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Global Exponential Stabilization and Global Lp
Performance of a Saturated Double Integrator

Luís Martins , Carlos Cardeira , Senior Member, IEEE, and Paulo Oliveira , Senior Member, IEEE

Abstract—This letter presents novel results on the simul-
taneous global internal and external stabilization problem
for the double integrator controlled by a saturated static
state linear feedback. The methodology capitalizes on the
distinctive characteristics of the smooth strictly increasing
saturation function considered to strengthen and extend
the stability properties reported in the existing litera-
ture for this canonical system. Concretely, as the main
contributions, this letter demonstrates that the resulting
closed-loop system, in the absence of disturbances, is
globally exponentially stable and, in the face of non-input
additive disturbances, is globally Lp stable for any given
p ∈ [1,∞) and yields a bounded state trajectory. The
simulation experiments showcase these new findings.

Index Terms—Control nonlinearities, input saturation,
robust stability, stability analysis.

I. INTRODUCTION

A. Motivation and Background

THE DOUBLE integrator plant plays a prominent role
in control applications, being the fundamental model

for multiple electrical and mechanical systems (see [1] and
references therein), describing, for instance, translational and
rotational dynamics in one-dimensional space [2]. Within this
widespread applicability, the limited control authority is a
cross-cutting constraint in practical implementations. Hence,
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the saturated double integrator is a highly relevant system
extensively explored in the literature over the past decades.

This letter focuses on the case of a double integrator
controlled by a saturated static state linear feedback in the
presence of a non-input additive external disturbance. Due
to its simplicity, the linear controller tends to be more
prevalent in practical applications [3]. Nonetheless, given the
limited control authority, this subclass of feedback control
is deceptively simple, posing an intricate problem involving
simultaneous internal and external stability that still lacks
complete understanding [4], [5]. Furthermore, the external
stability results are instrumental for the robust stabilization of
cascade and delay systems (see [6] and references therein).

B. Literature Review

In [7], Sussman and Yang demonstrated that a saturated
static state linear feedback law renders the origin of the
double integrator globally asymptotically stable. In terms of
exponential convergence, Lin and Saberi proposed a satu-
rated linear feedback that yields a semi-global exponential
stability result [8]. The idea followed was also applied in
[9, Proposition 1] and requires an a priori knowledge of a
given compact set of initial conditions to find sufficiently low
controller gains such that saturation does not occur. However,
this approach has the drawback of the exponential result being
obtained at the expense of the convergence rate [5, Sec. IV.5].
Furthermore, this logic relies on one assumption that may not
hold in the presence of external disturbances. In [10, Th. 1], the
authors globally exponentially stabilized the saturated double
integrator in position tracking using linear feedback with any
positive gains. Unlike [8], [9], since the initial conditions do
not limit these parameters, the solution fully explores the
available control capacity.

Most of the literature regards the Lp-norm as an effective
tool for evaluating external stability. In [11], Stoorvogel et al.
established that the problem of simultaneous global internal
stabilization with global finite-gain Lp performance for any
p ∈ [1,∞] is intrinsically unsolvable for critically unstable
systems in the presence of non-input additive disturbances. In
this direction, the problem formulation must exclude the finite-
gain condition or restrict the external disturbance to a given
compact set in the Lp space. In [3], [12], the authors tackled
this problem without finite gain for the double integrator
controlled via saturated linear feedback, yielding a result that
combines global asymptotic internal stability with global Lp
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stability and boundedness of states for any p ∈ [1, 2]. In
addition, both works proved that global Lp performance for
p ∈ (2,∞] is impossible since there are some external distur-
bances for which certain initial conditions lead to unbounded
state trajectories. For the same closed-loop system, Shi and
Saberi showcased in [13] the existence of disturbances with
arbitrarily small L∞-norm that lead to the unboundedness of
the states, thereby precluding the attainment of the input-to-
state stability (ISS) property [14, Definition 4.7]. Wen et al.,
in [15], broadened this result by adding another constrained
set of disturbances. Notwithstanding, within the same context,
the papers [4], [15] documented a class of uniformly integral
bounded disturbances, encompassing, for instance, periodic
and L1 signals, whose presence results in bounded state
trajectories for any given initial condition.

C. Contributions

This letter analyzes the internal and external stability of
the double integrator controlled via saturated linear static
state feedback. The majority of the existing literature on this
subject relies on the standard saturation function σ(s) =
sgn(s) min{M, |s|} [3], [4], [12], [13], [15]. In contrast,
this letter uses a smooth strictly increasing saturation func-
tion, commonly adopted in applications like artificial neural
networks and AD/DA conversion systems, to restrict the linear
feedback. Furthermore, in some cascade control applications
(for instance, trajectory tracking with unmanned aerial vehi-
cles [10], [16]), the outer loop consists of a saturated double
integrator system that generates references for the inner loop.
Since these references result from the derivatives of the outer-
loop actuation, the saturation function resorted is smooth. This
choice is pivotal since exploiting the unique properties of this
latter function is what enables the attainment of the following
novel internal and external stability results in this letter:

• Global exponential internal stabilization: For any given
initial condition, the saturated static state linear feedback
renders the origin of the double integrator system expo-
nentially stable in the absence of disturbances. The initial
condition does not restrict the feedback gains selection
and the exponential convergence bound holds globally for
any given positive gains even if it leads to saturation.

• Global Lp performance: The formulation considers a
generic output map and the approach demonstrates that
the closed-loop system, for any given initial condition and
d ∈ Lp, is Lp stable with p ∈ [1,∞) and is small signal
finite gain Lp with p ∈ [1,∞]. Furthermore, the state
trajectory remains bounded for any given initial condition
and any d ∈ Lp with p ∈ [1,∞).

In addition, this letter also presents some input-to-state
implications resulting from the disturbance response charac-
terization. Specifically, the system is integral input-to-state
stable (iISS) [17, Definition II.1] and, for disturbances with
sufficiently low L∞-norm, is input-to-state stable. Simulation
results illustrate the main contributions of this letter.

D. Organization

This letter unfolds as follows: Section II presents the
notation, some definitions, and external stability concepts;

Section III details the dynamic model and formalizes the
control problem; Section IV focuses on the global expo-
nential internal stabilization; Section V assesses the Lp
performance by evaluating the disturbance response the
system; Section VI displays and discusses the simulation
results; lastly, Section VII draws some concluding remarks.

II. NOTATION AND PRELIMINARIES

A. Notation

In this letter, R
n represents the n-dimensional Euclidean

space; R≥0(R>0) expresses the set of non-negative (positive)
real numbers; Rn×m denotes the set of n × m matrices; Rn×n

�0
represents the set of n × n positive definite matrices; dom V
symbolizes the domain of the function V; for S ∈ R

n×n,
λmax(S) and λmin(S) denote, respectively, the largest and
smallest eigenvalues of S; for s ∈ R, sgn(s) represents the sign
function, which satisfies sgn(0) = 0 and sgn(s) = s|s|−1 ∀ s �=
0; ‖·‖ represents the Euclidean norm; Ln∞ denotes the space
of piecewise continuous bounded functions s : R≥0 
→ R

n

and is equipped with the L∞-norm given by ‖s‖L∞ :=
supt≥0 ‖s(t)‖ < ∞; for p ∈ [1,∞[, Ln

p denotes the space
of piecewise continuous p-integrable functions s : R≥0 
→
R

n and is endowed with the Lp-norm given by ‖s‖Lp :=
(
∫ ∞

0 ‖s(t)‖pdt)1/p < ∞; for any ν ∈ R > 0 and p ∈ [1,∞],
Ln

p(ν) denotes the set {s ∈ Ln
p : ‖s‖L∞ ≤ ν}; C0 is the

set of all vanishing functions s : R≥0 
→ R
n, i.e., with the

property limt→∞ s(t) = 0. The class K and K∞ comparison
functions used are in accordance with [14, Definition 4.2].
The saturation function here considered is aligned with the
following definition:

Definition 1: The mapping σ : R 
→ R is a smooth odd
strictly increasing function satisfying the following properties:
(1) σ(0) = 0; (2) sσ(s) > 0 ∀ s �= 0; (3) lims→±∞ σ(s) =
±M, with M > 0; (4) 0 < σ̇(s) ≤ 1; (5) σ̈ (s) < 0 ∀ s > 0.

B. External Stability

Consider the system

ẋ(t) = f(x(t), u(t)), x(0) = x0
y(t) = h(x(t), u(t)),

(1)

where t ∈ R≥0 represents time, x(t) : R≥0 
→ R
n denotes the

state, u(t) : R≥0 
→ R
m symbolizes the input, y ∈ R

q is the
output, f(x(t), u(t)) : Rn ×R

m 
→ R
n and h(x(t), u(t)) : Rn ×

R
m 
→ R

q. The following definitions formalize the concepts
of Lp stability and small-signal finite-gain Lp stability based
on [14, Definitions 5.1 and 5.2].

Definition 2: For a given p ∈ [1,∞], the system (1) is
Lp stable if for all u ∈ Lm

p there exist a class K function
γ : R≥0 
→ R≥0 and a constant β ∈ R≥0 such that

‖y(t)‖Lp ≤ γ
(‖u(t)‖Lp

) + β ∀ t ∈ R≥0.

If this inequality holds for any given initial condition x0 ∈ R
n,

then the system is globally Lp stable.
Definition 3: For a given p ∈ [1,∞], the system (1) is

small-signal finite-gain Lp stable if for all u ∈ Lm
p (ν) there

exist constants η, β ∈ R≥0 such that

‖y(t)‖Lp ≤ η‖u(t)‖Lp + β ∀ t ∈ R≥0

holds for any given initial condition x0 ∈ R
n.
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Fig. 1. Schematic representation of system (2).

III. PROBLEM FORMULATION

This letter focuses on the internal exponential stabilization
and dynamic response to external disturbances of a double
integrator controlled by a smooth saturated linear static state
feedback. The resulting closed-loop system has the form

�

{
ẋ = f(x, d) = (x2,−σ(u(x)) + d)

y = h(x, d), x(0) = x0
, (2)

where x = (x1, x2) ∈ R
2 denote the state, d(t) : R≥0 
→ R

models a non-input-additive disturbance, σ : R 
→ R is a
strictly increasing saturation function with M > 0 as saturation
level, verifying the properties outlined in Definition 1, and
u(x) : R

2 
→ R is the linear static state feedback given by
u(x) = k1x1 + k2x2, with k1, k2 ∈ R as constant control gains.
Figure 1 provides a schematic representation of system (2).
In addition, the output map satisfies the following assumption,
which is relatively mild and ordinary.

Assumption 1: For some constants η1, η2 ∈ R≥0, the output
map h(x, d) verifies the inequality

‖h(x, d)‖ ≤ η1‖x‖ + η2|d| ∀ (x, d) ∈ R
2 × R.

The following problem statement captures the dual goal
driving this letter.

Problem 1: For the double integrator controlled by a
smooth strictly increasing saturated linear static feedback,
described by the closed-loop system (2)

1) In the absence of the non-input-additive disturbance d(t),
the origin x = 0 is globally exponentially stable;

2) In the presence of any non-input-additive disturbance
d(t) ∈ Lp, with p ∈ [1,∞), the closed-loop system is
globally Lp stable.

It is worth emphasizing that global L∞ stability, corre-
sponding to the behavior in the face of bounded external
disturbances, is excluded from the problem formulation since
any disturbance bound exceeding the saturation limit results
invariably in unbounded trajectories, which renders this form
of external stability unattainable.

IV. GLOBAL EXPONENTIAL INTERNAL STABILITY

With the focus on the internal stabilization of the closed-
loop system �, this section builds upon the foundation
provided by a well-established conclusion from the existing
literature: the global asymptotic stability of the origin of (2)
in the absence of the external disturbance [7]. In this direc-
tion, the present work goes a step further by demonstrating
the exponential nature of the convergence of the dynamical
responses of (2) to its equilibrium point. To this end, the
demonstration hinges on Lyapunov theory and explores the

properties of the smooth saturation function considered to
derive the required exponential bounds and, consequently,
attain an improved stability result. Theorem 1 formalizes this
novel result, tackling, in this way, the internal stabilization
challenge posed in Problem 1.

Theorem 1: In the absence of the non-input additive distur-
bance, i.e., d(t) = 0 ∀ t ∈ R≥0, the equilibrium point x = 0
of the system (2) is globally exponentially stable.

Proof: Consider the Lyapunov function candidate V : R2 
→
R≥0, first proposed in [7], given by

V(x) := k1x2
2 +

∫ u(x)

0
σ(μ) dμ +

∫ k1x1

0
σ(μ) dμ. (3)

This function is continuously differentiable, radially
unbounded, positive-definite, and satisfies the upper bound

V(x) ≤ 1

2
u(x)2 + 1

2
(k1x1)

2 + k1x2
2, (4)

which, in turn, leads to V(x) ≤ λmax(A)‖x‖2 with A ∈ R
2×2
�0

given by

A = 1

2

[
2k2

1 k1k2

k1k2 k2
2 + 2k1

]

.

The derivative of V along the trajectories of (2) verifies

V̇(x) = −k2σ(u(x))2 − k1x2(σ (u(x)) − σ(k1x1)) = −W(x),

where W(x) : R2 
→ R≥0 is a continuous function. Given that
the saturation function is strictly increasing,

σ(u(x)) − σ(k1x1)

k2x2
> 0 for x2 �= 0,

which leads to −k1x2(σ (u(x)) − σ(k1x1)) ≤ 0. Therefore,
since the first and second terms of V̇ are negative definite
with respect to the sets {x ∈ R

2:k1x1 = −k2x2} and {x ∈
R

2 : x2 = 0}, respectively, the time derivative of V(x) is
negative definite and the function W(x) is positive definite.
Hence, based on [14, Th. 4.9], the equilibrium point x = 0 is
globally uniformly asymptotically stable for the system (2). In
light of this result, it follows that V(x(t)) ≤ V(x0) ∀ t ∈ R>0.
Since |u(x)| and |k1x1| are continuous, and the set V = {x ∈
R

2 : V(x) ≤ V(x0)} is compact, according to the Weierstrass’s
extreme value theorem, these functions have a maximum on
V . In this way, for all t ∈ R≥0, one can write |u(x(t))| ≤ α

and |k1x1(t)| ≤ α, where α : R≥0 ×R≥0 
→ R≥0 results from
α = max{αu, αx1} with

αu = max |u(x)|
s.t. x ∈ V

, αx1 = max |k1x1|
s.t. x ∈ V

.

It is noteworthy that the positive definiteness of the function
V(x) implies α = 0 exclusively when x0 = 0. Furthermore,
stemming from the global uniform asymptotic stability result,
this initial condition leads to the trivial solution x(t) = 0. In the
sequel, to evaluate the exponential convergence of nontrivial
solutions, the derivation of the required bounds considers the
case α ∈ R>0. First, note that the last property outlined in
Definition 1 implies

|σ(u(x))| ≥ σ(α)α−1|u(x)|, (5a)

|σ(u(x)) − σ(k1x1)| ≥ |u(x) − k1x1|σ̇ (α) = |k2x2|σ̇ (α). (5b)
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Based on the former inequality, one arrives to V(x) ≥
λmin(B(α)), where B(α) : R>0 
→ R

2×2
�0 verifies

B(α) = 1

2

[
2k2

1σ(α)α−1 k1k2σ(α)α−1

k1k2σ(α)α−1 k2
2σ(α)α−1 + 2k1

]

.

Note that B(α) is Hermitian and bear in mind that k1 and
k2 are positive, and σ is strictly increasing. Then, based on
Sylvester’s criterion, it follows that B(α) is positive definite
for any given α ∈ R>0. Furthermore, combining the inequali-
ties (5a) and (5b) leads to

V̇(x) ≤ −k1k2σ̇ (α)x2
2 − k2σ(α)2α−2u2.

Then, it follows that V̇(x) ≤ −λmin(C(α))‖x‖2, with
C(α):R>0 
→ R

2×2
�0 defined by

C(α) =
[

k2
1k2σ(α)2α−2 k1k2

2σ(α)2α−2

k1k2
2σ(α)2α−2 k3

2σ(α)2α−2 + k1k2σ̇ (α)

]

,

Analogous to B(α), C(α) is Hermitian and positive definite
for any given α ∈ R>0. In this direction, one has

V̇(x) ≤ −λmin(C(α))

λmax(A)
V(x). (6)

Hence, based on [14, Th. 4.10], x = 0 is globally exponentially
stable for (2). In detail, the state verifies

‖x(t)‖ ≤
√

c2c−1
1 ‖x0‖e

− c3
2c2

t ∀ t ∈ R≥0, (7)

where c1 = λmin(B), c2 = λmax(A), and c3 = λmin(C).
Remark 1: Under the same arguments of the previous

proof, the widely-used standard saturation function σ(s) =
sgn(s) min{M, |s|}, which is not continuously differentiable nor
strictly increasing, does not yield global exponential stability
since σ̇ (s) = 0 ∀ |s| > M and, consequently, the matrix C(α)

would be positive semi-definite, leading to λmin(C(α)) = 0,
which prevents from concluding the required condition for
exponential stability (6).

Remark 2: The authors applied this result to a position
tracking problem in [10]. Compared to [10, Th. 1], this proof
resorts to an optimization problem to obtain the minimum
value for α, ultimately leading to a less conservative exponen-
tial bound for the state trajectory. Furthermore, it elaborates
further on the derivation of the bounds for V(x) and V̇(x) and
specifies the resulting exponential bound.

V. GLOBAL EXTERNAL STABILITY

Having assessed the internal stability of (2), the focus
now shifts to analyzing its behavior in the presence of
the disturbance d(t) within the framework of Lp stability,
whose concepts are frequently resorted to evaluate cascade
control architectures (see [10, Th. 3] for an example of
application). This external stability analysis builds upon the
previously established exponential result to tackle the second
part of Problem 1. Theorem 2 leverages Lyapunov tools to
demonstrate the small-signal finite-gain Lp stability of (2).

Theorem 2: For any given initial condition x0 ∈ R
2, the

system (2) is small-signal finite-gain Lp stable for each p ∈
[1,∞]. In detail, for each d ∈ Lp(ν), with

ν = min
{
σ(M),

√
c1V(x0)c3(c2c4)

−1
}
, (8)

where c4 =
√

(2k2
1 + k1k2)2 + (k1k2 + 2k1 + k2

2)
2, the output

y(t) satisfies

‖y(t)‖Lp ≤ (η + η2)‖d(t)‖Lp + β ∀ t ∈ R≥0, (9)

where

η = η1c2c4

c1c3
, β =

(
c2

c1

) 1
2
ρ‖x0‖, with ρ =

⎧
⎨

⎩

1 , if p = ∞
(

2c2
pc3

) 1
p

, if p ∈ [1,∞)
.

Proof: By definition, d ∈ Lp implies being a piecewise
continuous function of t. In this way, in light of f(x, 0) being
continuously differentiable in R

2, the function f(x, d) is also
piecewise continuous in t. Moreover, for all w, y ∈ R

2,

‖f(w, d) − f(y, d)‖2 ≤ λmax

([
k2

1 k1k2

k1k2 k2
2 + 1

])

‖w − y‖.

Therefore, the system (2) is globally Lipschitz. In addition, the
condition ‖f(x, d) − f(x, 0)‖ = |d| also holds. The Lyapunov
function V(x), defined in (3)

c1‖x‖2 ≤ V(x) ≤ c2‖x‖2. (10)

and, for d = 0, its derivative satisfies V̇(x) ≤ −c3‖x‖2.
Note that the condition V(x(t)) ≤ V(x0) ∀ t ∈ R≥0,
required for the exponential stability of (2) in the absence

of the external disturbance d, implies ‖x‖ ≤
√

c−1
1 V(x0). The

gradient ∇V(x) : R2 
→ R
2 verifies

∇V(x) = [
σ(u(x))k1 + σ(k1x1)k1 σ(u(x))k2 + 2k1x2

]
,

yielding

‖∇V(x)‖ ≤ c4‖x‖. (11)

Thus, in virtue of these results and Assumption 1, it follows
from [14, Th. 5.1] that for each p ∈ [1,∞] and d ∈ Lp(ν), the
output y verifies (9)–(2) is small-signal finite gain Lp stable
for each p ∈ [1,∞].

Remark 3: According to [13, Th. 1], resorting to the
standard saturation function σ(s) = sgn(s) min{M, |s|} to
constraint the linear feedback in (2) leads to a closed-
loop system that is not ISS even for d ∈ L∞(δ) with δ ∈
R>0 arbitrarily small. In contrast, by using a smooth strictly
increasing saturation function in line with Definition 1, for
any d ∈ L∞(ν) and any given initial condition x0 ∈ R

2, the
system (2) is finite gain L∞ stable and, based on the proof
of [14, Th. 5.1], the following condition holds

‖x(t)‖ ≤
(

c2

c1
e
− c3

c2
t
) 1

2 ‖(x0)‖ + c4

2c1

∫ t

0
e
− c3

2c2
(t−τ)|d(τ )| dτ.

This inequality leads to

‖x(t)‖ ≤
(

c2

c1
e
− c3

c2
t
) 1

2 ‖(x0)‖ + c4c2

c1c3
‖d(τ )‖L∞ .

Hence, as a result of using the smooth strictly increasing
saturation function, the system (2) is ISS for d ∈ L∞(ν).

Before advancing to the main result of this letter, Theorem 3
builds on the bounds established to demonstrate the meaning-
ful property of integral input-to-state stability, which provides
a qualitative perception for the overshoot of the states under
the influence of a finite energy disturbance [17].
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Theorem 3: The system (2) is iISS.
Proof: Consider the function U : dom V 
→ R≥0 given by

U(x) := V1/2(x). For V �= 0, since U̇ = 2−1V̇V−1/2 and in
light of V ≥ k1x2

2 and V ≥ 1
2σ(u(x))2, one has

U̇(x, d) ≤ −W(x)

2
√

V(x)
+

√
2

2
max{

√
c4,

√
2k1 + k2|d(t)|. (12)

On the other hand, for V(x(t)) = 0, first, note that

lim sup
h→0+

1

h
(U(x(t + h)) − U(x(t))) = lim sup

h→0+

1

h

√
V(x(t + h)).

Since V is continuously differentiable, positive definite, and
maps a convex domain into R≥0, for h∗ ∈ [0, 1], applying
the fundamental theorem of calculus followed by a change of
variables yields

V(x(t + h)) =
∫ x(t+h)

0
∇V(µ) dµ

=
∫ 1

0
∇V

(
h∗x(t + h)

)
dh∗x(t + h).

Then, in light of (11), if follows that V(x(t+h)) ≤ 2−1c4‖x‖2.
Consequently, given (10), c4 ≥ 2c1. The vector x(t + h)

can be expanded using a first-order Taylor polynomial and a
sensitivity function o(h):R 
→ R

2 satisfying limh 
→0 o(h) = 0,
yielding x(t+h) = hẋ(t)+ho(h). In this direction, one obtains
‖x(t + h)‖2 = h2d2(t) + h2o(h), which, combined with the
previous notions, leads to

lim sup
h→0+

1

h

√
V(x(t + h)) ≤

√
2

2
max{

√
c4,

√
2k1 + k2|d|.

Therefore, U verifies (12) for any given value of V . Given
that V is positive definite, it follows from [14, Lemma 4.3] that
there exists class K∞ functions γ1 and γ2 such that γ1(x) ≤
U(x) ≤ γ2(x). Furthermore, note that W(x)(2

√
V(x))−1 is

positive definite. Then, based on [17, Defintion II.2], the
continuously differentiable function U is an iISS Lyapunov
function for system (2) for all x ∈ R

2 and all d ∈ R. In this
way, according to [17, Th. 1], the system (2) is iISS.

The sequel relies on a pivotal notion of equivalence of exter-
nal stability that provides a framework in which it is sufficient
to consider a bounded vanishing Lp disturbance to obtain
the intended global Lp stabilization from the previous small-
signal result. In this direction, by levering this equivalence,
Theorem 4 tackles the second part of Problem 1 and states the
main result of this letter.

Theorem 4: For any initial condition x0 ∈ R
2 and distur-

bance d(t) ∈ Lp, with p ∈ [1,∞), the system (2) is Lp stable.
Proof: Consider the system

�z

{
ż = f(z, dz(t))
yz = z, z(0) = z0,

where z := (z1, z2) ∈ R
2 denotes the state, yz ∈ R

2 is the
output, and dz ∈ Lp ∩L∞ ∩ C0, with p ∈ [1,∞), represents a
vanishing bounded non-input additive disturbance. Since

‖u(w) − u(s)‖ ≤ (k1 + k2)‖w − s‖ ∀ w, s ∈ R
2,

the linear feedback u(x) is globally Lipschitz continuous in x.
Given that the strictly increasing saturation function σ is also

globally Lipschitz continuous, |σ(w)−σ(s)| ≤ |w−s| ∀ w, s ∈
R, and the composition of such functions is itself Lipschitz
continuous, according to [5, Lemma 13.21], for p ∈ [1,∞)

and y = x, the system � is Lp stable for all d ∈ Lp if and only
if the system �z is Lp stable for all dz. Furthermore, it also
follows from [5, Lemma 13.21] that the small-signal finite-
gain Lp stability result presented in Theorem 2 also holds for
�z. In light of dz(t) ∈ Lp and the system �z being piecewise
continuous in t and globally Lipschitz, based on [14, Th. 3.2],
the system �z has a unique solution ∀ t > t0 and, thereby,
cannot have a finite escape time. In this direction, since dz ∈
C0, there exists a time instant t̄ such that dz(t) ∈ Lp(ν) ∩
L∞(ν) ∀ t ≥ t̄, satisfying, thus, (8) Therefore, bearing in mind
Theorem 2, for any given initial condition z(0) and external
disturbance dz ∈ Lp, the system

∑
z is Lp stable for each

p ∈ [1,∞). Then, using the equivalence notion presented in
[5, Lemma 13.21], one concludes that, for any d ∈ Lp with
p ∈ [1,∞), the state of the system (2) verifies x ∈ L2

p. In this
way, by virtue of Assumption 1, it directly follows that the
system (2) is globally Lp stable for each p ∈ [1,∞).

Corollary 1: For any given x0 ∈ R
2 and d(t) ∈ Lp, with

p ∈ [1,∞), the state of system (2) is bounded, i.e., x ∈ L2∞.
Proof: The system (2) being globally Lp stable for all p ∈

[1,∞) results in x ∈ L2
p. Furthermore, given that |s| ≥ σ(|s|)

and by applying the Minkowski inequality [18, Th. 2.11.9],
one has

‖σ(u(x))‖Lp ≤ ‖u(x)‖Lp ≤ (k1 + k2)‖x‖Lp < ∞.

Hence, since d(t) ∈ Lp, ẋ ∈ L2
p. Thereby, in light of [5,

Lemma 2.5], it directly follows that, for any given x0 and
d(t) ∈ Lp, with p ∈ [1,∞), x ∈ L2∞.

VI. SIMULATION RESULTS

To demonstrate the novel results presented in Theorem 1
and Theorem 4, the authors conducted two simulation tests
capturing scenarios excluded from the global results found in
the literature. Specifically, to illustrate the exponential stability
result, the test consists of considering an initial condition
verifying u(x0) > M, and, to showcase the Lp performance,
the experiment considers an external disturbance verifying d ∈
Lp strictly for a given p ∈ (2,∞). For the double integrator
controlled by saturated linear feedback, these scenarios are
relevant since the existing literature only reports exponen-
tial results that hold when the control magnitude is always
smaller than the saturation level [8], [9] and only demonstrates
global Lp performance for p ∈ [1, 2] (see [3], [5], [12]). To
illustrate the practical application of this letter, the simulation
tests considered the position tracking problem [10, Sec. IV]
in one-dimensional space. Within this context, the tracking
dynamics are controlled by a smooth saturated linear static
state feedback, yielding a closed-loop system described by (2),
where x1 and x2 denote the position and velocity tracking
errors, respectively.

The first simulation test studied the behavior in the absence
of the external disturbance d(t) and considered the following
values: M = 2, k1 = 2, k2 = 1, and x0 = (1, 1). The
saturation function used was σ(s) = M tanh (sM−1). From the
response depicted in Fig. 2, one can conclude that the resulting
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Fig. 2. Norm of the state x(t) obtained in the first test.

Fig. 3. Responses obtained in the second test.

trajectory x(t), verifying u(x0) > M, complied with the
exponential bound presented in (7), being, thereby, coherent
with the stability result of Theorem 1.

The Lp performance evaluation resorted to the same satura-
tion function, featured the parameters M = 2, k1 = 6, k2 = 12,
and x0 = (50,−50), and involved the piecewise continuous
external disturbance

d(t) =
⎧
⎨

⎩

0.2a, for t = 0

a

(
( t

b

) 1
p∗

(
log

( t
b

)2 + 1
))−1

, for t > 0

with a = 4, b = 4, and p∗ = 3. It is worth emphasizing
the particularity that d(t) ∈ Lp if and only if p = p∗. To
provide some insight to the reader, this external disturbance
is presented in Fig. 3(b). The outcome of this second test is
exhibited in Fig. 3. The joint effect of the challenging initial
condition and the external disturbance satisfying ‖d(t)‖L∞ >

M led to the saturation of the linear feedback during the
majority of the experiment, as one can observe in Fig. 3(d).
Despite this constraint, the state x did not grow unbounded,
which is in line with Corollary 1, and ultimately converged to
zero. Furthermore, as displayed in Fig. 3(c), the L3-norm of
the state approached a finite value, thereby corroborating the
external stability result presented in Theorem 4.

VII. CONCLUSION

This letter addressed the simultaneous global internal
and external stabilization problem for the double integrator

controlled by a saturated static state linear feedback. By
capitalizing on the characteristics of the smooth strictly
increasing saturation function considered, this letter yields
noteworthy improvements in internal stability results and Lp
performance. Specifically, by pairing the linear feedback with
this saturation function, the resulting closed-loop system is
globally exponentially stable in the absence of disturbances.
Furthermore, in the presence of a non-input additive dis-
turbance, this approach significantly extends the existing Lp
stability results from the literature: for any given initial con-
dition and disturbance d ∈ Lp with p ∈ [1,∞), the saturated
double integrator is Lp stable and its states remain bounded.
The simulation results highlighted these contributions.
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