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A Note on Impulsive Solutions to Nonlinear
Control Systems

G. Fusco and M. Motta

Abstract—In the last decades, many authors provided
different notions of impulsive process, seen as a suitably
defined limit of a sequence of ordinary processes for a non-
linear control-affine system with unbounded, vector-valued
controls. In particular, we refer to the impulsive processes
introduced by Karamzin et al. –in which the control is
given by a vector measure, a non-negative scalar measure,
and a family of so-called attached controls that univocally
determine the jumps of the corresponding trajectory– and
to the graph completion processes developed by Bressan
and Rampazzo et al. –in which an impulsive trajectory is
seen as a spatial projection of a Lipschitzian trajectory in
space-time. The equivalence between these notions is the
crucial assumption of most results on optimal impulsive
control problems, such as existence of an optimal process
and necessary/sufficient optimality conditions. In this note
we exhibit a counterexample which shows that, in presence
of state constraints and endpoint constraints involving the
total variation of the impulsive control, this equivalence
may fail. Thus, we propose to replace the set of impulsive
processes with a smaller class of impulsive processes, that
we call admissible, which turns out to be actually in one-
to-one correspondence with the set of graph completion
processes.

Index Terms—Impulsive control, optimal control, well-
posedness of solutions.

I. INTRODUCTION

IN THIS letter we compare well-known concepts of gener-
alized controls and corresponding generalized solutions for

the following control system
⎧
⎪⎪⎨

⎪⎪⎩

dx
dt (t) = f (t, x(t))+ ∑m

j=1 gj(t, x(t)) uj(t),
dV
dt (t) = ‖u(t)‖,

u(t) ∈ K a.e. t ∈ [0,T],
(x, v)(0) = (

x̌0, 0
)
,

(S)

when the L1 control u = (u1, . . . , um) –i.e., the measure u(t) dt
which is absolutely continuous with respect to the Lebesgue
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measure– is replaced with a finite and regular vector-valued
measure μ, with range contained in K, and the corresponding
solution (x,V) : [0,T] → R

n+1 is a function of bounded
variation. Notice that, for any u ∈ L1, v is nothing but the total
variation function of u(t) dt, as we set ‖w‖ := ∑m

j=1 |wj| for
any w ∈ R

m. The data comprise a fixed final time T > 0, an
initial state x̌0 ∈ R

n, a closed convex cone K ⊆ R
m, and C1,

bounded functions1 f , gj : R×R
n → R

n, j = 1, . . . ,m. Under
these hypotheses, for any control function u ∈ L1([0,T],K)
there exists one and only one corresponding solution (x, v)
to (S). We will refer to the triple (u, x,V) as a strict sense
process for (S).

In several applications, e.g., to aerospace [6] or mechan-
ics [7], [11], implementing an ‘impulsive control’ associated
with (S) involves idealizing a highly intense control action
within a short time interval. The appropriate definition of
impulsive process is then that it should be the limit (in a
suitable sense) of some sequence of strict sense processes.
However, as it is well-known, the impulsive control cannot
be simply identified with a limit measure μ, as different
absolutely continuous approximations of μ can give rise to
different state trajectories in the limit, unless we impose strict
‘commutativity’ conditions on the gj’s (see [9], [10], [12]).

In [19], [20] it has been proposed, for the impulsive system
⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = f (t, x(t)) dt + ∑m
j=1 gj(t, x(t)) μj(dt),

dV(t) = ν(dt), t ∈ [0,T],
range(μ) ⊆ K,
(x, v)(0) = (

x̌0, 0
)
,

(IS)

a notion of impulsive control which includes, in addition to
the vector-valued measure μ, a scalar, non negative measure
ν, limit total variation of a specific approximating sequence
to μ, and ‘attached’ controls describing instantaneous state
evolution at each atom of ν. In this way, to each impulsive
control it corresponds a unique solution (x,V) of (IS) (see
Section III for the precise definitions).

Adopting instead the so-called graph completion approach
in [8], [9], [21], (S) is embedded into the space-time system
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy0
ds (s) = ω0(s),

dy
ds (s) = f (y0(s), y(s)) ω0(s)+ ∑m

j=1 gj(y0(s), y(s)) ωj(s),
dβ
ds (s) = ‖ω(s)‖,
(ω0, ω)(s) ∈ W(K) a.e. s ∈ [0, S],
(y0, y, β)(0) = (

0, x̌0, 0
)
, y0(S) = T,

(STS)

1These hypotheses, assumed for simplicity’s sake, could be weakened.
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where the new state variable is (y0, y, β) := (t, x,V) and

W(K) := {(w0,w) ∈ ]0,+∞[ × K: w0 + ‖w‖ = 1}. (1)

If t = y0(s) is strictly increasing, i.e., ω0 > 0 a.e., a space-time
process (S, ω0, ω, y0, y, β) is simply a graph reparameteri-
zation of a strict sense process. However, (STS) allows to
define discontinuous solutions, so-called graph completion
solutions, to (S), as soon as ω0 = 0 on nondegenerate intervals.
In this case, instead of attaching to a given measure μ a
family of additional controls, one ‘completes’ the graph of
U(t) = ∫

[0,t] μ(dt′) at the discontinuity points, and considers
an arclength-type, 1-Lipschitz continuous parameterization
(ϕ0, ϕ) of this graph completion on some interval [0, S]. Then,
the space-time control (S, ω0, ω) := (S, dϕ0

ds ,
dϕ
ds ) and the

corresponding solution (y0, y, β) to (STS) identify the graph
completion solution (x, v) := (y, β) ◦ σ to (S), in which σ is
the right inverse of t = y0(s) (see Section III).

Our main goal is to compare the impulsive extension, say
(Pimp), and the graph completion extension, say (Pgc), of the
following optimization problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize �(x(T),V(T)),
over strict sense processes (u, x,V) such that
h(t, x(t)) ≤ 0, t ∈ [0,T], (state constraint)
(x(T),V(T)) ∈ S, (terminal constraint)

(P)

in which strict sense solutions are replaced by impulsive and
graph completion solutions, respectively. (Indeed, according,
e.g., to [4], [20], [22], [25], feasible solutions satisfy the state
constraint also in their ‘instantaneous evolution’, during jumps
–see Section III.) Let � : R

n+1 → R, h : R
1+n → R

k be
continuous,2 and S ⊆ R

n+1 closed.
In impulsive optimal control, it is a common procedure

to prove a one-to-one correspondence between impulsive
processes and space-time processes, and then use it to derive
existence of optimal controls and necessary/sufficient optimal-
ity conditions for the impulsive problem from the following
space-time optimal control problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize �(y(S), β(S)),
over space-time processes (S, ω0, ω, y0, y, β) such that
h(y0(s), y(s)) ≤ 0, s ∈ [0, S],
(y, β)(S) ∈ S

(Pst)

equivalent to (Pgc) by definition. Note that (Pst) is a con-
ventional optimization problem with bounded, measurable
controls (ω0, ω), to which classical results apply.

In this letter we show, by means of a counterexample,
that the set of impulsive processes is not in one-to-one
correspondence with the set of space-time processes and the
minimum of (Pimp) may be smaller than the minimum of (Pst)
(see Section V). We then introduce, in Section VI, the subset
of admissible impulsive processes, for which we prove that
the above mentioned correspondence is instead valid.

II. NOTATIONS AND SOME PRELIMINARIES

Given T > 0 and a set X ⊆ R
k, we write L1([0,T],X)

and BV([0,T],X) for the set of Lebesgue integrable and of

2As customary, h ≤ 0 means hj ≤ 0 for any j = 1, . . . , k.

bounded variation functions defined on [0,T] and with values
in X, respectively. We denote by C∗([0,T],Rk) the set of
signed, finite and regular vector-valued measures from the
Borel subsets of [0,T] to R

k. Moreover, we set C⊕([0,T]) for
the elements of C∗([0,T],R) taking nonnegative values and
we define

C∗
X([0,T]) :=

{
μ ∈ C∗([0,T],Rk

)
: range(μ) ⊆ X

}
.

Given μ ∈ C∗([0,T],Rk), |μ| ∈ C⊕([0,T]) denotes the total
variation measure, i.e., |μ| := ∑k

j=1 |μj|, while μc denotes
the continuous component of μ with respect to the Lebesgue
measure �. Given a sequence (μi) ⊂ C∗([0,T],Rk) and μ ∈
C∗([0,T],Rk), we write μi ⇀

∗ μ if limi
∫

[0,T] ψ(t)μji(dt) =
∫

[0,T] ψ(t)μj(dt), for all continuous maps ψ : [0,T] → R and
j = 1, . . . , k.

For any function ϕ : [0,T] → X, for any t ∈ ]0,T[ we
write ϕ(t−) and ϕ(t+) to denote the left and the right limit
of ϕ at t (if it exists). In particular, we set ϕ(0−) = ϕ(0)
and ϕ(T+) = ϕ(T). Given a, b ∈ ]0,+∞[ and a (possibly
not strictly) increasing function �:[0, a] → [0, b] such that
�(0) = 0, �(a) = b, and � is right continuous on ]0, a[, we
define its right inverse as the function � : [0, b] → [0, a] such
that �(0) = 0, �(b) := a, and �(r) := inf{s ∈ [0, a]: �(s) >
r} for r ∈ ]0, b[.

III. IMPULSIVE PROCESSES AND GRAPH COMPLETIONS

A. Impulsive Controls and Trajectories

In this subsection we recall the concepts of impulsive control
and corresponding impulsive solution to (IS) as introduced
in [19] (and adopted, for instance, in [4], [20]).

Let T > 0 and K ⊂ R
m be the final time and the closed

convex cone considered in the Introduction, respectively.
Given a measure μ ∈ C∗

K([0,T]), define the set

V(μ) := {ν ∈ C⊕([0,T]):∃(μi) ⊂ C∗
K([0,T])

such that (μi, |μi|) ⇀∗ (μ, ν)}. (2)

In general, if ν ∈ V(μ), then one has ν ≥ |μ| and |μ| always
belongs to V(μ). Actually, if the range of μ is contained in
a closed convex cone which belongs to one of the orthants of
R

m, then V(μ) = {|μ|}.
Definition 1: An impulsive control for control system (IS) is

an element (μ, ν, {αr}r∈[0,T]) comprising two Borel measures
μ ∈ C∗

K([0,T]), ν ∈ V(μ), and a family of essentially
bounded, measurable functions αr : [0, 1] → K parameterized
by r ∈ [0,T], with the following properties:
(i) ‖αr(s)‖ = ν({r}) for a.e. s ∈ [0, 1],

(ii)
∫ 1

0 α
r
j (s) ds = μj({r}) for all j = 1, . . . ,m.

A family of functions {αr}r∈[0,T] that satisfies conditions
(i)–(ii) above is said to be attached to (μ, ν).3 We refer to ν
as the total variation of the impulsive control.

Definition 2: Let (μ, ν, {αr}r∈[0,T]) be an impulsive control.
Then, (x, v) ∈ BV([0,T],Rn+1) is an impulsive solution to (IS)
corresponding to (μ, ν, {αr}r∈[0,T]) and (μ, ν, {αr}r∈[0,T], x, v)

3By Def. 1, the set of atoms of μ is always a subset of the (countable) set
the atoms of ν. Accordingly, we might have that ν has atoms, while μ does
not. Moreover, (i) implies that αr �= 0 for a countable set of r’s only.
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is an impulsive process if (x,V)(0) = (x̌0, 0) and, for t ∈
]0,T],

x(t) = x̌0 +
∫ t

0
f
(
t′, x(t′)

)
dt′

+
∫

[0,t]

m∑

j=1

gj
(
t′, x(t′)

)
μc

j

(
dt′

)

+
∑

r∈[0,t]

(
ζ r(1) − x(r−)

)
,

V(t) = ν([0, t]),

where, for r ∈ [0,T], the function ζ r : [0, 1] → R
n satisfies

{
dζ r

ds (s) = ∑m
j=1 gj(r, ζ r(s))αr

j (s), a.e. s ∈ [0, 1],
ζ r(0) = x

(
r−)

.
(3)

An impulsive process (μ, ν, {αr}r∈[0,T], x, v) is feasible for
(Pimp) if h(t, x(t)) ≤ 0 for any t ∈ [0,T], h(r, ζ r(s)) ≤ 0 for
any s ∈ [0, 1], r ∈ [0,T], and (x(T),V(T)) ∈ S .

We call strict sense control an impulsive control
(μ, ν, {αr}r∈[0,T]) such that ν is absolutely continuous with
respect to the Lebesgue measure and ν = |μ|. In this case,
with a slight abuse of notation, we also call strict sense control
the function u ∈ L1([0,T],K) such that μ(dt) = u(t) dt and
ν(dt) = |u(t)| dt.4 This is justified, because the impulsive
trajectory (x, v) corresponding to u is nothing but the classical,
strict sense solution to (S) associated with u.

Hence, system (IS) can be interpreted as an extension of
system (S), so we will sometimes call an impulsive process
for (IS) also an impulsive process for (S).

B. Graph Completion Controls and Trajectories

We now summarize the so-called graph completion
approach, as introduced in [9] (see also [1], [8], [21], [24]).

For W(K) as in (1), define the set of space-time controls:

W :=
⋃

S>0

{S} × L1([0, S]; W(K)).

Definition 3: For any (S, ω0, ω) ∈ W, we say that the
absolutely continuous path (y0, y, β) : [0, S] → R

1+n+1 is the
corresponding space-time trajectory if it satisfies (STS). We
call (S, ω0, ω, y0, y, β) a space-time process for (STS). It is
feasible for (Pst) if it satisfies the constraints in (Pst).

Note that the set of strict sense processes (u, x,V) for (S)
is in one-to-one correspondence with the subset of space-
time processes (S, ω0, ω, y0, y, β) for (STS) with ω0 > 0 a.e..
Indeed, with each (u, x,V), by means of the inverse y0 of the
following arc length-type reparameterization

σ(t) := t + V(t) = t +
∫ t

0
|u(

t′
)| dt′, t ∈ [0,T],

we can associate the space-time process (S, ω0, ω, y0, y, β),
where S := σ(T), (ω0, ω) := dy0

ds · (1, u ◦ y0), (y0, y, β) :=
(id, x,V)◦y0 (id is the identity function). Clearly, ω0 > 0 a.e..
Conversely, if (S, ω0, ω, y0, y, β) is a space-time process with
ω0 > 0 a.e., the absolutely continuous inverse σ : [0,T] →

4Since ν has no atoms, by Def. 1 (i), αr
i = 0 a.e. for any r ∈ [0,T].

[0, S] of y0, allows us to define the strict sense process (u, x, v),
given by u := ω

ω0
◦ σ, (x, v) := (y, β) ◦ σ.

The extension is to consider space-time processes with ω0
possibly zero on some non-degenerate intervals.

Definition 4: Let (S, ω0, ω, y0, y, β) be a space-time pro-
cess for (STS). We call graph completion, in short g.c.,
solution of (S) associated with the space-time control
(S, ω0, ω), the pair (x, v) ∈ BV([0,T],Rn+1) defined as

(x, v)(t) := (y, β)(σ (t)) for all t ∈ [0,T], (4)

in which σ : [0,T] → [0, S] is the right inverse of y0. Then,
(S, ω0, ω, x, v) is a graph completion process, which is feasible
for (Pgc) if (S, ω0, ω, y0, y, β) is feasible for (Pst).

Remark 1: As mentioned in the Introduction, the name
‘graph completion’ comes from the fact that assigning a mea-
sure μ ∈ C∗

K([0,T]) is equivalent to assigning a BV function
U, such that U(0) = 0 and U(t) = ∫

[0,t] μ(dt′) for any t ∈
]0,T]. For this U, a graph completion is any pair of Lipschitz
continuous functions (ϕ0, ϕ) : [0, S] → R

1+m for some S > 0,
satisfying the following conditions: (i) (ϕ0, ϕ)(0) = (0, 0),
(ϕ0, ϕ)(S) = (T,U(T)); (ii) for all t ∈ [0,T], there exists
s ∈ [0, S] such that (t, u(t)) = (ϕ0, ϕ)(s); (iii) (ω0, ω) :=
(

dϕ0
ds ,

dϕ
ds ) ∈ L1([0, S]; W(K)). Clearly, (S, ω0, ω) ∈ W . Hence,

a graph completion associates with a measure μ a space-time
control. Conversely, any (S, ω0, ω) ∈ W identifies a graph
completion of the BV function U such that U(0) := 0 and
U(t) := ∫ σ(t)

0 ω(s) ds for any t ∈ ]0,T], where σ : [0,T] →
[0, S] is the right inverse of y0.

In conclusion, any g.c. solution (x, v) of (S) corresponds to
a graph completion of a measure μ ∈ C∗

K([0,T]).

IV. SOME PRELIMINARY LEMMAS

Lemma 1: Let F : [0,+∞[ → [0,+∞[ be given by

F(x) = 1

x

∫ x

0
| sin(t)|dt.

Then limx→+∞ F(x) = 2
π

.
Proof: For any k ∈ N we have

F(2kπ) = 1

2kπ

∫ 2kπ

0
| sin(t)|dt = 1

π

∫ π

0
sin(t)dt = 2

π
.

In particular, from the above calculations it follows that
∫ 2kπ

0
| sin(t)|dt = 4k.

Using the above equality, for x ∈ [2kπ, 2(k + 1)π ], we get

F(x) ≤ 1

2kπ

∫ 2(k+1)π

0
| sin(t)|dt = 2

π
+ 2

kπ

and, similarly,

F(x) ≥ 1

2(k + 1)π

∫ 2kπ

0
| sin(t)|dt = 2

π
− 2

(k + 1)π
.

As a consequence, for all x ∈ [2kπ, 2(k + 1)π ], we obtain
∣
∣
∣F(x)− 2

π

∣
∣
∣ ≤ max

{ 2

kπ
,

2

(k + 1)π

}
= 2

kπ
,
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where the sequence 2
kπ is decreasing to 0, so that

∣
∣
∣F(x)− 2

π

∣
∣
∣ ≤ 2

kπ
for all x ≥ 2kπ.

This concludes the proof.
For each n ∈ N, consider in C∗

R
([0, 1]) the measure

μn(dt) := π

2
sin(nt)dt, (5)

so that its bounded variation measure |μn| ∈ C⊕([0, 1]) is 5

|μn|(dt) := π

2
| sin(nt)|dt. (6)

Lemma 2: Let |μn| ⊂ C⊕([0, 1]) be as in (6) for any n ∈ N.
Then limn |μn|([0, t]) = t for all t ∈ [0, 1]. As a consequence,
it holds

|μn| ⇀∗ �, (7)

where � is the Lebesgue measure.
Proof: By Lemma 1, for any t ∈ ]0,T], we get

|μn|([0, t]) = π

2

∫ t

0
| sin

(
nt′

)|dt′ = π

2

1

n

∫ nt

0
| sin(s)|ds

= π

2
tF(nt) → t as n → +∞.

The conclusion then follows by [17, Lemma 2.9, (i)].
The proof of the next lemma is very similar to the previous

one, hence we omit it.6

Lemma 3: Let μn ∈ C∗
R
([0, 1]) be as in (5) for any n ∈ N.

Then μn([0, t]) → 0 for all t ∈ [0, 1], so that

μn ⇀
∗ μ ≡ 0. (8)

As a consequence of Lemmas 2 and 3, the sequence (μn)

as in (5) satisfies (μn, |μn|) ⇀∗ (μ, ν) := (0, �), so that,
following Def. 2, ν ∈ V(μ) and

(
μ, ν, {αr}r∈[0,1]

) = (
0, �, {αr = 0}r∈[0,1]

)

is an impulsive control (for K = R).

V. A COUNTER EXAMPLE

Consider the following impulsive optimization problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize �(x(1)),
over impulsive processes

(
μ, ν, {αr}r∈[0,1], x, v

)
s.t.

dx(t) = f (x(t)) dt + g1(x(t))μ1(dt)+ g2(x(t))μ2(dt),
dV(t) = ν(dt), t ∈ [0, 1],
range(μ) = range(μ1, μ2) ⊆ K := R × [0,+∞[,
x(0) = (x1, x2, x3)(0) = (0, 0, 0), V(0) = 0,
x2(t) ≤ 0, t ∈ [0, 1],
v(1) ≤ 2, x1(1)+ v(1) ≥ 1/2

(Pimp)

in which �(x) = �(x1, x2, x3) := x2
1 + x2

3 and7

f (x) =
⎛

⎝
0
x2

1
0

⎞

⎠, g1(x) =
⎛

⎝
1
x1
x3

⎞

⎠, g2(x) =
⎛

⎝
0
0
1

⎞

⎠.

5Recall that the absolute value of the Radon-Nicodym derivative of a
measure μ with respect to the Lebesgue measure � coincides with the Radon-
Nicodym derivative of the total variation measure |μ| with respect to �.

6Note that lim
x→+∞

1
x

∫ x
0 sin(t)dt = 0, as

∫ x
0 sin(t)dt ∈ [0, 2] ∀x ≥ 0.

7Incidentally, this control system is not commutative, as [g1, g2](x) =
−(0, 0, 1)t �= 0 (the suffix t means transposition).

From the results in the previous section it follows that
(
μ̄, ν̄, {ᾱr}r∈[0,1]

) = (
(0, 0), �, {ᾱr = 0}r∈[0,1]

)
,

is an impulsive control with corresponding trajectory
(
x̄, V̄

)
(t) = (

(x̄1, x̄2, x̄3), V̄
)
(t) = ((0, 0, 0), t), t ∈ [0, 1].

The impulsive process (μ̄, ν̄, {ᾱr}r∈[0,1], x̄, V̄) is actually a
minimizer for (Pimp), as it is feasible and �(x̄(1)) = 0.

The corresponding space-time optimization problem is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize �(y(S)),
over space-time processes (S, ω0, ω, y0, y, β) s.t. S > 0,
dy0
ds (s) = ω0(s),

dy
ds (s) = f (y(s)) ω0(s)+ g1(y(s))ω1(s)+ g2(y)ω2(s),
dβ
ds (s) = ‖ω(s)‖, s ∈ [0, S],
(ω0, ω)(s) ∈ W(K) a.e. s ∈ [0, S],
y0(0) = 0, y(0) = (y1, y2, y3)(0) = (0, 0, 0), β(0) = 0,
y2(s) ≤ 0, s ∈ [0, S],
β(S) ≤ 2, y1(S)+ β(S) ≥ 1/2

(Pst)

(W(K) as in (1)). Following the usual construction (see, e.g.,
the proof of [20, Th. 5.1]), we set σ̄ (t) := t + V̄(t) = 2t,
t ∈ [0, 1], and associate with (μ̄, ν̄, {ᾱr}r∈[0,1]) the space-time
control (S̄, ω̄0, ω̄), given by S̄ := σ̄ (1) = 2 and

(ω̄0, ω̄)(s) := (m1,m2)(θ(s)), for any s ∈ [
0, S̄

]
,

where θ(s) = s
2 is the inverse of σ̄ and m1, m2 are the Radon-

Nicodym derivatives of �, μ̄c = μ̄ = (0, 0) w.r.t. ν + � = 2�.
Hence, m1 ≡ 1

2 , m2 ≡ (0, 0), so that (S̄, ω̄0, ω̄) = (2, 1/2, 0, 0)
and ω̄0(s)+‖ω̄(s)‖ = 1

2 for s ∈ [0, 2]. Thus, the control obtained
does not take values in W(K). However, if we consider the
space-time control (Ŝ, ω̂0, ω̂) := (1, 1, 0, 0),8 the corresponding
space-time trajectory (ŷ0, ŷ, β̂)(s) = (s, (0, 0, 0), 0) for s ∈
[0, 1], is simply a reparameterization of the solution to the
control system in (Pst) corresponding to (S̄, ω̄0, ω̄) by means
of the time-change s′ = θ(s). Hence, both controls (S̄, ω̄0, ω̄),
(Ŝ, ω̂0, ω̂) identify the same g.c. solution (x̂, V̂) ≡ (0, 0), which
does not coincide with (x̄, V̄) and actually is not feasible for (Pst).

Furthermore, any space-time process (S, ω0, ω, y0, y, β) sat-
isfying the state constraint y2(s) ≤ 0 for any s ∈ [0, S] has
y1 ≡ 0,9 which in turn implies that the control component
ω1 is constantly equal to 0. Therefore, the terminal constraint
y1(S) + β(S) ≥ 1/2 implies that a minimizer for (Pst)
corresponds, for instance, to the space-time control (S̃ =
3/2, ω̃0, ω̃), in which

(ω̃0, ω̃1, ω̃2)(s) =
{
(1/2, 0, 1/2) s ∈ [0, 1],
(1, 0, 0) s ∈ ]1, 3/2],

with associated cost equal to 1/4.
Thus, problems (Pimp), (Pst) are not equivalent, since:

(i) the space-time process associated with the optimal impul-
sive process (μ̄, ν̄, {ᾱr}r∈[0,1], x̄, V̄) according to the usual
construction, is not feasible for (Pst);

(ii) the minimum of the two problems is not the same.

8I.e., the canonical parameterization of (S̄, ω̄0, ω̄), according, e.g., to [9].
9Indeed, y2(s) = ∫ s

0 [(y1(s
′))2ω0(s

′) + y1(s
′) dy1

ds (s
′)]ds′ =

∫ s
0 (y1(s

′))2ω0(s
′)ds′ + y2

1(s)
2 ≥ 0 for any s ∈ [0, S].
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Note that the optimal control problem over strict sense
processes, say (P), of which (Pimp) and (Pst) are extensions,
has the same minimum as (Pst), with minimizing strict sense
control (corresponding to (S̃, ω̃0, ω̃)), given by

(ũ1, ũ2)(t) =
{
(0, 1) t ∈ [0, 1/2],
(0, 0) t ∈ ]1/2, 1].

(9)

VI. ADMISSIBLE IMPULSIVE PROCESSES

The example in the previous section suggests that the
set of impulsive processes for (IS) as in Definition 2 is
too large, at least when associated with the extension of
optimization problems with constraints, such as (P) in the
Introduction.

Given a measure μ ∈ C∗
K([0,T]), we introduce the follow-

ing subset Vc(μ) ⊆ V(μ), defined as

Vc(μ) := {
ν ∈ V(μ): νc = |μc|}, (10)

where we recall that for any measure μ̃, μ̃c is the continuous
component of μ̃ w.r.t. �. We propose to modify the notion of
impulsive control and impulsive process, limiting ourselves to
considering those for which ν ∈ Vc(μ). Precisely:

Definition 5: We call admissible impulsive control any
impulsive control (μ, ν, {αr}r∈[0,T]) such that ν ∈ Vc(μ). We
refer to the corresponding impulsive solution (x, v) to (IS)
and the impulsive process (μ, ν, {αr}r∈[0,T], x, v) as admissible
impulsive solution and admissible impulsive process for (IS),
respectively.

Hence, if (μ, ν, {αr}r∈[0,T]) is an admissible impulsive
control, the measure ν may differ from the total variation
measure |μ| over a countable set of jump instants only. In
particular, the corresponding admissible impulsive process is
strict sense as soon as ν is absolutely continuous with respect
to the Lebesgue measure.

Notice that, given the scalar measure μ̄ = 0 ∈ C∗
R
([0, 1]) as

in Section V, the measure ν̄ = � (∈ V(μ̄)) does not belong to
Vc(μ̄), so that the minimizing impulsive control in the example
is not admissible. It is easy to see that a minimizing control
for (Pimp) over admissible impulsive controls is actually the
strict sense control in (9) with cost 1/4, as for the space-
time problem (Pst). This equivalence is indeed a general
result.

Theorem 1: (i) Let (μ, ν, {αr}r∈[0,T], x, v) be an admissible
impulsive process. Set σ(0) = 0, σ(t) := t + ν([0, t]) for any
t ∈ ]0,T] and let J be the countable set of discontinuity points
of σ . Set S := σ(T) and define y0 as the right inverse of σ .10

Let m0, m, mν be the Radon-Nicodym derivatives w.r.t. dσ
of �, μc, and νc, respectively, and, for every r ∈ J and any
s ∈ �r := [σ(r−), σ (r+)], set

γ r(s) := s − σ
(
r−)

σ
(
r+) − σ

(
r−) .

10From the very definition of σ it follows that y0 is 1-Lipschitz con-
tinuous and increasing. Moreover, it is constant exactly on the intervals
[σ(r−), σ (r+)], r ∈ J . Then, the Lebesgue measure � and the continuous
components μc, νc are absolutely continuous w.r.t. the measure dσ .

Consider the control pair (ω0, ω), in which ω0 := dy0
ds and

ω(s) :=
{

m(y0(s)) if s ∈ [0, S] \ ⋃
r∈J �r

αr(γ r(s))
σ(r+)−σ(r−) if s ∈ �r, r ∈ J .

Finally, let ζ r be as in Def. 2, θ r(s′) := v(r−) + [v(r+) −
v(r−)]s′ for s′ ∈ [0, 1], and set

(y, β)(s) =
{
(x, v)(y0(s)), s ∈ ]0, S[ \ ∪r∈J�r,(
ζ r, θ r)

(
γ r(s)

)
s ∈ ]0, S[ ∩�r, r ∈ J .

Then (S, ω0, ω, y0, y, β) is a space-time process and (x, v)
coincides with the g.c. solution associated with (S, ω0, ω).

(ii) Conversely, let (S, ω0, ω, y0, y, β) be a space-time pro-
cess. Let σ be the right inverse of y0 and define the measures
μ ∈ C∗

K([0,T]) and ν ∈ C⊕([0,T]) via their distribution
functions, as follows:

μ([0, t]) =
∫ σ(t+)

0
ω(s)ds, ν([0, t]) =

∫ σ(t+)

0
‖ω(s)‖ds.

For any r ∈ [0,T] and s ∈ [0, 1], set

αr(s) := (
σ(r+)− σ(r−)

)
ω

((
σ(r+)− σ(r−)

)
s + σ

(
r−))

.

Finally, let (x, v) be the g.c. solution associated with
(S, ω0, ω). Then, (μ, ν, {αr}r∈[0,T], x, v) is an admissible
impulsive process. Moreover, its corresponding space-
time process according to statement (i), is precisely
(S, ω0, ω, y0, y, β).

Proof: The proof follows exactly the same lines as, e.g., the
proof of [20, Th. 5.1], where however there is a small error,
due to the fact that non-admissible impulsive processes are not
excluded (and this generates the problem of non-equivalence
highlighted in the counterexample of Section V). Therefore,
we limit ourselves to pointing out where the need to consider
admissible impulsive controls comes into play.

In the proof of statement (i), we use the assumption that
νc = |μc| to be able to deduce from well-known properties
of Radon-Nicodym derivatives that mν = ‖m‖. Hence, 0 ≤
m0(r) ≤ 1, 0 ≤ ‖m(r)‖ ≤ 1 dσ -a.e., and

m0(r)+ ‖m(r)‖ = 1, dσ -a.e. r ∈ [0,T]\J , (11)

Since σ(r+)−σ(r−) = v(r+)−v(r−) by definition, this allows
to obtain that ω0(s) + ‖ω(s)‖ = 1 for a.e. s ∈ [0, S], so that
(S, ω0, ω) turns out to be a space-time control.11

On the other hand, starting from a space-time pro-
cess (S, ω0, ω, y0, y, β) as in (ii), the impulsive process
(μ, ν, {αr}r∈[0,T], x, v) identified in statement (ii) is always
admissible. Indeed, set J ′ := {r ∈ [0,T]:μ({r}) �= 0}, J :=
{r ∈ [0,T] : ν({r}) �= 0}, and define

Dν := ∪r∈J�r, Dμ := ∪r∈J ′�r.

By construction, Dμ ⊆ Dν and
∫

Dν\Dμ
ω(s)ds = 0.

Accordingly, one has

νc([0, t]) =
∫

[0,σ+(t)]\Dν
‖ω(s)‖ ds,

11In particular, we use Def. 1(i) and the fact that dy0
ds = 0 on �r .
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μc([0, t]) =
∫

[0,σ+(t)]\Dμ
ω(s) ds =

∫

[0,σ+(t)]\Dν
ω(s) ds.

From these relations it immediately follows that νc = |μc|.
Remark 2: Under the following additional hypotheses, ful-

filled in many applications, that penalize the use of controls
with large total variation: (i) V �→ �(x,V) increasing for
all x, and (ii) S = C × [0,K], where C ⊂ R

n is a closed
set and K is a positive constant, the infima of the impulsive
extension and the space-time extension of (P) do coincide.
Indeed, in this case we can associate with each impulsive pro-
cess (μ, ν, {αr}r∈[0,T], x,V) an admissible impulsive process
(μ̃, ν̃, {α̃r}r∈[0,T], x̃, Ṽ) such that μ̃ = μ, α̃r = αr for any
r, and x̃ = x, but Ṽ ≤ V (and Ṽ ≤ V). However, even for
these problems, the results in the literature on the existence
of optimal controls, or the necessary conditions of optimality,
are valid for admissible impulsive processes only.

VII. CONCLUSION

The purpose of this note is to address a problem related
to the notion of impulsive process developed in [19]. This
problem emerges in particular when we consider an associated
optimization problem with constraints and costs involving
the total variation of the process, as frequently happens in
applications. In particular, we highlight by means of a coun-
terexample that this notion is not equivalent to the impulsive
process defined through graph completions. To resolve this,
we introduce the subset of admissible impulsive processes
which ensures equivalence and validates the results that have
already been obtained. This new definition also serves as
a starting point for a new line of research in collaboration
with Vinter. This involves defining a well-posed solution for
an impulsive system with time delays in the state, obtaining
results related to the existence of an optimal process and
necessary optimality conditions for an associated optimal
control problem. So far, we have results for systems with
vector-valued impulsive controls with delays in the drift term
only [17], or for systems with non-negative scalar valued
impulsive controls and delays both in the drift f and in
the control coefficients (gj)j=1,...,m [18], case in which any
impulsive process is actually admissible. However, there is still
much to be explored in this context, such as considering more
general delayed impulsive optimization problems with vector-
valued controls, analyzing the case with state constraints (to
extend, for instance, the results in [3], [4], [5], [25] to the case
with delays), and determining sufficient conditions to prevent
a gap between the minimum of the impulsive problem with
time delays and the infimum of the problem with unbounded
controls of which the impulsive problem is an extension, as
done, e.g., in [2], [13], [14], [15], [16], [23] for the case
without delays.
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