Kuramoto model. In the classical
Kuramoto oscillator model a constant all-to-all coupling of the
oscillators is considered, i.e., γij(θ) = γ /N for some positive
γ , for all θ and for all i, j ∈ N, see [2], [3]. Note that the
coefficient 1/N highlights a sort of averaging operation.

B. Coupled Oscillators With Bounded Confidence
A useful representation of the model (2), when a specific

set of connections among the oscillators is assumed, consists
of considering a graph whose nodes are the oscillators. When
the coupling function γij(θ) is nonzero, an edge from the node
i to the node j is assumed to exist and the edge weight is given
by γij(θ). In this case the node j is said to belong to the set
of neighbors of the node i, which is indicated by Ni(θ) ⊆ N.
Otherwise, if γij(θ) = 0 then there is no edge from the node
i to the node j.

A particular class of (2) is obtained if only some of the
oscillators are taken into account to determine the dynamics
which leads to the so-called BCKO model [10]. In this model
each oscillator has a “confidence threshold”, say �, which
defines the range within which it will consider other oscillators
as neighbors [15]. In this sense, the model utilizes the
same behavior described by the Hegselmann–Krause model of
opinion dynamics [16], [17].

The BCKO considered in [5], [10] corresponds to a specific
choice of the function γij(θ) which can be expressed as

γij(θ) = 1

N
φ
(
θi, θj

)
, (3)

with

φ
(
θi, θj

) =
{

1, if ‖θj − θi‖ ≤ �,

0, otherwise, (4)

where ‖θj − θi‖ ∈ [0, π) is the geodesic distance between θj
and θi, for all i, j ∈ N. By using (3)–(4) the model (2) can be
written in the following form

θ+
i = θi + hωi + h

N

∑

j∈Ni(θ)

φ
(
θi, θj

)
sin

(
θj − θi

)
(5)

for all i ∈ N. Notably in the summation on the right hand
side of (5) there are at maximum |Ni(θ)| nonzero terms, but
the division is made with the coefficient 1/N, i.e., it is similar
of taking an average on the total number of oscillators N. It
is straightforward to see that in the case � ≥ π the classical
Kuramoto model with all-to-all coupling is recovered.
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C. Proposed BCKO
In order to define the BCKO model analyzed in this letter,

let us consider

γij(θ) = η

|Ni(θ)|φ
(
θi, θj

) θj − θi

sin
(
θj − θi

) , (6)

where η > 0 is the coupling gain, φ(θi, θj) is given by (4) and

j ∈ Ni(θ) ⇐⇒ φ
(
θi, θj

) = 1 (7)

for all i, j ∈ N. Note that from (6) it follows that
limθj→θi γij(θ) = η/|Ni(θ)| for all i, j ∈ N. Since
bounded confidence implies small geodesic distances between
interacting oscillators, i.e., less than �, the choice (6) moti-
vates the analysis of the model represented in terms of phase
differences. In particular, by substituting (6) in (2) and by
considering (7) one obtains

θ+
i = θi + hωi + hη

|Ni(θ)|
∑

j∈Ni(θ)

(
θj − θi

)
, (8)

where Ni(θ) is defined by (7) and (4) which implies that
|Ni(θ)| = ∑N

j=1 φi(θi, θj), i ∈ N. The equation (8) highlights
that the evolution of each oscillator’s phase is driven by the
deviations between its own and the neighbors’ phases, sim-
ilarly to what happens in opinion dynamics [11], [17], [18].
Since by construction it is i ∈ Ni(θ) for all i ∈ N and for all
θ , the model (8) can be rewritten as

θ+
i = (1 − hη)θi + hωi + hη

|Ni(θ)|
∑

j∈Ni(θ)

θj (9)

or in matrix form

θ+ = (I + hη(A(θ) − I))θ + hω, (10)

where ω ∈ R
N is the vector of all oscillators frequencies and

the entry of the i-th row and j-th column of the matrix function
A(θ) is given by

[A(θ)]ij =
{ 1

|Ni(θ)| , if ‖θj − θi‖ ≤ �,

0, otherwise,
(11)

with i, j ∈ N. From (11) it follows that for any θ the matrix
A(θ) is entrywise nonnegative, in particular [A(θ)]ij ∈ [0, 1],
i, j ∈ N, type-symmetric and row-stochastic.

In the particular case that ωi = 0 for all i ∈ N, by choosing
h such that hη < 1 the model (9) coincides with the so-called
self-belief bounded confidence opinion dynamics [19], [20],
[21], [22]. Furthermore, by choosing hη = 1 the model (9)
becomes the so-called symmetric homogeneous bounded con-
fidence opinion dynamics [11], [23]. The analysis of opinion
dynamics provides interesting insights for studying the more
general case of BCKO in the form (9) with nonzero oscillators
frequencies, which is the scenario considered in this letter.

III. SYNCHRONIZATION AND CLUSTERING

An interesting behavior in Kuramoto oscillators is the so-
called frequency synchronization. The oscillators are said to
converge to frequency synchronization if limk→∞(ω̂i−ω̂j) = 0
for all i, j ∈ N, with ω̂i = (θ+

i − θi)/h, i ∈ N, i.e., when
the oscillators adjust their phases over time by converging to
a common frequency, say ωs. Then, any frequency synchro-
nization implies the existence of a steady-state solution of (8),

say θ̄ , such that θ̄+
i − θ̄i = hωs for some ωs ∈ R, all i ∈ N and

k ∈ N0. From (10), by imposing the condition θ̄+ − θ̄ = 1hωs
it follows that any θ̄ must satisfy

η
(
A(θ̄) − I

)
θ̄ + ω = 1 ωs, (12)

where ω ∈ R
N is the column vector with the natural

frequencies of all oscillators.
Another useful concept is clustering. A solution of (8) is

called a clustering if there exists a constant partition of N,
say {P�}L

�=1, L ≥ 1, such that the subgraph consisting of
the oscillators in P� is complete for all � = 1, . . . , L. The
following result shows that any clustering will asymptotically
converge to frequency synchronization.

Theorem 1: Consider any solution of (8) which is a clus-
tering. Then the conditions hη < 2 and

|ωj − ωi| ≤ η� (13)

for all {i, j} ∈ P�, � = 1, . . . , L, hold. Moreover, at steady-state
all oscillators will rotate with the same frequency (independent
of �) given by

ωs = 1

|P�|
∑

i∈P�

ωi, (14)

with � = 1, . . . , L.
Proof: Consider any clustering solution of (8). For any pair

of oscillators in the same partition, i.e., {i, j} ∈ P�, since the
corresponding subgraph is complete it is Ni = P� for all i ∈
P�, � = 1, . . . , L. Then by considering (9) for i and j and by
taking their difference one can write

θ+
j − θ+

i = (1 − hη)
(
θj − θi

) + h
(
ωj − ωi

)
(15)

for all {i, j} ∈ P�, � = 1, . . . , L. Taking the solution of (15)
one has

θj − θi = (1 − hη)k(θj(0) − θi(0)
) + h

(
ωj − ωi

) k−1∑

m=0

(1 − hη)m

(16)

then hη < 2 holds otherwise a time-step will exist such that the
geodesic distance between the phases is larger than � which
contradicts the assumption of a clustering solution. In order
to prove (13), let us consider the steady-state of (16). Since
limk→∞

∑k−1
m=0(1 − hη)m = 1/(hη), one can write

θ̄j − θ̄i = ωj − ωi

η
(17)

for all {i, j} ∈ P�, � = 1, . . . , L, where θ̄j − θ̄i is the phase
difference at steady-state. Note that 1/η has the dimension of
time. Since a bounded confidence model is considered and a
clustering solution is assumed, from (4) and (17) it follows
that (13) holds.

In order to prove the second part of the theorem, let us
consider (8) at steady-state. Note that this situation does not
correspond to θi being constant in time, i ∈ N, because we are
considering nonzero frequencies. By using (17) one can write

θ̄+
i − θ̄i

h
= ωi + η

|P�|
∑

j∈P�

(
θ̄j − θ̄i

)

= ωi + 1

|P�|
∑

j∈P�

(
ωj − ωi

) = 1

|P�|
∑

j∈P�

ωj = ω� (18)
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Fig. 1. BCKO model with four oscillators.

for � = 1, . . . , L. Then all oscillators belonging to the same
partition at steady-state will rotate with the same average
frequency ω�. It is logically evident that all partitions must
have the same average frequency ω� as if it is not the case,
the clusters will eventually meet at some time-step which
contradicts our assumption of clustering as a solution of (8).
Then (14) holds and the proof is complete.

A natural question arises whether convergence to frequency
synchronization is possible only under a clustering or
other scenarios are possible. The following example shows
that clustering is not a necessary condition for frequency
synchronization.

Example 1: Consider four oscillators, say Oi, having phases
θi, i = 1, . . . , 4, distributed as in Fig. 1. Choose 2.8� = 2π

and θ1(0) = 0, θ2(0) = 0.8�, θ3(0) = 1.4�, and θ4(0) =
2.0�. By considering (7) with (4) it is easy to verify that
each oscillator has three neighbors, i.e., itself, the preceding
one, and the succeeding one. Then, this situation is not a
clustering because the graph is connected but not complete.
By using (12) with ω1 = ωs − 2.8

3 η�, ω2 = ωs + 0.2
3 η�,

ω3 = ωs, and ω4 = ωs + 2.6
3 η�, it follows that the oscillators

are synchronized at ωs.

IV. SYNCHRONIZATION AND CONNECTIVITY

In this section relationships between connectivity of the
graph and frequency synchronization are discussed. The fol-
lowing result shows that if the oscillators constitute a constant
partition then frequency synchronization is achieved.

Theorem 2: Consider (8) with hη ∈ (0, 1) and assume there
exists a time-step k̄ such that a partition {P�}L

�=1 is constant for
any k ≥ k̄, i.e., the oscillators in P� keep the same connections
over time, for all � = 1, . . . , L. Then the solution converges
asymptotically to frequency synchronization with frequency

ωs = 1
∑

i∈P�
|N̄i|

∑

i∈P�

|N̄i|ωi (19)

for all � = 1, . . . , L, where N̄i is the set of neighbors of the
oscillator i, i ∈ N, for k ≥ k̄.

Proof: Consider (8) and its matrix form (10). With some
abuse of notation, let us define the matrix function Mk =
hη(A(θ) − I) (remind that with the notation adopted it is θ =
θ(k)). Then by recursively applying (10) from θ(0) at the
time-step k the following expression

θ =
0∏

n=k−1

(I + Mn)θ(0) +
⎛

⎝
k−1∑

n=1

k−n∏

q=k−1

(
I + Mq

) + I

⎞

⎠hω (20)

holds. Note that the right hand side of (20) depends on samples
of the oscillators phases θ(q), q = 0, . . . , k − 1, because the
matrix Mq depends on the phases θ(q).

Since the matrix A(θ) is row-stochastic for any θ , the matrix
Mq = hη(A(θ(q))−I) is zero row sum for any θ(q), q ∈ N0. In
particular, since all entries of A(θ) belong to the interval [0, 1]
and hη ∈ (0, 1) by hypothesis, all entries of Mq except for
those on the main diagonal belong to the interval [0, 1]. The
diagonal entries of Mq belong to the interval (−1, 0] because
[Mq]ii = hη([A(θ(q))]ii − 1), hη ∈ (0, 1), and [A(θ(q))]ii =
1/|Ni(θ(q))| which is strictly positive and less than or equal
to 1, for all i ∈ N. Then the matrix I + Mq is row-stochastic,
type-symmetric, entrywise nonnegative with all entries in the
interval [0, 1] and all diagonal entries strictly positive, for all
q ∈ N0.

Let us now consider (20) at the next time-step which allows
one to write

θ+ − θ =
⎛

⎝
0∏

n=k

(I + Mn) −
0∏

n=k−1

(I + Mn)

⎞

⎠θ(0)

+ (Qk − Qk−1)hω, (21)

where

Qk−1 =
k−1∑

n=1

k−n∏

q=k−1

(
I + Mq

) + I. (22)

By assumption there exists a time-step, say k̄, such that the
oscillators can be grouped in a constant partition which does
not change in the future. Then it is Mk = M̄ with M̄ constant
matrix, for any k ≥ k̄. Clearly I + M̄ is type-symmetric,
row-stochastic, entrywise nonnegative with all entries in the
interval [0, 1] and all diagonal entries strictly positive. By
considering the first term on the right hand side of (21) one
can write

0∏

n=k

(I + Mn) −
0∏

n=k−1

(I + Mn)

= (
I + M̄

)k−k̄
0∏

n=k̄

(I + Mn) − (
I + M̄

)k−1−k̄
0∏

n=k̄

(I + Mn)

= (
I + M̄

)k−1−k̄
M̄

0∏

n=k̄

(I + Mn). (23)

By using (23) it follows that the properties of the matrix I+M̄
allows one to conclude that as k goes to infinity (23) converges
to the constant matrix

Q∞ = lim
k→∞

⎛

⎝
0∏

n=k

(I + Mn) −
0∏

n=k−1

(I + Mn)

⎞

⎠

= M∞M̄
0∏

n=k̄

(I + Mn), (24)

where M∞ = limk→∞(I + M̄)k−k̄−1.
Let us now consider the second term on the right hand side

of (20). From (22) one can write

Qk−1 =
k−1∑

n=1

k−n∏

q=k−1

(
I + Mq

) + I

= Qk−1 + (
I + M̄

)k−k̄−2 + · · · + (
I + M̄

) + I, (25)
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with

Qk−1 = (
I + M̄

)k−k̄−1(
I + Mk̄−1

) · . . . · (I + M1)

+ (
I + M̄

)k−k̄−1(
I + Mk̄−1

) · . . . · (I + M2)

+ · · · + (
I + M̄

)k−k̄−1(
I + Mk̄−1

)
(26)

for all k ≥ k̄. From (26) it follows

Qk = (
I + M̄

) Qk−1 (27)

for all k ≥ k̄ and then Qk = (I + M̄)k−k̄+1Qk̄−1 for all k ≥ k̄.
Then the matrix function Qk converges to the constant matrix
Q∞ = M∞Qk̄−1 when k goes to infinity. From (25) and (27)
one can write

Qk − Qk−1 = Qk + (
I + M̄

)k−k̄−1 − Qk−1

= M̄Qk−1 + (
I + M̄

)k−k̄−1 (28)

for all k ≥ k̄. By substituting (23) and (28) in (21) and by
taking the limit when k goes to infinity it follows

lim
k→∞

(
θ+ − θ

) = Q∞θ(0)

+ lim
k→∞

(
M̄Qk−1 + (

I + M̄
)k−k̄−1

)
hω

= Q∞θ(0) +
(

M̄Q∞ + lim
k→∞

(
I + M̄

)k−k̄−1
)

hω

= Q∞θ(0) + (
M̄Q∞ + M∞)

hω (29)

which means that the time-step variation of the phase vector
will asymptotically converge to a constant.

At steady-state all oscillators belonging to the same partition
must have the same rotational frequency, otherwise there
will exist a time-step such that the partition changes which
contradicts the hypothesis. Similarly all different partitions
must have the same rotational frequency. Then the solution
of (8) converges asymptotically to frequency synchronization.
The expression (19) for each subset of the partition can be
derived from (8) and by imposing that

θ̄+
i − θ̄i

h
= ωs = ωi + η

|N̄i|
∑

j∈N̄i

(
θ̄j − θ̄i

)
(30)

and then

|N̄i|ωs = |N̄i|ωi + η
∑

j∈N̄i

(
θ̄j − θ̄i

)
(31)

for all i ∈ P�, � = 1, . . . , L. The symmetry of (11), i.e., if the
oscillator i influences j also the opposite holds, allows one to
say that for each term θ̄j − θ̄i with j ∈ N̄i, there will exist a
term θ̄i − θ̄j in the dynamic equation of the oscillator j with
i ∈ N̄j. Then by adding all equations (31) for i ∈ P� one
obtains (19) and the proof is complete.

The following example verifies the results in Theorem 2,
i.e., a synchronization may exist even when the subgraphs of
each partition are connected but not complete.

Example 2: Consider the scenario in Fig. 1 with ω1 = ω3 =
ωs, ω2 = ωs − ω̄, and ω4 = ωs + ω̄. The natural frequencies
satisfy (19) with N1 = {1}, N2 = {2, 3}, N3 = {2, 3, 4}, and
N4 = {3, 4} (which implies P1 = {1} and P2 = {2, 3, 4}), for
any ω̄ ∈ R. Let us look if there exists a steady-state with that
partition which corresponds to a synchronization. From (30)

Fig. 2. Test 1: Time-evolution of phase differences of the oscillators with
respect to those of the first one, i.e., θi − θ1, i = 2, 3, 4 (top), number of
neighbors (middle), and order parameter (bottom).

the connection conditions ‖θ̄3 − θ̄2‖ ≤ �, ‖θ̄4 − θ̄3‖ ≤ �, and
‖θ̄4 − θ̄2‖ > � imply that it must be ω̄ ∈ (

η�
4 ,

η�
2 ] which

can be easily satisfied by choosing a suitable coupling gain η.
Then for any θ̄1 such that ‖θ̄4 − θ̄1‖ > � and ‖θ̄2 − θ̄1‖ > �,
the corresponding trajectories θ̄ represent oscillators which
are synchronized at ωs with the desired partition. Numerical
simulations show that under the hypotheses of Theorem 2
these steady-states are locally asymptotically stable.

V. SIMULATION RESULTS

In this section results obtained by considering two numerical
tests illustrate the theoretical analysis presented above.

Consider the model (8) with N = 4, η = 0.01, h =
0.0628 s, and � = 0.9817 rad. Initial conditions (in radians)
are taken as θ1(0) = 0, θ2(0) = 3, θ3(0) = 5.5, θ4(0) = 6
and natural frequencies (in rad/s) ω1 = ωs + 0.005, ω2 =
ωs, ω3 = ωs + 0.002, and ω4 = ωs + 0.003, with ωs = 0.1.
Time-evolution of the phase differences, number of neighbors,
and order parameter are observed together in Fig. 2. At the
initial conditions the oscillator O2 is isolated while the other
three are connected. Eventually, after 323 s, O2 gets connected
with O1, both the partitions remain constant hereafter, and all
oscillators have two neighbors each (including themselves).
So as indicated by Theorem 1 and Theorem 2, the asymptotic
convergence to frequency synchronization is observed. This
is also confirmed by the constant order parameter which
is given by r = | 1

N

∑N
j=1 eıθj |, with ı the imaginary unit,

and it represents a measure of the degree of frequency
synchronization among oscillators.

For the second test the model (8) is considered with
N = 10 oscillators and natural frequencies (in rad/s) taken as
ω − ωs1 = [ − ω̄1, 0, ω̄1, 0,−ω̄2, ω̄2,−ω̄3, 0, ω̄3, 0]	, with
ω̄1 = 0.0034, ω̄2 = 0.0039, and ω̄3 = 0.0008. The other
model parameters are the same as in the previous example.
It is easy to verify that the natural frequencies satisfy (19)
with different partitions, e.g., P1 = {1, . . . , 4} and P2 =
{5, . . . , 10}. We choose as initial phases (in radians) θ(0) =
[0, 0.6, 0.9, 1.8, 3.6, 3.8, 3.9, 4.2, 4.4, 4.7] which corresponds
to having the first four oscillators disconnected with the
remaining six oscillators. Figure 3 shows that the order param-
eter is constant which validates the asymptotic convergence
to frequency synchronization, coherently with Theorem 1 (the
subgraphs corresponding to the two partitions are complete at
steady-state) and Theorem 2. It was observed that for other
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Fig. 3. Test 2: Time-evolution of phase differences of the oscillators
with respect to those of the first one, i.e., θi − θ1, i = 2, 3, . . . , 10 (top),
number of neighbors (middle), and order parameter (bottom).

initial conditions which are close enough to the chosen one,
the convergence to frequency synchronization is achieved at
steady-state.

VI. CONCLUSION

The bounded confidence Kuramoto oscillators model, where
at each time-step the phase differences are averaged over
the number of neighbors, which itself depends on the phase
differences, has been analyzed with respect to frequency
synchronization. It is proved that clustering, i.e., partitioning
with complete subgraphs, implies asymptotic convergence to
frequency synchronization. It is also shown that clustering
is not a necessary condition for frequency synchronization.
In particular, it is proved that frequency synchronization is
ensured also under the weaker hypothesis that the partitions
remain constant over time even if the subgraphs of the
partitions are not complete. Simulations have verified steady-
state frequency synchronization in some situations where
the assumptions of the theoretical results hold. Future work
is directed on the analysis of behaviors, recognized in the
numerical campaign, where connections continuously change
over time even though the order parameter reaches an almost
constant value. Finding the initial conditions such that a
specific steady-state clustering pattern is obtained is another
interesting, although nontrivial, open problem. Furthermore,
the analysis of the model where the geodesic distances are
used in the state equation is another interesting direction for
future research.
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